FPDF Library

PDF ggneramr

"‘ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command ‘'pcre2test.1’'
$ man pcre2test.1
PCRE2TEST(1) General Commands Manual PCRE2TEST(1)
NAME
pcre2test - a program for testing Perl-compatible regular expressions.
SYNOPSIS
pcre2test [options] [input file [output file]]
pcre2test is a test program for the PCRE2 regular expression libraries, but it can
also be used for experimenting with regular expressions. This document describes
the features of the test program; for details of the regular expressions them?
selves, see the pcre2pattern documentation. For details of the PCREZ2 library func?
tion calls and their options, see the pcre2api documentation.
The input for pcre2testis a sequence of regular expression patterns and subject
strings to be matched. There are also command lines for setting defaults and con?
trolling some special actions. The output shows the result of each match attempt.
Modifiers on external or internal command lines, the patterns, and the subject
lines specify PCRE2 function options, control how the subject is processed, and
what output is produced.
As the original fairly simple PCRE library evolved, it acquired many different fea?
tures, and as a result, the original pcretest program ended up with a lot of op?
tions in a messy, arcane syntax for testing all the features. The move to the new
PCRE2 API provided an opportunity to re-implement the test program as pcre2test,
with a cleaner modifier syntax. Nevertheless, there are still many obscure modi?

) Page 1/43
fiers, some of which are specifically designed for use in conjunction with the test

script and data files that are distributed as part of PCRE2. All the modifiers are
documented here, some without much justification, but many of them are unlikely to
be of use except when testing the libraries.

PCREZ2's 8-BIT, 16-BIT AND 32-BIT LIBRARIES
Different versions of the PCREZ2 library can be built to support character strings
that are encoded in 8-bit, 16-bit, or 32-bit code units. One, two, or all three of
these libraries may be simultaneously installed. The pcre2test program can be used
to test all the libraries. However, its own input and output are always in 8-bit
format. When testing the 16-bit or 32-bit libraries, patterns and subject strings
are converted to 16-bit or 32-bit format before being passed to the library func?
tions. Results are converted back to 8-bit code units for output.
In the rest of this document, the names of library functions and structures are
given in generic form, for example, pcre_compile(). The actual names used in the
libraries have a suffix _8, 16, or 32, as appropriate.

INPUT ENCODING
Input to pcre2test is processed line by line, either by calling the C library's
fgets() function, or via the libreadline library. In some Windows environments
character 26 (hex 1A) causes an immediate end of file, and no further data is read,
so this character should be avoided unless you really want that action.
The input is processed using using C's string functions, so must not contain binary
zeros, even though in Unix-like environments, fgets() treats any bytes other than
newline as data characters. An error is generated if a binary zero is encountered.
By default subject lines are processed for backslash escapes, which makes it possi?
ble to include any data value in strings that are passed to the library for match?
ing. For patterns, there is a facility for specifying some or all of the 8-bit in?
put characters as hexadecimal pairs, which makes it possible to include binary ze?
ros.

Input for the 16-bit and 32-bit libraries

When testing the 16-bit or 32-bit libraries, there is a need to be able to generate
character code points greater than 255 in the strings that are passed to the Ii?
brary. For subject lines, backslash escapes can be used. In addition, when the utf
modifier (see "Setting compilation options" below) is set, the pattern and any fol?

lowing subject lines are interpreted as UTF-8 strings and translated to UTF-16 or Page 2/43

UTF-32 as appropriate.

For non-UTF testing of wide characters, the utf8_input modifier can be used. This

is mutually exclusive with utf, and is allowed only in 16-bit or 32-bit mode. It

causes the pattern and following subject lines to be treated as UTF-8 according to

the original definition (RFC 2279), which allows for character values up to
Ox7fffffff. Each character is placed in one 16-bit or 32-bit code unit (in the
16-bit case, values greater than Oxffff cause an error to occur).

UTF-8 (in its original definition) is not capable of encoding values greater than

Ox7fffffff, but such values can be handled by the 32-bit library. When testing this

library in non-UTF mode with utf8_input set, if any character is preceded by the

byte Oxff (which is an invalid byte in UTF-8) 0x80000000 is added to the charac?

ter's value. This is the only way of passing such code points in a pattern string.
For subject strings, using an escape sequence is preferable.
COMMAND LINE OPTIONS

-8 If the 8-bit library has been built, this option causes it to be used
(this is the default). If the 8-bit library has not been built, this op?
tion causes an error.

-16 If the 16-bit library has been built, this option causes it to be used.
If only the 16-bit library has been built, this is the default. If the
16-bit library has not been built, this option causes an error.

-32 If the 32-bit library has been built, this option causes it to be used.
If only the 32-bit library has been built, this is the default. If the
32-bit library has not been built, this option causes an error.

-ac Behave as if each pattern has the auto_callout modifier, that is, insert
automatic callouts into every pattern that is compiled.

-AC As for -ac, but in addition behave as if each subject line has the call?
out_extra modifier, that is, show additional information from callouts.

-b Behave as if each pattern has the fullbincode modifier; the full internal
binary form of the pattern is output after compilation.

-C Output the version number of the PCREZ2 library, and all available infor?
mation about the optional features that are included, and then exit with
zero exit code. All other options are ignored. If both -C and -LM are

present, whichever is first is recognized.

Page 3/43

-C option Output information about a specific build-time option, then exit. This
functionality is intended for use in scripts such as RunTest. The follow?
ing options output the value and set the exit code as indicated:

ebcdic-nl the code for LF (= NL) in an EBCDIC environment:
0x15 or 0x25
0 if used in an ASCII environment
exit code is always O
linksize the configured internal link size (2, 3, or 4)
exit code is set to the link size
newline the default newline setting:
CR, LF, CRLF, ANYCRLF, ANY, or NUL
exit code is always 0
bsr the default setting for what \R matches:
ANYCRLF or ANY
exit code is always 0
The following options output 1 for true or O for false, and set the exit
code to the same value:
backslash-C \C is supported (not locked out)
ebcdic compiled for an EBCDIC environment
jit just-in-time support is available
pcre2-16 the 16-bit library was built
pcre2-32 the 32-bit library was built
pcre2-8 the 8-bit library was built
unicode Unicode support is available
If an unknown option is given, an error message is output; the exit code
is 0.

-d Behave as if each pattern has the debug modifier; the internal form and
information about the compiled pattern is output after compilation; -d is
equivalent to -b -i.

-dfa Behave as if each subject line has the dfa modifier; matching is done us?
ing the pcre2_dfa_match() function instead of the default pcre2_match().

-error number[,number,...]

Call pcre2_get_error_message() for each of the error numbers in the Page 4/43

-help

St

comma-separated list, display the resulting messages on the standard out?
put, then exit with zero exit code. The numbers may be positive or nega?
tive. This is a convenience facility for PCRE2 maintainers.

Output a brief summary these options and then exit.
Behave as if each pattern has the info modifier; information about the
compiled pattern is given after compilation.
Behave as if each pattern line has the jit modifier; after successful
compilation, each pattern is passed to the just-in-time compiler, if

available.

-jitftast Behave as if each pattern line has the jitfast modifier; after successful

compilation, each pattern is passed to the just-in-time compiler, if
available, and each subject line is passed directly to the JIT matcher

via its "fast path".

-jitverify

-LM

Behave as if each pattern line has the jitverify modifier; after success?
ful compilation, each pattern is passed to the just-in-time compiler, if
available, and the use of JIT for matching is verified.

List modifiers: write a list of available pattern and subject modifiers
to the standard output, then exit with zero exit code. All other options
are ignored. If both -C and -LM are present, whichever is first is rec?

ognized.

-pattern modifier-list

-q

Behave as if each pattern line contains the given modifiers.

Do not output the version number of pcre2test at the start of execution.

-S size On Unix-like systems, set the size of the run-time stack to size

mebibytes (units of 1024*1024 bytes).

-subject modifier-list

Behave as if each subject line contains the given modifiers.

Run each compile and match many times with a timer, and output the re?
sulting times per compile or match. When JIT is used, separate times are
given for the initial compile and the JIT compile. You can control the
number of iterations that are used for timing by following -t with a num?

ber (as a separate item on the command line). For example, "-t 1000" it?

