
Linux Ubuntu 22.4.5 Manual Pages on command 'pcre2test.1'

$ man pcre2test.1

PCRE2TEST(1) General Commands Manual PCRE2TEST(1)

NAME

 pcre2test - a program for testing Perl-compatible regular expressions.

SYNOPSIS

 pcre2test [options] [input file [output file]]

 pcre2test is a test program for the PCRE2 regular expression libraries, but it can

 also be used for experimenting with regular expressions. This document describes

 the features of the test program; for details of the regular expressions them?

 selves, see the pcre2pattern documentation. For details of the PCRE2 library func?

 tion calls and their options, see the pcre2api documentation.

 The input for pcre2test is a sequence of regular expression patterns and subject

 strings to be matched. There are also command lines for setting defaults and con?

 trolling some special actions. The output shows the result of each match attempt.

 Modifiers on external or internal command lines, the patterns, and the subject

 lines specify PCRE2 function options, control how the subject is processed, and

 what output is produced.

 As the original fairly simple PCRE library evolved, it acquired many different fea?

 tures, and as a result, the original pcretest program ended up with a lot of op?

 tions in a messy, arcane syntax for testing all the features. The move to the new

 PCRE2 API provided an opportunity to re-implement the test program as pcre2test,

 with a cleaner modifier syntax. Nevertheless, there are still many obscure modi?

 fiers, some of which are specifically designed for use in conjunction with the test
Page 1/43

 script and data files that are distributed as part of PCRE2. All the modifiers are

 documented here, some without much justification, but many of them are unlikely to

 be of use except when testing the libraries.

PCRE2's 8-BIT, 16-BIT AND 32-BIT LIBRARIES

 Different versions of the PCRE2 library can be built to support character strings

 that are encoded in 8-bit, 16-bit, or 32-bit code units. One, two, or all three of

 these libraries may be simultaneously installed. The pcre2test program can be used

 to test all the libraries. However, its own input and output are always in 8-bit

 format. When testing the 16-bit or 32-bit libraries, patterns and subject strings

 are converted to 16-bit or 32-bit format before being passed to the library func?

 tions. Results are converted back to 8-bit code units for output.

 In the rest of this document, the names of library functions and structures are

 given in generic form, for example, pcre_compile(). The actual names used in the

 libraries have a suffix _8, _16, or _32, as appropriate.

INPUT ENCODING

 Input to pcre2test is processed line by line, either by calling the C library's

 fgets() function, or via the libreadline library. In some Windows environments

 character 26 (hex 1A) causes an immediate end of file, and no further data is read,

 so this character should be avoided unless you really want that action.

 The input is processed using using C's string functions, so must not contain binary

 zeros, even though in Unix-like environments, fgets() treats any bytes other than

 newline as data characters. An error is generated if a binary zero is encountered.

 By default subject lines are processed for backslash escapes, which makes it possi?

 ble to include any data value in strings that are passed to the library for match?

 ing. For patterns, there is a facility for specifying some or all of the 8-bit in?

 put characters as hexadecimal pairs, which makes it possible to include binary ze?

 ros.

 Input for the 16-bit and 32-bit libraries

 When testing the 16-bit or 32-bit libraries, there is a need to be able to generate

 character code points greater than 255 in the strings that are passed to the li?

 brary. For subject lines, backslash escapes can be used. In addition, when the utf

 modifier (see "Setting compilation options" below) is set, the pattern and any fol?

 lowing subject lines are interpreted as UTF-8 strings and translated to UTF-16 or Page 2/43

 UTF-32 as appropriate.

 For non-UTF testing of wide characters, the utf8_input modifier can be used. This

 is mutually exclusive with utf, and is allowed only in 16-bit or 32-bit mode. It

 causes the pattern and following subject lines to be treated as UTF-8 according to

 the original definition (RFC 2279), which allows for character values up to

 0x7fffffff. Each character is placed in one 16-bit or 32-bit code unit (in the

 16-bit case, values greater than 0xffff cause an error to occur).

 UTF-8 (in its original definition) is not capable of encoding values greater than

 0x7fffffff, but such values can be handled by the 32-bit library. When testing this

 library in non-UTF mode with utf8_input set, if any character is preceded by the

 byte 0xff (which is an invalid byte in UTF-8) 0x80000000 is added to the charac?

 ter's value. This is the only way of passing such code points in a pattern string.

 For subject strings, using an escape sequence is preferable.

COMMAND LINE OPTIONS

 -8 If the 8-bit library has been built, this option causes it to be used

 (this is the default). If the 8-bit library has not been built, this op?

 tion causes an error.

 -16 If the 16-bit library has been built, this option causes it to be used.

 If only the 16-bit library has been built, this is the default. If the

 16-bit library has not been built, this option causes an error.

 -32 If the 32-bit library has been built, this option causes it to be used.

 If only the 32-bit library has been built, this is the default. If the

 32-bit library has not been built, this option causes an error.

 -ac Behave as if each pattern has the auto_callout modifier, that is, insert

 automatic callouts into every pattern that is compiled.

 -AC As for -ac, but in addition behave as if each subject line has the call?

 out_extra modifier, that is, show additional information from callouts.

 -b Behave as if each pattern has the fullbincode modifier; the full internal

 binary form of the pattern is output after compilation.

 -C Output the version number of the PCRE2 library, and all available infor?

 mation about the optional features that are included, and then exit with

 zero exit code. All other options are ignored. If both -C and -LM are

 present, whichever is first is recognized. Page 3/43

 -C option Output information about a specific build-time option, then exit. This

 functionality is intended for use in scripts such as RunTest. The follow?

 ing options output the value and set the exit code as indicated:

 ebcdic-nl the code for LF (= NL) in an EBCDIC environment:

 0x15 or 0x25

 0 if used in an ASCII environment

 exit code is always 0

 linksize the configured internal link size (2, 3, or 4)

 exit code is set to the link size

 newline the default newline setting:

 CR, LF, CRLF, ANYCRLF, ANY, or NUL

 exit code is always 0

 bsr the default setting for what \R matches:

 ANYCRLF or ANY

 exit code is always 0

 The following options output 1 for true or 0 for false, and set the exit

 code to the same value:

 backslash-C \C is supported (not locked out)

 ebcdic compiled for an EBCDIC environment

 jit just-in-time support is available

 pcre2-16 the 16-bit library was built

 pcre2-32 the 32-bit library was built

 pcre2-8 the 8-bit library was built

 unicode Unicode support is available

 If an unknown option is given, an error message is output; the exit code

 is 0.

 -d Behave as if each pattern has the debug modifier; the internal form and

 information about the compiled pattern is output after compilation; -d is

 equivalent to -b -i.

 -dfa Behave as if each subject line has the dfa modifier; matching is done us?

 ing the pcre2_dfa_match() function instead of the default pcre2_match().

 -error number[,number,...]

 Call pcre2_get_error_message() for each of the error numbers in the Page 4/43

 comma-separated list, display the resulting messages on the standard out?

 put, then exit with zero exit code. The numbers may be positive or nega?

 tive. This is a convenience facility for PCRE2 maintainers.

 -help Output a brief summary these options and then exit.

 -i Behave as if each pattern has the info modifier; information about the

 compiled pattern is given after compilation.

 -jit Behave as if each pattern line has the jit modifier; after successful

 compilation, each pattern is passed to the just-in-time compiler, if

 available.

 -jitfast Behave as if each pattern line has the jitfast modifier; after successful

 compilation, each pattern is passed to the just-in-time compiler, if

 available, and each subject line is passed directly to the JIT matcher

 via its "fast path".

 -jitverify

 Behave as if each pattern line has the jitverify modifier; after success?

 ful compilation, each pattern is passed to the just-in-time compiler, if

 available, and the use of JIT for matching is verified.

 -LM List modifiers: write a list of available pattern and subject modifiers

 to the standard output, then exit with zero exit code. All other options

 are ignored. If both -C and -LM are present, whichever is first is rec?

 ognized.

 -pattern modifier-list

 Behave as if each pattern line contains the given modifiers.

 -q Do not output the version number of pcre2test at the start of execution.

 -S size On Unix-like systems, set the size of the run-time stack to size

 mebibytes (units of 1024*1024 bytes).

 -subject modifier-list

 Behave as if each subject line contains the given modifiers.

 -t Run each compile and match many times with a timer, and output the re?

 sulting times per compile or match. When JIT is used, separate times are

 given for the initial compile and the JIT compile. You can control the

 number of iterations that are used for timing by following -t with a num?

 ber (as a separate item on the command line). For example, "-t 1000" it? Page 5/43

 erates 1000 times. The default is to iterate 500,000 times.

 -tm This is like -t except that it times only the matching phase, not the

 compile phase.

 -T -TM These behave like -t and -tm, but in addition, at the end of a run, the

 total times for all compiles and matches are output.

 -version Output the PCRE2 version number and then exit.

DESCRIPTION

 If pcre2test is given two filename arguments, it reads from the first and writes to

 the second. If the first name is "-", input is taken from the standard input. If

 pcre2test is given only one argument, it reads from that file and writes to stdout.