Page 5/43

erates 1000 times. The default is to iterate 500,000 times.
-tm This is like -t except that it times only the matching phase, not the
compile phase.
-T-TM These behave like -t and -tm, but in addition, at the end of a run, the
total times for all compiles and matches are output.
-version Output the PCRE2 version number and then exit.
DESCRIPTION
If pcre2test is given two filename arguments, it reads from the first and writes to
the second. If the first name is "-", input is taken from the standard input. If
pcre2test is given only one argument, it reads from that file and writes to stdout.
Otherwise, it reads from stdin and writes to stdout.
When pcre2test is built, a configuration option can specify that it should be
linked with the libreadline or libedit library. When this is done, if the input is
from a terminal, it is read using the readline() function. This provides line-edit?
ing and history facilities. The output from the -help option states whether or not
readline() will be used.
The program handles any number of tests, each of which consists of a set of input
lines. Each set starts with a regular expression pattern, followed by any number of
subject lines to be matched against that pattern. In between sets of test data,
command lines that begin with # may appear. This file format, with some restric?
tions, can also be processed by the perltest.sh script that is distributed with
PCREZ2 as a means of checking that the behaviour of PCRE2 and Perl is the same. For
a specification of perltest.sh, see the comments near its beginning.
When the input is a terminal, pcre2test prompts for each line of input, using "re>"
to prompt for regular expression patterns, and "data>" to prompt for subject lines.
Command lines starting with # can be entered only in response to the "re>" prompt.
Each subject line is matched separately and independently. If you want to do multi-
line matches, you have to use the \n escape sequence (or \r or \r\n, etc., depend?
ing on the newline setting) in a single line of input to encode the newline se?
guences. There is no limit on the length of subject lines; the input buffer is au?
tomatically extended if it is too small. There are replication features that makes
it possible to generate long repetitive pattern or subject lines without having to

supply them explicitly. Page 6/43

An empty line or the end of the file signals the end of the subject lines for a
test, at which point a new pattern or command line is expected if there is still
input to be read.
COMMAND LINES
In between sets of test data, a line that begins with # is interpreted as a command
line. If the first character is followed by white space or an exclamation mark, the
line is treated as a comment, and ignored. Otherwise, the following commands are
recognized:
#forbid_utf
Subsequent patterns automatically have the PCRE2_NEVER_UTF and PCRE2_NEVER_UCP op?
tions set, which locks out the use of the PCRE2_UTF and PCRE2_UCP options and the
use of (*UTF) and (*UCP) at the start of patterns. This command also forces an er?
ror if a subsequent pattern contains any occurrences of \P, \p, or \X, which are
still supported when PCRE2_UTF is not set, but which require Unicode property sup?
port to be included in the library.
This is a trigger guard that is used in test files to ensure that UTF or Unicode
property tests are not accidentally added to files that are used when Unicode sup?
port is not included in the library. Setting PCRE2_NEVER_UTF and PCRE2_NEVER_UCP as
a default can also be obtained by the use of #pattern; the difference is that #for?
bid_utf cannot be unset, and the automatic options are not displayed in pattern in?
formation, to avoid cluttering up test output.
#load <filename>
This command is used to load a set of precompiled patterns from a file, as de?
scribed in the section entitled "Saving and restoring compiled patterns” below.
#newline_default [<newline-list>]
When PCRE?2 is built, a default newline convention can be specified. This determines
which characters and/or character pairs are recognized as indicating a newline in a
pattern or subject string. The default can be overridden when a pattern is com?
piled. The standard test files contain tests of various newline conventions, but
the majority of the tests expect a single linefeed to be recognized as a newline by
default. Without special action the tests would fail when PCRE2 is compiled with
either CR or CRLF as the default newline.

The #newline_default command specifies a list of newline types that are acceptable Page 7/43

as the default. The types must be one of CR, LF, CRLF, ANYCRLF, ANY, or NUL (in up?
per or lower case), for example:

#newline_default LF Any anyCRLF
If the default newline is in the list, this command has no effect. Otherwise, ex?
cept when testing the POSIX API, a newline modifier that specifies the first new?
line convention in the list (LF in the above example) is added to any pattern that
does not already have a newline modifier. If the newline list is empty, the feature
is turned off. This command is present in a number of the standard test input
files.
When the POSIX API is being tested there is no way to override the default newline
convention, though it is possible to set the newline convention from within the
pattern. A warning is given if the posix or posix_nosub modifier is used when #new?
line_default would set a default for the non-POSIX API.

#pattern <modifier-list>
This command sets a default modifier list that applies to all subsequent patterns.
Modifiers on a pattern can change these settings.

#perltest
The appearance of this line causes all subsequent modifier settings to be checked
for compatibility with the perltest.sh script, which is used to confirm that Perl
gives the same results as PCRE2. Also, apart from comment lines, #pattern commands,
and #subject commands that set or unset "mark”, no command lines are permitted, be?
cause they and many of the modifiers are specific to pcre2test, and should not be
used in test files that are also processed by perltest.sh. The #perltest command
helps detect tests that are accidentally put in the wrong file.

#pop [<modifiers>]

#popcopy [<modifiers>]
These commands are used to manipulate the stack of compiled patterns, as described
in the section entitled "Saving and restoring compiled patterns” below.

#save <filename>
This command is used to save a set of compiled patterns to a file, as described in
the section entitled "Saving and restoring compiled patterns" below.

#subject <modifier-list>

This command sets a default modifier list that applies to all subsequent subject

Page 8/43

lines. Modifiers on a subject line can change these settings.

MODIFIER SYNTAX
Modifier lists are used with both pattern and subject lines. Iltems in a list are
separated by commas followed by optional white space. Trailing whitespace in a mod?
ifier list is ignored. Some modifiers may be given for both patterns and subject
lines, whereas others are valid only for one or the other. Each modifier has a long
name, for example "anchored", and some of them must be followed by an equals sign
and a value, for example, "offset=12". Values cannot contain comma characters, but
may contain spaces. Modifiers that do not take values may be preceded by a minus
sign to turn off a previous setting.
A few of the more common modifiers can also be specified as single letters, for ex?

ample "i" for "caseless". In documentation, following the Perl convention, these

are written with a slash ("the /i modifier") for clarity. Abbreviated modifiers
must all be concatenated in the first item of a modifier list. If the first item is
not recognized as a long modifier name, it is interpreted as a sequence of these
abbreviations. For example:

/abclig,newline=cr,jit=3
This is a pattern line whose modifier list starts with two one-letter modifiers (/i
and /g). The lower-case abbreviated modifiers are the same as used in Perl.

PATTERN SYNTAX

A pattern line must start with one of the following characters (common symbols, ex?
cluding pattern meta-characters):

M- =_, %&@ -~
This is interpreted as the pattern's delimiter. A regular expression may be contin?
ued over several input lines, in which case the newline characters are included
within it. It is possible to include the delimiter within the pattern by escaping
it with a backslash, for example

/abcV/def/
If you do this, the escape and the delimiter form part of the pattern, but since
the delimiters are all non-alphanumeric, this does not affect its interpretation.
If the terminating delimiter is immediately followed by a backslash, for example,

labc/\

then a backslash is added to the end of the pattern. This is done to provide a way Page 9/43

of testing the error condition that arises if a pattern finishes with a backslash,
because

/abcV/
is interpreted as the first line of a pattern that starts with "abc/", causing
pcre2test to read the next line as a continuation of the regular expression.
A pattern can be followed by a modifier list (details below).

SUBJECT LINE SYNTAX

Before each subject line is passed to pcre2_match() or pcre2_dfa_match(), leading
and trailing white space is removed, and the line is scanned for backslash escapes,
unless the subject_literal modifier was set for the pattern. The following provide
a means of encoding non-printing characters in a visible way:

\a alarm (BEL, \x07)

\b backspace (\x08)

\e escape (\x27)

\f form feed (\x0c)

\n newline (\x0a)

\r carriage return (\x0d)

\t tab (\x09)

\v vertical tab (\xOb)

\nnn octal character (up to 3 octal digits); always

a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode

\o{dd...} octal character (any humber of octal digits}

\xhh hexadecimal byte (up to 2 hex digits)

\x{hh...} hexadecimal character (any number of hex digits)
The use of \x{hh...} is not dependent on the use of the utf modifier on the pat?
tern. It is recognized always. There may be any number of hexadecimal digits inside
the braces; invalid values provoke error messages.
Note that \xhh specifies one byte rather than one character in UTF-8 mode; this
makes it possible to construct invalid UTF-8 sequences for testing purposes. On the
other hand, \x{hh} is interpreted as a UTF-8 character in UTF-8 mode, generating
more than one byte if the value is greater than 127. When testing the 8-bit Ii?
brary not in UTF-8 mode, \x{hh} generates one byte for values less than 256, and

causes an error for greater values. Page 10/43

In UTF-16 mode, all 4-digit \x{hhhh} values are accepted. This makes it possible to
construct invalid UTF-16 sequences for testing purposes.
In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This makes it possi?
ble to construct invalid UTF-32 sequences for testing purposes.
There is a special backslash sequence that specifies replication of one or more
characters:

\[<characters>]{<count>}
This makes it possible to test long strings without having to provide them as part
of the file. For example:

\[abc]{4}
is converted to "abcabcabcabc". This feature does not support nesting. To include a
closing square bracket in the characters, code it as \x5D.
A backslash followed by an equals sign marks the end of the subject string and the
start of a modifier list. For example:

abc\=notbol,notempty
If the subject string is empty and \=is followed by whitespace, the line is
treated as a comment line, and is not used for matching. For example:

\= This is a comment.

abc\= This is an invalid modifier list.
A backslash followed by any other non-alphanumeric character just escapes that
character. A backslash followed by anything else causes an error. However, if the
very last character in the line is a backslash (and there is no modifier list), it
is ignored. This gives a way of passing an empty line as data, since a real empty
line terminates the data input.
If the subject_literal modifier is set for a pattern, all subject lines that follow
are treated as literals, with no special treatment of backslashes. No replication
is possible, and any subject modifiers must be set as defaults by a #subject com?
mand.

PATTERN MODIFIERS

There are several types of modifier that can appear in pattern lines. Except where
noted below, they may also be used in #pattern commands. A pattern's modifier list

can add to or override default modifiers that were set by a previous #pattern com?

mand. Page 11/43

Setting compilation options
The following modifiers set options for pcre2_compile(). Most of them set bits in
the options argument of that function, but those whose names start with PCRE2_EXTRA
are additional options that are set in the compile context. For the main options,
there are some single-letter abbreviations that are the same as Perl options. There
is special handling for /x: if a second x is present, PCRE2_EXTENDED is converted
into PCRE2_EXTENDED_MORE as in Perl. A third appearance adds PCRE2_EXTENDED as
well, though this makes no difference to the way pcre2_compile() behaves. See
pcre2api for a description of the effects of these options.
allow_empty class set PCRE2_ALLOW_EMPTY_CLASS

allow_surrogate_escapes set PCRE2 _EXTRA_ALLOW_SURROGATE_ESCAPES

alt_bsux set PCRE2_ALT_BSUX
alt_circumflex set PCRE2_ALT_CIRCUMFLEX
alt_verbnames set PCRE2_ALT_VERBNAMES
anchored set PCRE2_ANCHORED
auto_callout set PCRE2_AUTO_CALLOUT

bad_escape_is_literal set PCRE2_EXTRA_BAD_ESCAPE_IS LITERAL

/i caseless set PCRE2_CASELESS
dollar_endonly set PCRE2_DOLLAR_ENDONLY
/s dotall set PCRE2_DOTALL
dupnames set PCRE2_DUPNAMES
endanchored set PCRE2_ENDANCHORED

escaped_cr_is_If set PCRE2_EXTRA ESCAPED CR IS LF

/x extended set PCRE2_EXTENDED

/xx extended_more set PCRE2_EXTENDED_MORE
extra_alt_bsux set PCRE2_EXTRA ALT BSUX
firstline set PCRE2_FIRSTLINE
literal set PCRE2_LITERAL
match_line set PCRE2_EXTRA_MATCH_LINE

match_invalid_utf set PCRE2_MATCH_INVALID UTF
match_unset_backref set PCRE2_MATCH_UNSET_BACKREF
match_word set PCRE2_EXTRA MATCH_WORD

/m multiline set PCRE2_MULTILINE Page 12/43

/n

never_backslash_c set PCRE2_NEVER_BACKSLASH_C

never_ucp set PCRE2_NEVER_UCP

never_utf set PCRE2_NEVER_UTF
no_auto_capture set PCRE2_NO_AUTO_CAPTURE

No_auto_possess set PCRE2_NO_AUTO_POSSESS

no_dotstar_anchor set PCRE2_NO_DOTSTAR_ANCHOR

no_start_optimize set PCRE2_NO_START_OPTIMIZE

no_utf_check
ucp

ungreedy

use_offset_limit

utf

set PCRE2_NO_UTF_CHECK
set PCRE2_UCP
set PCRE2_UNGREEDY

set PCRE2_USE_OFFSET_LIMIT

set PCRE2_UTF

As well as turning on the PCRE2_UTF option, the utf modifier causes all non-print?

ing characters in output strings to be printed using the \x{hh...} notation. Other?

wise, those less than 0x100 are output in hex without the curly brackets. Setting

utf in 16-bit or 32-bit mode also causes pattern and subject strings to be trans?

lated to UTF-16 or UTF-32, respectively, before being passed to library functions.

Setting compilation controls

The following modifiers affect the compilation process or request information about

the pattern. There are single-letter abbreviations for some that are heavily used

in the test files.

bsr=[anycrlflunicode] specify \R handling

/B bincode show binary code without lengths
callout_info show callout information
convert=<options> request foreign pattern conversion

/l

convert_glob_escape=c set glob escape character

convert_glob_separator=c set glob separator character

convert_length
debug
framesize
fullbincode
info

hex

set convert buffer length
same as info,fullbincode
show matching frame size
show binary code with lengths
show info about compiled pattern

unquoted characters are hexadecimal

Page 13/43

jitf=<number>] use JIT

jitfast use JIT fast path
jitverify verify JIT use
locale=<name> use this locale

max_pattern_length=<n> set the maximum pattern length

memory show memory used
newline=<type> set newline type
null_context compile with a NULL context

parens_nest_limit=<n> set maximum parentheses depth

posix use the POSIX API

posix_nosub use the POSIX API with REG_NOSUB
push push compiled pattern onto the stack
pushcopy push a copy onto the stack

stackguard=<number> test the stackguard feature

subject_literal treat all subject lines as literal
tables=[0]1|2] select internal tables

use_length do not zero-terminate the pattern
utf8_input treat input as UTF-8

The effects of these modifiers are described in the following sections.

Newline and \R handling
The bsr modifier specifies what \R in a pattern should match. If it is set to "any?
crlf*, \R matches CR, LF, or CRLF only. If it is set to "unicode”, \R matches any
Unicode newline sequence. The default can be specified when PCRE?2 is built; if it
is not, the default is set to Unicode.
The newline modifier specifies which characters are to be interpreted as newlines,
both in the pattern and in subject lines. The type must be one of CR, LF, CRLF,
ANYCRLF, ANY, or NUL (in upper or lower case).

Information about a pattern
The debug modifier is a shorthand for info,fullbincode, requesting all available
information.
The bincode modifier causes a representation of the compiled code to be output af?
ter compilation. This information does not contain length and offset values, which

ensures that the same output is generated for different internal link sizes and Page 14/43

different code unit widths. By using bincode, the same regression tests can be used
in different environments.
The fullbincode modifier, by contrast, does include length and offset values. This
is used in a few special tests that run only for specific code unit widths and link
sizes, and is also useful for one-off tests.
The info modifier requests information about the compiled pattern (whether it is
anchored, has a fixed first character, and so on). The information is obtained from
the pcre2_pattern_info() function. Here are some typical examples:
re> /(?1)("a|*b)/m,info

Capture group count = 1

Compile options: multiline

Overall options: caseless multiline

First code unit at start or follows newline

Subject length lower bound = 1

re> /(?i)abc/info

Capture group count =0

Compile options: <none>

Overall options: caseless

First code unit ='a' (caseless)

Last code unit = 'c' (caseless)

Subiject length lower bound = 3
"Compile options" are those specified by modifiers; "overall options" have added
options that are taken or deduced from the pattern. If both sets of options are the
same, just a single "options" line is output; if there are no options, the line is
omitted. "First code unit" is where any match must start; if there is more than one
they are listed as "starting code units". "Last code unit" is the last literal code
unit that must be present in any match. This is not necessarily the last character.
These lines are omitted if no starting or ending code units are recorded. The sub?
ject length line is omitted when no_start_optimize is set because the minimum
length is not calculated when it can never be used.
The framesize modifier shows the size, in bytes, of the storage frames used by
pcre2_match() for handling backtracking. The size depends on the number of captur?

ing parentheses in the pattern.