 Otherwise, it reads from stdin and writes to stdout.

 When pcre2test is built, a configuration option can specify that it should be

 linked with the libreadline or libedit library. When this is done, if the input is

 from a terminal, it is read using the readline() function. This provides line-edit?

 ing and history facilities. The output from the -help option states whether or not

 readline() will be used.

 The program handles any number of tests, each of which consists of a set of input

 lines. Each set starts with a regular expression pattern, followed by any number of

 subject lines to be matched against that pattern. In between sets of test data,

 command lines that begin with # may appear. This file format, with some restric?

 tions, can also be processed by the perltest.sh script that is distributed with

 PCRE2 as a means of checking that the behaviour of PCRE2 and Perl is the same. For

 a specification of perltest.sh, see the comments near its beginning.

 When the input is a terminal, pcre2test prompts for each line of input, using "re>"

 to prompt for regular expression patterns, and "data>" to prompt for subject lines.

 Command lines starting with # can be entered only in response to the "re>" prompt.

 Each subject line is matched separately and independently. If you want to do multi-

 line matches, you have to use the \n escape sequence (or \r or \r\n, etc., depend?

 ing on the newline setting) in a single line of input to encode the newline se?

 quences. There is no limit on the length of subject lines; the input buffer is au?

 tomatically extended if it is too small. There are replication features that makes

 it possible to generate long repetitive pattern or subject lines without having to

 supply them explicitly. Page 6/43

 An empty line or the end of the file signals the end of the subject lines for a

 test, at which point a new pattern or command line is expected if there is still

 input to be read.

COMMAND LINES

 In between sets of test data, a line that begins with # is interpreted as a command

 line. If the first character is followed by white space or an exclamation mark, the

 line is treated as a comment, and ignored. Otherwise, the following commands are

 recognized:

 #forbid_utf

 Subsequent patterns automatically have the PCRE2_NEVER_UTF and PCRE2_NEVER_UCP op?

 tions set, which locks out the use of the PCRE2_UTF and PCRE2_UCP options and the

 use of (*UTF) and (*UCP) at the start of patterns. This command also forces an er?

 ror if a subsequent pattern contains any occurrences of \P, \p, or \X, which are

 still supported when PCRE2_UTF is not set, but which require Unicode property sup?

 port to be included in the library.

 This is a trigger guard that is used in test files to ensure that UTF or Unicode

 property tests are not accidentally added to files that are used when Unicode sup?

 port is not included in the library. Setting PCRE2_NEVER_UTF and PCRE2_NEVER_UCP as

 a default can also be obtained by the use of #pattern; the difference is that #for?

 bid_utf cannot be unset, and the automatic options are not displayed in pattern in?

 formation, to avoid cluttering up test output.

 #load <filename>

 This command is used to load a set of precompiled patterns from a file, as de?

 scribed in the section entitled "Saving and restoring compiled patterns" below.

 #newline_default [<newline-list>]

 When PCRE2 is built, a default newline convention can be specified. This determines

 which characters and/or character pairs are recognized as indicating a newline in a

 pattern or subject string. The default can be overridden when a pattern is com?

 piled. The standard test files contain tests of various newline conventions, but

 the majority of the tests expect a single linefeed to be recognized as a newline by

 default. Without special action the tests would fail when PCRE2 is compiled with

 either CR or CRLF as the default newline.

 The #newline_default command specifies a list of newline types that are acceptable Page 7/43

 as the default. The types must be one of CR, LF, CRLF, ANYCRLF, ANY, or NUL (in up?

 per or lower case), for example:

 #newline_default LF Any anyCRLF

 If the default newline is in the list, this command has no effect. Otherwise, ex?

 cept when testing the POSIX API, a newline modifier that specifies the first new?

 line convention in the list (LF in the above example) is added to any pattern that

 does not already have a newline modifier. If the newline list is empty, the feature

 is turned off. This command is present in a number of the standard test input

 files.

 When the POSIX API is being tested there is no way to override the default newline

 convention, though it is possible to set the newline convention from within the

 pattern. A warning is given if the posix or posix_nosub modifier is used when #new?

 line_default would set a default for the non-POSIX API.

 #pattern <modifier-list>

 This command sets a default modifier list that applies to all subsequent patterns.

 Modifiers on a pattern can change these settings.

 #perltest

 The appearance of this line causes all subsequent modifier settings to be checked

 for compatibility with the perltest.sh script, which is used to confirm that Perl

 gives the same results as PCRE2. Also, apart from comment lines, #pattern commands,

 and #subject commands that set or unset "mark", no command lines are permitted, be?

 cause they and many of the modifiers are specific to pcre2test, and should not be

 used in test files that are also processed by perltest.sh. The #perltest command

 helps detect tests that are accidentally put in the wrong file.