Page 15/43

The callout_info modifier requests information about all the callouts in the pat?
tern. A list of them is output at the end of any other information that is re?
guested. For each callout, either its number or string is given, followed by the
item that follows it in the pattern.
Passing a NULL context
Normally, pcre2test passes a context block to pcre2_compile(). If the null_context
modifier is set, however, NULL is passed. This is for testing that pcre2_compile()
behaves correctly in this case (it uses default values).
Specifying pattern characters in hexadecimal
The hex modifier specifies that the characters of the pattern, except for sub?
strings enclosed in single or double quotes, are to be interpreted as pairs of
hexadecimal digits. This feature is provided as a way of creating patterns that
contain binary zeros and other non-printing characters. White space is permitted
between pairs of digits. For example, this pattern contains three characters:
/ab 32 59/hex
Parts of such a pattern are taken literally if quoted. This pattern contains nine
characters, only two of which are specified in hexadecimal:
/ab "literal" 32/hex
Either single or double quotes may be used. There is no way of including the delim?
iter within a substring. The hex and expand modifiers are mutually exclusive.
Specifying the pattern's length
By default, patterns are passed to the compiling functions as zero-terminated
strings but can be passed by length instead of being zero-terminated. The
use_length modifier causes this to happen. Using a length happens automatically
(whether or not use_length is set) when hex is set, because patterns specified in
hexadecimal may contain binary zeros.
If hex or use_length is used with the POSIX wrapper API (see "Using the POSIX wrap?
per API" below), the REG_PEND extension is used to pass the pattern's length.
Specifying wide characters in 16-bit and 32-bit modes
In 16-bit and 32-bit modes, all input is automatically treated as UTF-8 and trans?
lated to UTF-16 or UTF-32 when the utf modifier is set. For testing the 16-bit and
32-bit libraries in non-UTF mode, the utf8_input modifier can be used. It is mutu?

ally exclusive with utf. Input lines are interpreted as UTF-8 as a means of speci? Page 16/43

fying wide characters. More details are given in "Input encoding” above.
Generating long repetitive patterns

Some tests use long patterns that are very repetitive. Instead of creating a very
long input line for such a pattern, you can use a special repetition feature, simi?
lar to the one described for subject lines above. If the expand modifier is present
on a pattern, parts of the pattern that have the form

\[<characters>]{<count>}
are expanded before the pattern is passed to pcre2_compile(). For example,
\[AB]{6000} is expanded to "ABAB..." 6000 times. This construction cannot be
nested. An initial "\[" sequence is recognized only if "[{" followed by decimal
digits and "}"is found later in the pattern. If not, the characters remain in the
pattern unaltered. The expand and hex modifiers are mutually exclusive.
If part of an expanded pattern looks like an expansion, but is really part of the
actual pattern, unwanted expansion can be avoided by giving two values in the quan?
tifier. For example, \[AB]{6000,6000} is not recognized as an expansion item.
If the info modifier is set on an expanded pattern, the result of the expansion is
included in the information that is output.

JIT compilation

Just-in-time (JIT) compiling is a heavyweight optimization that can greatly speed
up pattern matching. See the pcre2jit documentation for details. JIT compiling hap?
pens, optionally, after a pattern has been successfully compiled into an internal
form. The JIT compiler converts this to optimized machine code. It needs to know
whether the match-time options PCRE2_PARTIAL_HARD and PCRE2_PARTIAL_SOFT are going
to be used, because different code is generated for the different cases. See the
partial modifier in "Subject Modifiers" below for details of how these options are
specified for each match attempt.
JIT compilation is requested by the jit pattern modifier, which may optionally be
followed by an equals sign and a number in the range 0 to 7. The three bits that
make up the number specify which of the three JIT operating modes are to be com?
piled:

1 compile JIT code for non-partial matching

2 compile JIT code for soft partial matching

4 compile JIT code for hard partial matching Page 17/43

The possible values for the jit modifier are therefore:

0 disable JIT

1 normal matching only

2 soft partial matching only

3 normal and soft partial matching

4 hard partial matching only

6 soft and hard partial matching only

7 all three modes
If no number is given, 7 is assumed. The phrase "partial matching" means a call to
pcre2_match() with either the PCRE2_PARTIAL_SOFT or the PCRE2_PARTIAL HARD option
set. Note that such a call may return a complete match; the options enable the pos?
sibility of a partial match, but do not require it. Note also that if you request
JIT compilation only for partial matching (for example, jit=2) but do not set the
partial modifier on a subject line, that match will not use JIT code because none
was compiled for non-partial matching.
If JIT compilation is successful, the compiled JIT code will automatically be used
when an appropriate type of match is run, except when incompatible run-time options
are specified. For more details, see the pcre2jit documentation. See also the jit?
stack modifier below for a way of setting the size of the JIT stack.
If the jitfast modifier is specified, matching is done using the JIT "fast path”
interface, pcre2_jit_match(), which skips some of the sanity checks that are done
by pcre2_match(), and of course does not work when JIT is not supported. If jitfast
is specified without jit, jit=7 is assumed.
If the jitverify modifier is specified, information about the compiled pattern
shows whether JIT compilation was or was not successful. If jitverify is specified
without jit, jit=7 is assumed. If JIT compilation is successful when jitverify is
set, the text "(JIT)" is added to the first output line after a match or non match
when JIT-compiled code was actually used in the match.

Setting a locale

The locale modifier must specify the name of a locale, for example:

/pattern/locale=fr_FR
The given locale is set, pcre2_maketables() is called to build a set of character

tables for the locale, and this is then passed to pcre2_compile() when compiling Page 18/43

the regular expression. The same tables are used when matching the following sub?
ject lines. The locale modifier applies only to the pattern on which it appears,
but can be given in a #pattern command if a default is needed. Setting a locale and
alternate character tables are mutually exclusive.
Showing pattern memory
The memory modifier causes the size in bytes of the memory used to hold the com?
piled pattern to be output. This does not include the size of the pcre2_code block;
it is just the actual compiled data. If the pattern is subsequently passed to the
JIT compiler, the size of the JIT compiled code is also output. Here is an example:
re> /a(b)cljit,memory
Memory allocation (code space): 21
Memory allocation (JIT code): 1910
Limiting nested parentheses
The parens_nest_limit modifier sets a limit on the depth of nested parentheses in a
pattern. Breaching the limit causes a compilation error. The default for the 1i?
brary is set when PCRE?2 is built, but pcre2test sets its own default of 220, which
is required for running the standard test suite.
Limiting the pattern length
The max_pattern_length modifier sets a limit, in code units, to the length of pat?
tern that pcre2_compile() will accept. Breaching the limit causes a compilation er?
ror. The default is the largest number a PCRE2_SIZE variable can hold (essentially
unlimited).
Using the POSIX wrapper API
The posix and posix_nosub modifiers cause pcre2test to call PCRE2 via the POSIX
wrapper API rather than its native API. When posix_nosub is used, the POSIX option
REG_NOSUB is passed to regcomp(). The POSIX wrapper supports only the 8-bit Ii?
brary. Note that it does not imply POSIX matching semantics; for more detail see
the pcre2posix documentation. The following pattern modifiers set options for the

regcomp() function:

caseless REG_ICASE
multiline REG_NEWLINE
dotall REG_DOTALL)

ungreedy REG_UNGREEDY) These options are not part of Page 19/43

ucp REG_UCP) the POSIX standard

utf REG _UTF8)
The regerror_buffsize modifier specifies a size for the error buffer that is passed
to regerror() in the event of a compilation error. For example:

/abc/posix,regerror_buffsize=20
This provides a means of testing the behaviour of regerror() when the buffer is too
small for the error message. If this modifier has not been set, a large buffer is
used.
The aftertext and allaftertext subject modifiers work as described below. All other
modifiers are either ignored, with a warning message, or cause an error.
The pattern is passed to regcomp() as a zero-terminated string by default, but if
the use_length or hex modifiers are set, the REG_PEND extension is used to pass it
by length.

Testing the stack guard feature
The stackguard modifier is used to test the use of pcre2_set compile_recur?
sion_guard(), a function that is provided to enable stack availability to be
checked during compilation (see the pcre2api documentation for details). If the
number specified by the modifier is greater than zero, pcre2_set_compile_recur?
sion_guard() is called to set up callback from pcre2_compile() to a local function.
The argument it receives is the current nesting parenthesis depth; if this is
greater than the value given by the modifier, non-zero is returned, causing the
compilation to be aborted.
Using alternative character tables

The value specified for the tables modifier must be one of the digits 0, 1, or 2.
It causes a specific set of built-in character tables to be passed to pcre2_com?
pile(). This is used in the PCRE2 tests to check behaviour with different character
tables. The digit specifies the tables as follows:

0 do not pass any special character tables

1 the default ASCII tables, as distributed in

pcre2_chartables.c.dist

2 aset of tables defining ISO 8859 characters

In table 2, some characters whose codes are greater than 128 are identified as let?

ters, digits, spaces, etc. Setting alternate character tables and a locale are mu? Page 20/43

tually exclusive.
Setting certain match controls
The following modifiers are really subject modifiers, and are described under "Sub?
ject Modifiers" below. However, they may be included in a pattern's modifier list,
in which case they are applied to every subject line that is processed with that

pattern. These modifiers do not affect the compilation process.

aftertext show text after match
allaftertext show text after captures
allcaptures show all captures
allvector show the entire ovector
allusedtext show all consulted text
altglobal alternative global matching

/g global global matching
jitstack=<n> set size of JIT stack
mark show mark values
replace=<string> specify a replacement string
startchar show starting character when relevant
substitute_callout use substitution callouts

substitute_extended use PCRE2_SUBSTITUTE_EXTENDED
substitute_skip=<n> skip substitution number n
substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH
substitute_stop=<n> skip substitution number n and greater
substitute_unknown_unset use PCRE2_SUBSTITUTE_UNKNOWN_UNSET
substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET_ EMPTY
These modifiers may not appear in a #pattern command. If you want them as defaults,
set them in a #subject command.
Specifying literal subject lines
If the subject_literal modifier is present on a pattern, all the subject lines that
it matches are taken as literal strings, with no interpretation of backslashes. It
is not possible to set subject modifiers on such lines, but any that are set as de?
faults by a #subject command are recognized.
Saving a compiled pattern

When a pattern with the push modifier is successfully compiled, it is pushed onto a Page 21/43

stack of compiled patterns, and pcre2test expects the next line to contain a new
pattern (or a command) instead of a subject line. This facility is used when saving
compiled patterns to a file, as described in the section entitled "Saving and
restoring compiled patterns" below. If pushcopy is used instead of push, a copy of
the compiled pattern is stacked, leaving the original as current, ready to match
the following input lines. This provides a way of testing the pcre2_code_copy()
function. The push and pushcopy modifiers are incompatible with compilation modi?
fiers such as global that act at match time. Any that are specified are ignored
(for the stacked copy), with a warning message, except for replace, which causes an
error. Note that jitverify, which is allowed, does not carry through to any subse?
guent matching that uses a stacked pattern.
Testing foreign pattern conversion

The experimental foreign pattern conversion functions in PCRE2 can be tested by
setting the convert modifier. Its argument is a colon-separated list of options,
which set the equivalent option for the pcre2_pattern_convert() function:

glob PCRE2_CONVERT_GLOB

glob_no_starstar ~ PCRE2_CONVERT_GLOB_NO_STARSTAR

glob_no_wild_separator PCRE2_CONVERT_GLOB_NO_WILD_SEPARATOR

posix_basic PCRE2_CONVERT_POSIX_BASIC
posix_extended PCRE2_CONVERT_POSIX_EXTENDED
unset Unset all options

The "unset" value is useful for turning off a default that has been set by a #pat?

tern command. When one of these options is set, the input pattern is passed to
pcre2_pattern_convert(). If the conversion is successful, the result is reflected

in the output and then passed to pcre2_compile(). The normal utf and no_utf_check
options, if set, cause the PCRE2_CONVERT_UTF and PCRE2_CONVERT_NO_UTF_CHECK options
to be passed to pcre2_pattern_convert().

By default, the conversion function is allowed to allocate a buffer for its output.
However, if the convert_length modifier is set to a value greater than zero,
pcre2test passes a buffer of the given length. This makes it possible to test the

length check.

The convert_glob_escape and convert_glob_separator modifiers can be used to specify

the escape and separator characters for glob processing, overriding the defaults, Page 22/43

which are operating-system dependent.
SUBJECT MODIFIERS
The modifiers that can appear in subject lines and the #subject command are of two
types.
Setting match options
The following modifiers set options for pcre2_match() or pcre2_dfa_match(). See

pcreapi for a description of their effects.

anchored set PCRE2_ANCHORED
endanchored set PCRE2_ENDANCHORED
dfa_restart set PCRE2_DFA_RESTART
dfa_shortest set PCRE2_DFA SHORTEST

no_jit set PCRE2_NO_JIT

no_utf_check set PCRE2_NO_UTF_CHECK
notbol set PCRE2_NOTBOL

notempty set PCRE2_NOTEMPTY
notempty_atstart set PCRE2_NOTEMPTY_ATSTART
noteol set PCRE2_NOTEOL

partial_hard (or ph) set PCRE2_PARTIAL_HARD

partial_soft (or ps) set PCRE2_PARTIAL_SOFT
The partial matching modifiers are provided with abbreviations because they appear
frequently in tests.
If the posix or posix_nosub modifier was present on the pattern, causing the POSIX
wrapper API to be used, the only option-setting modifiers that have any effect are
notbol, notempty, and noteol, causing REG_NOTBOL, REG_NOTEMPTY, and REG_NOTEOL, re?
spectively, to be passed to regexec(). The other modifiers are ignored, with a
warning message.
There is one additional modifier that can be used with the POSIX wrapper. It is ig?
nored (with a warning) if used for non-POSIX matching.

posix_startend=<n>[:<m>]
This causes the subject string to be passed to regexec() using the REG_STARTEND op?
tion, which uses offsets to specify which part of the string is searched. If only
one number is given, the end offset is passed as the end of the subject string. For

more detail of REG_STARTEND, see the pcre2posix documentation. If the subject Page 23/43

string contains binary zeros (coded as escapes such as \x{00} because pcre2test
does not support actual binary zeros in its input), you must use posix_startend to
specify its length.

Setting match controls
The following modifiers affect the matching process or request additional informa?
tion. Some of them may also be specified on a pattern line (see above), in which

case they apply to every subject line that is matched against that pattern.

aftertext show text after match

allaftertext show text after captures

allcaptures show all captures

allvector show the entire ovector

allusedtext show all consulted text (non-JIT only)
altglobal alternative global matching
callout_capture show captures at callout time
callout_data=<n> set a value to pass via callouts

callout_error=<n>[:<m>] control callout error
callout_extra show extra callout information
callout_fail=<n>[:<m>] control callout failure
callout_no_where do not show position of a callout
callout_none do not supply a callout function

copy=<number or name> copy captured substring

depth_limit=<n> set a depth limit
dfa use pcre2_dfa_match()
find_limits find match and depth limits

get=<number or name> extract captured substring

getall extract all captured substrings
/g global global matching
heap_limit=<n> set a limit on heap memory (Kbytes)
jitstack=<n> set size of JIT stack
mark show mark values
match_limit=<n> set a match limit
memory show heap memory usage

null_context match with a NULL context Page 24/43

offset=<n> set starting offset

offset_limit=<n> set offset limit

ovector=<n> set size of output vector
recursion_limit=<n> obsolete synonym for depth_limit
replace=<string> specify a replacement string
startchar show startchar when relevant
startoffset=<n> same as offset=<n>
substitute_callout use substitution callouts

substitute_extedded use PCRE2_SUBSTITUTE_EXTENDED
substitute_skip=<n> skip substitution number n
substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH
substitute _stop=<n> skip substitution number n and greater
substitute_unknown_unset use PCRE2_SUBSTITUTE_UNKNOWN_UNSET
substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET EMPTY
zero_terminate pass the subject as zero-terminated
The effects of these modifiers are described in the following sections. When match?
ing via the POSIX wrapper API, the aftertext, allaftertext, and ovector subject
modifiers work as described below. All other modifiers are either ignored, with a
warning message, or cause an error.
Showing more text
The aftertext modifier requests that as well as outputting the part of the subject
string that matched the entire pattern, pcre2test should in addition output the re?
mainder of the subject string. This is useful for tests where the subject contains
multiple copies of the same substring. The allaftertext modifier requests the same
action for captured substrings as well as the main matched substring. In each case
the remainder is output on the following line with a plus character following the
capture number.
The allusedtext modifier requests that all the text that was consulted during a
successful pattern match by the interpreter should be shown, for both full and par?
tial matches. This feature is not supported for JIT matching, and if requested with
JIT itis ignored (with a warning message). Setting this modifier affects the out?
put if there is a lookbehind at the start of a match, or, for a complete match, a

lookahead at the end, or if \K is used in the pattern. Characters that precede or Page 25/43

follow the start and end of the actual match are indicated in the output by '<' or
'>' characters underneath them. Here is an example:
re> /(?<=pgr)abc(?=xyz)/
data> 123pqgrabcxyz456\=allusedtext
0: pgrabcxyz
<K >>>
data> 123pqgrabcxy\=ph,allusedtext
Partial match: pgrabcxy
<<
The first, complete match shows that the matched string is "abc", with the preced?
ing and following strings "pgr" and "xyz" having been consulted during the match
(when processing the assertions). The partial match can indicate only the preceding
string.
The startchar modifier requests that the starting character for the match be indi?
cated, if it is different to the start of the matched string. The only time when
this occurs is when \K has been processed as part of the match. In this situation,
the output for the matched string is displayed from the starting character instead
of from the match point, with circumflex characters under the earlier characters.
For example:
re> /abc\Kxyz/
data> abcxyz\=startchar
0: abcxyz
AAA
Unlike allusedtext, the startchar modifier can be used with JIT. However, these
two modifiers are mutually exclusive.
Showing the value of all capture groups