 #pop [<modifiers>]

 #popcopy [<modifiers>]

 These commands are used to manipulate the stack of compiled patterns, as described

 in the section entitled "Saving and restoring compiled patterns" below.

 #save <filename>

 This command is used to save a set of compiled patterns to a file, as described in

 the section entitled "Saving and restoring compiled patterns" below.

 #subject <modifier-list>

 This command sets a default modifier list that applies to all subsequent subject Page 8/43

 lines. Modifiers on a subject line can change these settings.

MODIFIER SYNTAX

 Modifier lists are used with both pattern and subject lines. Items in a list are

 separated by commas followed by optional white space. Trailing whitespace in a mod?

 ifier list is ignored. Some modifiers may be given for both patterns and subject

 lines, whereas others are valid only for one or the other. Each modifier has a long

 name, for example "anchored", and some of them must be followed by an equals sign

 and a value, for example, "offset=12". Values cannot contain comma characters, but

 may contain spaces. Modifiers that do not take values may be preceded by a minus

 sign to turn off a previous setting.

 A few of the more common modifiers can also be specified as single letters, for ex?

 ample "i" for "caseless". In documentation, following the Perl convention, these

 are written with a slash ("the /i modifier") for clarity. Abbreviated modifiers

 must all be concatenated in the first item of a modifier list. If the first item is

 not recognized as a long modifier name, it is interpreted as a sequence of these

 abbreviations. For example:

 /abc/ig,newline=cr,jit=3

 This is a pattern line whose modifier list starts with two one-letter modifiers (/i

 and /g). The lower-case abbreviated modifiers are the same as used in Perl.

PATTERN SYNTAX

 A pattern line must start with one of the following characters (common symbols, ex?

 cluding pattern meta-characters):

 / ! " ' ` - = _ : ; , % & @ ~

 This is interpreted as the pattern's delimiter. A regular expression may be contin?

 ued over several input lines, in which case the newline characters are included

 within it. It is possible to include the delimiter within the pattern by escaping

 it with a backslash, for example

 /abc\/def/

 If you do this, the escape and the delimiter form part of the pattern, but since

 the delimiters are all non-alphanumeric, this does not affect its interpretation.

 If the terminating delimiter is immediately followed by a backslash, for example,

 /abc/\

 then a backslash is added to the end of the pattern. This is done to provide a way Page 9/43

 of testing the error condition that arises if a pattern finishes with a backslash,

 because

 /abc\/

 is interpreted as the first line of a pattern that starts with "abc/", causing

 pcre2test to read the next line as a continuation of the regular expression.

 A pattern can be followed by a modifier list (details below).

SUBJECT LINE SYNTAX

 Before each subject line is passed to pcre2_match() or pcre2_dfa_match(), leading

 and trailing white space is removed, and the line is scanned for backslash escapes,

 unless the subject_literal modifier was set for the pattern. The following provide

 a means of encoding non-printing characters in a visible way:

 \a alarm (BEL, \x07)

 \b backspace (\x08)

 \e escape (\x27)

 \f form feed (\x0c)

 \n newline (\x0a)

 \r carriage return (\x0d)

 \t tab (\x09)

 \v vertical tab (\x0b)

 \nnn octal character (up to 3 octal digits); always

 a byte unless > 255 in UTF-8 or 16-bit or 32-bit mode

 \o{dd...} octal character (any number of octal digits}

 \xhh hexadecimal byte (up to 2 hex digits)

 \x{hh...} hexadecimal character (any number of hex digits)

 The use of \x{hh...} is not dependent on the use of the utf modifier on the pat?

 tern. It is recognized always. There may be any number of hexadecimal digits inside

 the braces; invalid values provoke error messages.

 Note that \xhh specifies one byte rather than one character in UTF-8 mode; this

 makes it possible to construct invalid UTF-8 sequences for testing purposes. On the

 other hand, \x{hh} is interpreted as a UTF-8 character in UTF-8 mode, generating

 more than one byte if the value is greater than 127. When testing the 8-bit li?

 brary not in UTF-8 mode, \x{hh} generates one byte for values less than 256, and

 causes an error for greater values. Page 10/43

 In UTF-16 mode, all 4-digit \x{hhhh} values are accepted. This makes it possible to

 construct invalid UTF-16 sequences for testing purposes.