The allcaptures modifier requests that the values of all potential captured paren?
theses be output after a match. By default, only those up to the highest one actu?
ally used in the match are output (corresponding to the return code from
pcre2_match()). Groups that did not take part in the match are output as "<unset>".
This madifier is not relevant for DFA matching (which does no capturing) and does
not apply when replace is specified; it is ignored, with a warning message, if

present. Page 26/43

Showing the entire ovector, for all outcomes
The allvector modifier requests that the entire ovector be shown, whatever the out?
come of the match. Compare allcaptures, which shows only up to the maximum number
of capture groups for the pattern, and then only for a successful complete non-DFA
match. This modifier, which acts after any match result, and also for DFA matching,
provides a means of checking that there are no unexpected modifications to ovector
fields. Before each match attempt, the ovector is filled with a special value, and
if this is found in both elements of a capturing pair, "<unchanged>" is output. Af?
ter a successful match, this applies to all groups after the maximum capture group
for the pattern. In other cases it applies to the entire ovector. After a partial
match, the first two elements are the only ones that should be set. After a DFA
match, the amount of ovector that is used depends on the number of matches that
were found.

Testing pattern callouts
A callout function is supplied when pcre2test calls the library matching functions,
unless callout_none is specified. Its behaviour can be controlled by various modi?
fiers listed above whose names begin with callout_. Details are given in the sec?
tion entitled "Callouts" below. Testing callouts from pcre2_substitute() is de?
cribed separately in "Testing the substitution function" below.

Finding all matches in a string
Searching for all possible matches within a subject can be requested by the global
or altglobal modifier. After finding a match, the matching function is called again
to search the remainder of the subject. The difference between global and altglobal
is that the former uses the start offset argument to pcre2_match() or
pcre2_dfa_match() to start searching at a new point within the entire string (which
is what Perl does), whereas the latter passes over a shortened subject. This makes
a difference to the matching process if the pattern begins with a lookbehind asser?
tion (including \b or \B).
If an empty string is matched, the next match is done with the PCRE2_NOTEMPTY_AT?
START and PCRE2_ANCHORED flags set, in order to search for another, non-empty,
match at the same point in the subject. If this match fails, the start offset is
advanced, and the normal match is retried. This imitates the way Perl handles such

cases when using the /g modifier or the split() function. Normally, the start off? Page 27/43

set is advanced by one character, but if the newline convention recognizes CRLF as
a newline, and the current character is CR followed by LF, an advance of two char?
acters occurs.

Testing substring extraction functions
The copy and get modifiers can be used to test the pcre2_substring_copy_xxx() and
pcre2_substring_get_xxx() functions. They can be given more than once, and each
can specify a capture group name or number, for example:

abcd\=copy=1,copy=3,get=G1

If the #subject command is used to set default copy and/or get lists, these can be
unset by specifying a negative number to cancel all numbered groups and an empty
name to cancel all named groups.
The getall modifier tests pcre2_substring_list_get(), which extracts all captured
substrings.
If the subject line is successfully matched, the substrings extracted by the conve?
nience functions are output with C, G, or L after the string number instead of a
colon. This is in addition to the normal full list. The string length (that is, the
return from the extraction function) is given in parentheses after each substring,
followed by the name when the extraction was by name.

Testing the substitution function
If the replace modifier is set, the pcre2_substitute() function is called instead
of one of the matching functions. Note that replacement strings cannot contain com?
mas, because a comma signifies the end of a modifier. This is not thought to be an
issue in a test program.
Unlike subject strings, pcre2test does not process replacement strings for escape
sequences. In UTF mode, a replacement string is checked to see if it is a valid
UTF-8 string. If so, it is correctly converted to a UTF string of the appropriate
code unit width. If it is not a valid UTF-8 string, the individual code units are
copied directly. This provides a means of passing an invalid UTF-8 string for test?
ing purposes.
The following modifiers set options (in additional to the normal match options) for
pcre2_substitute():

global PCRE2_SUBSTITUTE_GLOBAL

substitute_extended PCRE2_SUBSTITUTE_EXTENDED Page 28/43

substitute_overflow_length PCRE2_SUBSTITUTE_OVERFLOW_LENGTH
substitute_unknown_unset PCRE2_SUBSTITUTE_UNKNOWN_UNSET
substitute_unset_empty =~ PCRE2_SUBSTITUTE_UNSET_EMPTY
After a successful substitution, the modified string is output, preceded by the
number of replacements. This may be zero if there were no matches. Here is a simple
example of a substitution test:
/abc/replace=xxx
=abc=abc=
1: =xxx=abc=
=abc=abc=\=global
27 EXXX=XXX=
Subject and replacement strings should be kept relatively short (fewer than 256
characters) for substitution tests, as fixed-size buffers are used. To make it easy
to test for buffer overflow, if the replacement string starts with a number in
square brackets, that number is passed to pcre2_substitute() as the size of the
output buffer, with the replacement string starting at the next character. Here is
an example that tests the edge case:
fabc/
123abcl123\=replace=[10]XYZ
1:123XYZ123
123abcl123\=replace=[9]XYZ
Failed: error -47: no more memory
The default action of pcre2_substitute() is to return PCRE2_ ERROR_NOMEMORY when the
output buffer is too small. However, if the PCRE2_SUBSTITUTE_OVERFLOW_LENGTH option
is set (by using the substitute _overflow_length modifier), pcre2_substitute() con?
tinues to go through the motions of matching and substituting (but not doing any
callouts), in order to compute the size of buffer that is required. When this hap?
pens, pcre2test shows the required buffer length (which includes space for the
trailing zero) as part of the error message. For example:
/abc/substitute_overflow_length
123abcl123\=replace=[9]XYZ
Failed: error -47: no more memory: 10 code units are needed

A replacement string is ignored with POSIX and DFA matching. Specifying partial Page 29/43

matching provokes an error return ("bad option value") from pcre2_substitute().
Testing substitute callouts
If the substitute callout modifier is set, a substitution callout function is set
up. The null_context modifier must not be set, because the address of the callout
function is passed in a match context. When the callout function is called (after
each substitution), details of the the input and output strings are output. For ex?
ample:
/abc/g,replace=<$0>,substitute_callout
abcdefabcpqr
1(1) Old 0 3 "abc" New 0 5 "<abc>"
2(1) Old 6 9 "abc" New 8 13 "<abc>"
2: <abc>def<abc>pqr
The first number on each callout line is the count of matches. The parenthesized
number is the number of pairs that are set in the ovector (that is, one more than
the number of capturing groups that were set). Then are listed the offsets of the
old substring, its contents, and the same for the replacement.
By default, the substitution callout function returns zero, which accepts the re?
placement and causes matching to continue if /g was used. Two further modifiers can
be used to test other return values. If substitute_skip is set to a value greater
than zero the callout function returns +1 for the match of that number, and simi?
larly substitute_stop returns -1. These cause the replacement to be rejected, and
-1 causes no further matching to take place. If either of them are set, substi?
tute_callout is assumed. For example:
/abc/g,replace=<$0>,substitute_skip=1
abcdefabcpqr
1(1) Old 0 3 "abc" New 0 5 "<abc> SKIPPED"
2(1) Old 6 9 "abc" New 6 11 "<abc>"
2: abcdef<abc>pqr
abcdefabcpgr\=substitute_stop=1
1(1) Old 0 3 "abc" New 0 5 "<abc> STOPPED"
1: abcdefabcpqr
If both are set for the same number, stop takes precedence. Only a single skip or

stop is supported, which is sufficient for testing that the feature works. Page 30/43

Setting the JIT stack size
The jitstack modifier provides a way of setting the maximum stack size that is used
by the just-in-time optimization code. It is ignored if JIT optimization is not be?
ing used. The value is a number of kibibytes (units of 1024 bytes). Setting zero
reverts to the default of 32KiB. Providing a stack that is larger than the default
is necessary only for very complicated patterns. If jitstack is set non-zero on a
subject line it overrides any value that was set on the pattern.

Setting heap, match, and depth limits
The heap_limit, match_limit, and depth_limit modifiers set the appropriate limits
in the match context. These values are ignored when the find_limits modifier is
specified.