 In UTF-32 mode, all 4- to 8-digit \x{...} values are accepted. This makes it possi?

 ble to construct invalid UTF-32 sequences for testing purposes.

 There is a special backslash sequence that specifies replication of one or more

 characters:

 \[<characters>]{<count>}

 This makes it possible to test long strings without having to provide them as part

 of the file. For example:

 \[abc]{4}

 is converted to "abcabcabcabc". This feature does not support nesting. To include a

 closing square bracket in the characters, code it as \x5D.

 A backslash followed by an equals sign marks the end of the subject string and the

 start of a modifier list. For example:

 abc\=notbol,notempty

 If the subject string is empty and \= is followed by whitespace, the line is

 treated as a comment line, and is not used for matching. For example:

 \= This is a comment.

 abc\= This is an invalid modifier list.

 A backslash followed by any other non-alphanumeric character just escapes that

 character. A backslash followed by anything else causes an error. However, if the

 very last character in the line is a backslash (and there is no modifier list), it

 is ignored. This gives a way of passing an empty line as data, since a real empty

 line terminates the data input.

 If the subject_literal modifier is set for a pattern, all subject lines that follow

 are treated as literals, with no special treatment of backslashes. No replication

 is possible, and any subject modifiers must be set as defaults by a #subject com?

 mand.

PATTERN MODIFIERS

 There are several types of modifier that can appear in pattern lines. Except where

 noted below, they may also be used in #pattern commands. A pattern's modifier list

 can add to or override default modifiers that were set by a previous #pattern com?

 mand. Page 11/43

 Setting compilation options

 The following modifiers set options for pcre2_compile(). Most of them set bits in

 the options argument of that function, but those whose names start with PCRE2_EXTRA

 are additional options that are set in the compile context. For the main options,

 there are some single-letter abbreviations that are the same as Perl options. There

 is special handling for /x: if a second x is present, PCRE2_EXTENDED is converted

 into PCRE2_EXTENDED_MORE as in Perl. A third appearance adds PCRE2_EXTENDED as

 well, though this makes no difference to the way pcre2_compile() behaves. See

 pcre2api for a description of the effects of these options.

 allow_empty_class set PCRE2_ALLOW_EMPTY_CLASS

 allow_surrogate_escapes set PCRE2_EXTRA_ALLOW_SURROGATE_ESCAPES

 alt_bsux set PCRE2_ALT_BSUX

 alt_circumflex set PCRE2_ALT_CIRCUMFLEX

 alt_verbnames set PCRE2_ALT_VERBNAMES

 anchored set PCRE2_ANCHORED

 auto_callout set PCRE2_AUTO_CALLOUT

 bad_escape_is_literal set PCRE2_EXTRA_BAD_ESCAPE_IS_LITERAL

 /i caseless set PCRE2_CASELESS

 dollar_endonly set PCRE2_DOLLAR_ENDONLY

 /s dotall set PCRE2_DOTALL

 dupnames set PCRE2_DUPNAMES

 endanchored set PCRE2_ENDANCHORED

 escaped_cr_is_lf set PCRE2_EXTRA_ESCAPED_CR_IS_LF

 /x extended set PCRE2_EXTENDED

 /xx extended_more set PCRE2_EXTENDED_MORE

 extra_alt_bsux set PCRE2_EXTRA_ALT_BSUX

 firstline set PCRE2_FIRSTLINE

 literal set PCRE2_LITERAL

 match_line set PCRE2_EXTRA_MATCH_LINE

 match_invalid_utf set PCRE2_MATCH_INVALID_UTF

 match_unset_backref set PCRE2_MATCH_UNSET_BACKREF

 match_word set PCRE2_EXTRA_MATCH_WORD

 /m multiline set PCRE2_MULTILINE Page 12/43

 never_backslash_c set PCRE2_NEVER_BACKSLASH_C

 never_ucp set PCRE2_NEVER_UCP

 never_utf set PCRE2_NEVER_UTF

 /n no_auto_capture set PCRE2_NO_AUTO_CAPTURE

 no_auto_possess set PCRE2_NO_AUTO_POSSESS

 no_dotstar_anchor set PCRE2_NO_DOTSTAR_ANCHOR

 no_start_optimize set PCRE2_NO_START_OPTIMIZE

 no_utf_check set PCRE2_NO_UTF_CHECK

 ucp set PCRE2_UCP

 ungreedy set PCRE2_UNGREEDY

 use_offset_limit set PCRE2_USE_OFFSET_LIMIT

 utf set PCRE2_UTF

 As well as turning on the PCRE2_UTF option, the utf modifier causes all non-print?

 ing characters in output strings to be printed using the \x{hh...} notation. Other?

 wise, those less than 0x100 are output in hex without the curly brackets. Setting

 utf in 16-bit or 32-bit mode also causes pattern and subject strings to be trans?

 lated to UTF-16 or UTF-32, respectively, before being passed to library functions.

 Setting compilation controls

 The following modifiers affect the compilation process or request information about

 the pattern. There are single-letter abbreviations for some that are heavily used

 in the test files.

 bsr=[anycrlf|unicode] specify \R handling

 /B bincode show binary code without lengths

 callout_info show callout information

 convert=<options> request foreign pattern conversion

 convert_glob_escape=c set glob escape character

 convert_glob_separator=c set glob separator character

 convert_length set convert buffer length

 debug same as info,fullbincode

 framesize show matching frame size

 fullbincode show binary code with lengths

 /I info show info about compiled pattern

 hex unquoted characters are hexadecimal Page 13/43

 jit[=<number>] use JIT

 jitfast use JIT fast path

 jitverify verify JIT use

 locale=<name> use this locale

 max_pattern_length=<n> set the maximum pattern length

 memory show memory used

 newline=<type> set newline type

 null_context compile with a NULL context

 parens_nest_limit=<n> set maximum parentheses depth

 posix use the POSIX API

 posix_nosub use the POSIX API with REG_NOSUB

 push push compiled pattern onto the stack

 pushcopy push a copy onto the stack

 stackguard=<number> test the stackguard feature

 subject_literal treat all subject lines as literal

 tables=[0|1|2] select internal tables

 use_length do not zero-terminate the pattern

 utf8_input treat input as UTF-8

 The effects of these modifiers are described in the following sections.

 Newline and \R handling

 The bsr modifier specifies what \R in a pattern should match. If it is set to "any?

 crlf", \R matches CR, LF, or CRLF only. If it is set to "unicode", \R matches any

 Unicode newline sequence. The default can be specified when PCRE2 is built; if it

 is not, the default is set to Unicode.

 The newline modifier specifies which characters are to be interpreted as newlines,

 both in the pattern and in subject lines. The type must be one of CR, LF, CRLF,

 ANYCRLF, ANY, or NUL (in upper or lower case).

 Information about a pattern

 The debug modifier is a shorthand for info,fullbincode, requesting all available

 information.

 The bincode modifier causes a representation of the compiled code to be output af?

 ter compilation. This information does not contain length and offset values, which

 ensures that the same output is generated for different internal link sizes and Page 14/43

 different code unit widths. By using bincode, the same regression tests can be used

 in different environments.

 The fullbincode modifier, by contrast, does include length and offset values. This

 is used in a few special tests that run only for specific code unit widths and link

 sizes, and is also useful for one-off tests.

 The info modifier requests information about the compiled pattern (whether it is

 anchored, has a fixed first character, and so on). The information is obtained from

 the pcre2_pattern_info() function. Here are some typical examples:

 re> /(?i)(^a|^b)/m,info

 Capture group count = 1

 Compile options: multiline

 Overall options: caseless multiline

 First code unit at start or follows newline

 Subject length lower bound = 1

 re> /(?i)abc/info

 Capture group count = 0

 Compile options: <none>

 Overall options: caseless

 First code unit = 'a' (caseless)

 Last code unit = 'c' (caseless)

 Subject length lower bound = 3

 "Compile options" are those specified by modifiers; "overall options" have added

 options that are taken or deduced from the pattern. If both sets of options are the

 same, just a single "options" line is output; if there are no options, the line is

 omitted. "First code unit" is where any match must start; if there is more than one

 they are listed as "starting code units". "Last code unit" is the last literal code

 unit that must be present in any match. This is not necessarily the last character.

 These lines are omitted if no starting or ending code units are recorded. The sub?

 ject length line is omitted when no_start_optimize is set because the minimum

 length is not calculated when it can never be used.

 The framesize modifier shows the size, in bytes, of the storage frames used by

 pcre2_match() for handling backtracking. The size depends on the number of captur?

 ing parentheses in the pattern. Page 15/43

 The callout_info modifier requests information about all the callouts in the pat?

 tern. A list of them is output at the end of any other information that is re?

 quested. For each callout, either its number or string is given, followed by the

 item that follows it in the pattern.

 Passing a NULL context

 Normally, pcre2test passes a context block to pcre2_compile(). If the null_context

 modifier is set, however, NULL is passed. This is for testing that pcre2_compile()

 behaves correctly in this case (it uses default values).