Finding minimum limits
If the find_limits modifier is present on a subject line, pcre2test calls the rele?
vant matching function several times, setting different values in the match context
via pcre2_set_heap_limit(), pcre2_set_match_limit(), or pcre2_set_depth_limit() un?
til it finds the minimum values for each parameter that allows the match to com?
plete without error. If JIT is being used, only the match limit is relevant.
When using this modifier, the pattern should not contain any limit settings such as
(*LIMIT_MATCH-=...) within it. If such a setting is present and is lower than the
minimum matching value, the minimum value cannot be found because
pcre2_set_match_limit() etc. are only able to reduce the value of an in-pattern
limit; they cannot increase it.
For non-DFA matching, the minimum depth_limit number is a measure of how much
nested backtracking happens (that is, how deeply the pattern's tree is searched).
In the case of DFA matching, depth_limit controls the depth of recursive calls of
the internal function that is used for handling pattern recursion, lookaround as?
sertions, and atomic groups.
For non-DFA matching, the match_limit number is a measure of the amount of back?
tracking that takes place, and learning the minimum value can be instructive. For
most simple matches, the number is quite small, but for patterns with very large
numbers of matching possibilities, it can become large very quickly with increasing
length of subject string. In the case of DFA matching, match_limit controls the to?

tal number of calls, both recursive and non-recursive, to the internal matching Page 31/43

function, thus controlling the overall amount of computing resource that is used.
For both kinds of matching, the heap_limit number, which is in kibibytes (units of
1024 bytes), limits the amount of heap memory used for matching. A value of zero
disables the use of any heap memory; many simple pattern matches can be done with?
out using the heap, so zero is not an unreasonable setting.

Showing MARK names
The mark modifier causes the names from backtracking control verbs that are re?
turned from calls to pcre2_match() to be displayed. If a mark is returned for a
match, non-match, or partial match, pcre2test shows it. For a match, it is on a
line by itself, tagged with "MK:". Otherwise, it is added to the non-match message.

Showing memory usage
The memory modifier causes pcre2test to log the sizes of all heap memory allocation
and freeing calls that occur during a call to pcre2_match() or pcre2_dfa_match().
These occur only when a match requires a bigger vector than the default for remem?
bering backtracking points (pcre2_match()) or for internal workspace
(pcre2_dfa_match()). In many cases there will be no heap memory used and therefore
no additional output. No heap memory is allocated during matching with JIT, so in
that case the memory modifier never has any effect. For this modifier to work, the
null_context modifier must not be set on both the pattern and the subject, though
it can be set on one or the other.

Setting a starting offset
The offset modifier sets an offset in the subject string at which matching starts.
Its value is a number of code units, not characters.

Setting an offset limit
The offset_limit modifier sets a limit for unanchored matches. If a match cannot be
found starting at or before this offset in the subject, a "no match" return is
given. The data value is a number of code units, not characters. When this modifier
is used, the use_offset_limit modifier must have been set for the pattern; if not,
an error is generated.

Setting the size of the output vector
The ovector modifier applies only to the subject line in which it appears, though
of course it can also be used to set a default in a #subject command. It specifies

the number of pairs of offsets that are available for storing matching information. Page 32/43

The default is 15.
A value of zero is useful when testing the POSIX API because it causes regexec() to
be called with a NULL capture vector. When not testing the POSIX API, a value of
zero is used to cause pcre2_match_data_create from_pattern() to be called, in order
to create a match block of exactly the right size for the pattern. (It is not pos?
sible to create a match block with a zero-length ovector; there is always at least
one pair of offsets.)
Passing the subject as zero-terminated
By default, the subject string is passed to a native API matching function with its
correct length. In order to test the facility for passing a zero-terminated string,
the zero_terminate modifier is provided. It causes the length to be passed as
PCRE2_ZERO_TERMINATED. When matching via the POSIX interface, this modifier is ig?
nored, with a warning.
When testing pcre2_substitute(), this modifier also has the effect of passing the
replacement string as zero-terminated.
Passing a NULL context

Normally, pcre2test passes a context block to pcre2_match(), pcre2_dfa_match(),
pcre2_jit_match() or pcre2_substitute(). If the null_context modifier is set, how?
ever, NULL is passed. This is for testing that the matching and substitution func?
tions behave correctly in this case (they use default values). This modifier cannot
be used with the find_limits or substitute_callout modifiers.

THE ALTERNATIVE MATCHING FUNCTION
By default, pcre2test uses the standard PCRE2 matching function, pcre2_match() to
match each subject line. PCRE2 also supports an alternative matching function,
pcre2_dfa_match(), which operates in a different way, and has some restrictions.
The differences between the two functions are described in the pcre2matching docu?
mentation.
If the dfa modifier is set, the alternative matching function is used. This func?
tion finds all possible matches at a given point in the subject. If, however, the
dfa_shortest modifier is set, processing stops after the first match is found. This
is always the shortest possible match.

DEFAULT OUTPUT FROM pcre2test

This section describes the output when the normal matching function, pcre2_match(), Page 33/43

is being used.
When a match succeeds, pcre2test outputs the list of captured substrings, starting
with number O for the string that matched the whole pattern. Otherwise, it outputs
"No match" when the return is PCRE2_ERROR_NOMATCH, or "Partial match:" followed by
the partially matching substring when the return is PCRE2_ERROR_PARTIAL. (Note that
this is the entire substring that was inspected during the partial match; it may
include characters before the actual match start if a lookbehind assertion, \K, \b,
or \B was involved.)
For any other return, pcre2test outputs the PCRE2 negative error number and a short
descriptive phrase. If the error is a failed UTF string check, the code unit offset
of the start of the failing character is also output. Here is an example of an in?
teractive pcre2test run.
$ pcre2test
PCREZ2 version 10.22 2016-07-29
re> /~abc(\d+)/
data> abc123
0: abcl123
1:123
data> xyz
No match
Unset capturing substrings that are not followed by one that is set are not shown
by pcre2test unless the allcaptures modifier is specified. In the following exam?
ple, there are two capturing substrings, but when the first data line is matched,
the second, unset substring is not shown. An "internal” unset substring is shown as
"<unset>", as for the second data line.
re> /(a)|(b)/
data> a
0:a
l:a
data> b
0:b
1: <unset>

2:b Page 34/43

If the strings contain any non-printing characters, they are output as \xhh escapes
if the value is less than 256 and UTF mode is not set. Otherwise they are output as
\x{hh...} escapes. See below for the definition of non-printing characters. If the
aftertext modifier is set, the output for substring O is followed by the the rest
of the subject string, identified by "0+" like this:
re> /cat/aftertext
data> cataract
0: cat
0+ aract
If global matching is requested, the results of successive matching attempts are
output in sequence, like this:
re> \Bi(\w\w)/g
data> Mississippi
0:iss
1:ss
0:iss
1:ss
0: ipp
1:pp
"No match" is output only if the first match attempt fails. Here is an example of a
failure message (the offset 4 that is specified by the offset modifier is past the
end of the subject string):
re> /xyz/
data> xyz\=offset=4
Error -24 (bad offset value)
Note that whereas patterns can be continued over several lines (a plain ">" prompt
is used for continuations), subject lines may not. However newlines can be included
in a subject by means of the \n escape (or \r, \r\n, etc., depending on the newline
sequence setting).
OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION
When the alternative matching function, pcre2_dfa_match(), is used, the output con?
sists of a list of all the matches that start at the first point in the subject

where there is at least one match. For example: Page 35/43

re> /(tang|tangerine|tan)/
data> yellow tangerine\=dfa
0: tangerine
1: tang
2:tan
Using the normal matching function on this data finds only "tang". The longest
matching string is always given first (and numbered zero). After a PCRE2_ERROR_PAR?
TIAL return, the output is "Partial match:", followed by the partially matching
substring. Note that this is the entire substring that was inspected during the
partial match; it may include characters before the actual match start if a lookbe?
hind assertion, \b, or \B was involved. (\K is not supported for DFA matching.)
If global matching is requested, the search for further matches resumes at the end
of the longest match. For example:
re> /(tang|tangerine|tan)/g
data> yellow tangerine and tangy sultana\=dfa
0: tangerine
1: tang
2: tan
0: tang
1: tan
0: tan
The alternative matching function does not support substring capture, so the modi?
fiers that are concerned with captured substrings are not relevant.
RESTARTING AFTER A PARTIAL MATCH
When the alternative matching function has given the PCRE2_ERROR_PARTIAL return,
indicating that the subject partially matched the pattern, you can restart the
match with additional subject data by means of the dfa_restart modifier. For exam?
ple:
re> /M\d?\d(jan|feb|mar|apr|may|jun|juljlaug|sep|oct|nov|dec)\d\d$/
data> 23ja\=ps,dfa
Partial match: 23ja
data> n05\=dfa,dfa_restart

0: n05 Page 36/43

For further information about partial matching, see the pcre2partial documentation.
CALLOUTS
If the pattern contains any callout requests, pcre2test's callout function is
called during matching unless callout_none is specified. This works with both
matching functions, and with JIT, though there are some differences in behaviour.
The output for callouts with numerical arguments and those with string arguments is
slightly different.
Callouts with numerical arguments
By default, the callout function displays the callout number, the start and current
positions in the subject text at the callout time, and the next pattern item to be
tested. For example:
--->pqrabcdef
o ~n~ \d
This output indicates that callout number 0 occurred for a match attempt starting
at the fourth character of the subject string, when the pointer was at the seventh
character, and when the next pattern item was \d. Just one circumflex is output if
the start and current positions are the same, or if the current position precedes
the start position, which can happen if the callout is in a lookbehind assertion.
Callouts numbered 255 are assumed to be automatic callouts, inserted as a result of
the auto_callout pattern modifier. In this case, instead of showing the callout
number, the offset in the pattern, preceded by a plus, is output. For example:
re> \d?[A-E]*/auto_callout
data> E*
--->E*
+0n~ \d?
+37 [A-E]
+8 M *
+10 AN
0: E*
If a pattern contains (*MARK) items, an additional line is output whenever a change
of latest mark is passed to the callout function. For example:
re> /a(*MARK:X)bc/auto_callout

data> abc Page 37/43

--->abc
+0 7 a
+1™M (*MARK:X)
+10™M b
Latest Mark: X
+11~" ¢
+12 7~ A
0: abc
The mark changes between matching "a" and "b", but stays the same for the rest of
the match, so nothing more is output. If, as a result of backtracking, the mark re?
verts to being unset, the text "<unset>" is output.
Callouts with string arguments
The output for a callout with a string argument is similar, except that instead of
outputting a callout number before the position indicators, the callout string and
its offset in the pattern string are output before the reflection of the subject
string, and the subject string is reflected for each callout. For example:
re> /Mab(?C'first)cd(?C"second")ef/
data> abcdefg
Callout (7): "first'
--->abcdefg
AN c
Callout (20): "second"
--->abcdefg
non e
0: abcdef
Callout modifiers
The callout function in pcre2test returns zero (carry on matching) by default, but
you can use a callout_fail modifier in a subject line to change this and other pa?
rameters of the callout (see below).
If the callout_capture modifier is set, the current captured groups are output when
a callout occurs. This is useful only for non-DFA matching, as pcre2_dfa_match()
does not support capturing, so no captures are ever shown.

The normal callout output, showing the callout number or pattern offset (as de? Page 38/43

scribed above) is suppressed if the callout_no_where modifier is set.
When using the interpretive matching function pcre2_match() without JIT, setting
the callout_extra modifier causes additional output from pcre2test's callout func?
tion to be generated. For the first callout in a match attempt at a new starting
position in the subject, "New match attempt” is output. If there has been a back?
track since the last callout (or start of matching if this is the first callout),
"Backtrack” is output, followed by "No other matching paths" if the backtrack ended
the previous match attempt. For example:

re> /(a+)b/auto_callout,no_start_optimize,no_auto_possess

data> aac\=callout_extra

New match attempt

--->aac

+0 7 (
+1 7 at
+3AA)
+4/~N b
Backtrack
--->aac
+3M)
+4M Db
Backtrack

No other matching paths

New match attempt

--->aac

+0

+1 A a+
+3 M)

+4 M
Backtrack

No other matching paths
New match attempt
--->aac

+0 N

Page 39/43

+1 N a+

Backtrack

No other matching paths

New match attempt

--->aac

+0 N (

+1 N a+

No match
Notice that various optimizations must be turned off if you want all possible
matching paths to be scanned. If no_start_optimize is not used, there is an immedi?
ate "no match", without any callouts, because the starting optimization fails to
find "b" in the subject, which it knows must be present for any match. If
no_auto_possess is not used, the "a+" item is turned into "a++", which reduces the
number of backtracks.
The callout_extra modifier has no effect if used with the DFA matching function, or
with JIT.

Return values from callouts

The default return from the callout function is zero, which allows matching to con?
tinue. The callout_fail modifier can be given one or two numbers. If there is only
one number, 1 is returned instead of 0 (causing matching to backtrack) when a call?
out of that number is reached. If two numbers (<n>:<m>) are given, 1 is returned
when callout <n> is reached and there have been at least <m> callouts. The call?
out_error modifier is similar, except that PCRE2_ERROR_CALLOUT is returned, causing
the entire matching process to be aborted. If both these modifiers are set for the
same callout number, callout_error takes precedence. Note that callouts with string
arguments are always given the number zero.
The callout_data modifier can be given an unsigned or a negative number. This is
set as the "user data" that is passed to the matching function, and passed back
when the callout function is invoked. Any value other than zero is used as a return
from pcre2test's callout function.
Inserting callouts can be helpful when using pcre2test to check complicated regular

expressions. For further information about callouts, see the pcre2callout documen?

tation. Page 40/43

NON-PRINTING CHARACTERS
When pcre2test is outputting text in the compiled version of a pattern, bytes other
than 32-126 are always treated as non-printing characters and are therefore shown
as hex escapes.
When pcre2test is outputting text that is a matched part of a subject string, it
behaves in the same way, unless a different locale has been set for the pattern
(using the locale modifier). In this case, the isprint() function is used to dis?
tinguish printing and non-printing characters.

SAVING AND RESTORING COMPILED PATTERNS
It is possible to save compiled patterns on disc or elsewhere, and reload them
later, subject to a number of restrictions. JIT data cannot be saved. The host on
which the patterns are reloaded must be running the same version of PCRE2, with the
same code unit width, and must also have the same endianness, pointer width and
PCRE2_SIZE type. Before compiled patterns can be saved they must be serialized,
that is, converted to a stream of bytes. A single byte stream may contain any num?
ber of compiled patterns, but they must all use the same character tables. A single
copy of the tables is included in the byte stream (its size is 1088 bytes).
The functions whose names begin with pcre2_serialize_ are used for serializing and
de-serializing. They are described in the pcre2serialize documentation. In this
section we describe the features of pcre2test that can be used to test these func?
tions.
Note that "serialization" in PCRE2 does not convert compiled patterns to an ab?
stract format like Java or .NET. It just makes a reloadable byte code stream.
Hence the restrictions on reloading mentioned above.
In pcre2test, when a pattern with push modifier is successfully compiled, it is
pushed onto a stack of compiled patterns, and pcre2test expects the next line to
contain a new pattern (or command) instead of a subject line. By contrast, the
pushcopy modifier causes a copy of the compiled pattern to be stacked, leaving the
original available for immediate matching. By using push and/or pushcopy, a number
of patterns can be compiled and retained. These modifiers are incompatible with
posix, and control modifiers that act at match time are ignored (with a message)
for the stacked patterns. The jitverify modifier applies only at compile time.

The command Page 41/43

#save <filename>
causes all the stacked patterns to be serialized and the result written to the
named file. Afterwards, all the stacked patterns are freed. The command

#load <filename>
reads the data in the file, and then arranges for it to be de-serialized, with the
resulting compiled patterns added to the pattern stack. The pattern on the top of
the stack can be retrieved by the #pop command, which must be followed by lines of
subjects that are to be matched with the pattern, terminated as usual by an empty
line or end of file. This command may be followed by a modifier list containing
only control modifiers that act after a pattern has been compiled. In particular,
hex, posix, posix_nosub, push, and pushcopy are not allowed, nor are any option-
setting modifiers. The JIT modifiers are, however permitted. Here is an example
that saves and reloads two patterns.

/abc/push

Ixyz/push

#save tempfile

#load tempfile

#pop info

Xyz

#pop jit,bincode

abc
If jitverify is used with #pop, it does not automatically imply jit, which is dif?
ferent behaviour from when it is used on a pattern.
The #popcopy command is analagous to the pushcopy modifier in that it makes current
a copy of the topmost stack pattern, leaving the original still on the stack.

SEE ALSO

pcre2(3), pcre2api(3), pcre2callout(3), pcre2jit, pcre2matching(3), pcre2par?

tial(d), pcre2pattern(3), pcre2serialize(3).
AUTHOR

Philip Hazel

University Computing Service

Cambridge, England.

REVISION Page 42/43

Last updated: 30 July 2019
Copyright (c) 1997-2019 University of Cambridge.

PCRE 10.34 30 July 2019 PCRE2TEST(1)

Page 43/43