 Specifying pattern characters in hexadecimal

 The hex modifier specifies that the characters of the pattern, except for sub?

 strings enclosed in single or double quotes, are to be interpreted as pairs of

 hexadecimal digits. This feature is provided as a way of creating patterns that

 contain binary zeros and other non-printing characters. White space is permitted

 between pairs of digits. For example, this pattern contains three characters:

 /ab 32 59/hex

 Parts of such a pattern are taken literally if quoted. This pattern contains nine

 characters, only two of which are specified in hexadecimal:

 /ab "literal" 32/hex

 Either single or double quotes may be used. There is no way of including the delim?

 iter within a substring. The hex and expand modifiers are mutually exclusive.

 Specifying the pattern's length

 By default, patterns are passed to the compiling functions as zero-terminated

 strings but can be passed by length instead of being zero-terminated. The

 use_length modifier causes this to happen. Using a length happens automatically

 (whether or not use_length is set) when hex is set, because patterns specified in

 hexadecimal may contain binary zeros.

 If hex or use_length is used with the POSIX wrapper API (see "Using the POSIX wrap?

 per API" below), the REG_PEND extension is used to pass the pattern's length.

 Specifying wide characters in 16-bit and 32-bit modes

 In 16-bit and 32-bit modes, all input is automatically treated as UTF-8 and trans?

 lated to UTF-16 or UTF-32 when the utf modifier is set. For testing the 16-bit and

 32-bit libraries in non-UTF mode, the utf8_input modifier can be used. It is mutu?

 ally exclusive with utf. Input lines are interpreted as UTF-8 as a means of speci? Page 16/43

 fying wide characters. More details are given in "Input encoding" above.

 Generating long repetitive patterns

 Some tests use long patterns that are very repetitive. Instead of creating a very

 long input line for such a pattern, you can use a special repetition feature, simi?

 lar to the one described for subject lines above. If the expand modifier is present

 on a pattern, parts of the pattern that have the form

 \[<characters>]{<count>}

 are expanded before the pattern is passed to pcre2_compile(). For example,

 \[AB]{6000} is expanded to "ABAB..." 6000 times. This construction cannot be

 nested. An initial "\[" sequence is recognized only if "]{" followed by decimal

 digits and "}" is found later in the pattern. If not, the characters remain in the

 pattern unaltered. The expand and hex modifiers are mutually exclusive.

 If part of an expanded pattern looks like an expansion, but is really part of the

 actual pattern, unwanted expansion can be avoided by giving two values in the quan?

 tifier. For example, \[AB]{6000,6000} is not recognized as an expansion item.

 If the info modifier is set on an expanded pattern, the result of the expansion is

 included in the information that is output.

 JIT compilation

 Just-in-time (JIT) compiling is a heavyweight optimization that can greatly speed

 up pattern matching. See the pcre2jit documentation for details. JIT compiling hap?

 pens, optionally, after a pattern has been successfully compiled into an internal

 form. The JIT compiler converts this to optimized machine code. It needs to know

 whether the match-time options PCRE2_PARTIAL_HARD and PCRE2_PARTIAL_SOFT are going

 to be used, because different code is generated for the different cases. See the

 partial modifier in "Subject Modifiers" below for details of how these options are

 specified for each match attempt.

 JIT compilation is requested by the jit pattern modifier, which may optionally be

 followed by an equals sign and a number in the range 0 to 7. The three bits that

 make up the number specify which of the three JIT operating modes are to be com?

 piled:

 1 compile JIT code for non-partial matching

 2 compile JIT code for soft partial matching

 4 compile JIT code for hard partial matching Page 17/43

 The possible values for the jit modifier are therefore:

 0 disable JIT

 1 normal matching only

 2 soft partial matching only

 3 normal and soft partial matching

 4 hard partial matching only

 6 soft and hard partial matching only

 7 all three modes

 If no number is given, 7 is assumed. The phrase "partial matching" means a call to

 pcre2_match() with either the PCRE2_PARTIAL_SOFT or the PCRE2_PARTIAL_HARD option

 set. Note that such a call may return a complete match; the options enable the pos?

 sibility of a partial match, but do not require it. Note also that if you request

 JIT compilation only for partial matching (for example, jit=2) but do not set the

 partial modifier on a subject line, that match will not use JIT code because none

 was compiled for non-partial matching.

 If JIT compilation is successful, the compiled JIT code will automatically be used

 when an appropriate type of match is run, except when incompatible run-time options

 are specified. For more details, see the pcre2jit documentation. See also the jit?

 stack modifier below for a way of setting the size of the JIT stack.

 If the jitfast modifier is specified, matching is done using the JIT "fast path"

 interface, pcre2_jit_match(), which skips some of the sanity checks that are done

 by pcre2_match(), and of course does not work when JIT is not supported. If jitfast

 is specified without jit, jit=7 is assumed.

 If the jitverify modifier is specified, information about the compiled pattern

 shows whether JIT compilation was or was not successful. If jitverify is specified

 without jit, jit=7 is assumed. If JIT compilation is successful when jitverify is

 set, the text "(JIT)" is added to the first output line after a match or non match

 when JIT-compiled code was actually used in the match.

 Setting a locale

 The locale modifier must specify the name of a locale, for example:

 /pattern/locale=fr_FR

 The given locale is set, pcre2_maketables() is called to build a set of character

 tables for the locale, and this is then passed to pcre2_compile() when compiling Page 18/43

 the regular expression. The same tables are used when matching the following sub?

 ject lines. The locale modifier applies only to the pattern on which it appears,

 but can be given in a #pattern command if a default is needed. Setting a locale and

 alternate character tables are mutually exclusive.

 Showing pattern memory

 The memory modifier causes the size in bytes of the memory used to hold the com?

 piled pattern to be output. This does not include the size of the pcre2_code block;

 it is just the actual compiled data. If the pattern is subsequently passed to the

 JIT compiler, the size of the JIT compiled code is also output. Here is an example:

 re> /a(b)c/jit,memory

 Memory allocation (code space): 21

 Memory allocation (JIT code): 1910

 Limiting nested parentheses

 The parens_nest_limit modifier sets a limit on the depth of nested parentheses in a

 pattern. Breaching the limit causes a compilation error. The default for the li?

 brary is set when PCRE2 is built, but pcre2test sets its own default of 220, which

 is required for running the standard test suite.

 Limiting the pattern length

 The max_pattern_length modifier sets a limit, in code units, to the length of pat?

 tern that pcre2_compile() will accept. Breaching the limit causes a compilation er?

 ror. The default is the largest number a PCRE2_SIZE variable can hold (essentially

 unlimited).

 Using the POSIX wrapper API

 The posix and posix_nosub modifiers cause pcre2test to call PCRE2 via the POSIX

 wrapper API rather than its native API. When posix_nosub is used, the POSIX option

 REG_NOSUB is passed to regcomp(). The POSIX wrapper supports only the 8-bit li?

 brary. Note that it does not imply POSIX matching semantics; for more detail see

 the pcre2posix documentation. The following pattern modifiers set options for the

 regcomp() function:

 caseless REG_ICASE

 multiline REG_NEWLINE

 dotall REG_DOTALL)

 ungreedy REG_UNGREEDY) These options are not part of Page 19/43

 ucp REG_UCP) the POSIX standard

 utf REG_UTF8)

 The regerror_buffsize modifier specifies a size for the error buffer that is passed

 to regerror() in the event of a compilation error. For example:

 /abc/posix,regerror_buffsize=20

 This provides a means of testing the behaviour of regerror() when the buffer is too

 small for the error message. If this modifier has not been set, a large buffer is

 used.

 The aftertext and allaftertext subject modifiers work as described below. All other

 modifiers are either ignored, with a warning message, or cause an error.

 The pattern is passed to regcomp() as a zero-terminated string by default, but if

 the use_length or hex modifiers are set, the REG_PEND extension is used to pass it

 by length.

 Testing the stack guard feature

 The stackguard modifier is used to test the use of pcre2_set_compile_recur?

 sion_guard(), a function that is provided to enable stack availability to be

 checked during compilation (see the pcre2api documentation for details). If the

 number specified by the modifier is greater than zero, pcre2_set_compile_recur?

 sion_guard() is called to set up callback from pcre2_compile() to a local function.

 The argument it receives is the current nesting parenthesis depth; if this is

 greater than the value given by the modifier, non-zero is returned, causing the

 compilation to be aborted.

 Using alternative character tables

 The value specified for the tables modifier must be one of the digits 0, 1, or 2.

 It causes a specific set of built-in character tables to be passed to pcre2_com?

 pile(). This is used in the PCRE2 tests to check behaviour with different character

 tables. The digit specifies the tables as follows:

 0 do not pass any special character tables

 1 the default ASCII tables, as distributed in

 pcre2_chartables.c.dist

 2 a set of tables defining ISO 8859 characters

 In table 2, some characters whose codes are greater than 128 are identified as let?

 ters, digits, spaces, etc. Setting alternate character tables and a locale are mu? Page 20/43

 tually exclusive.

 Setting certain match controls

 The following modifiers are really subject modifiers, and are described under "Sub?

 ject Modifiers" below. However, they may be included in a pattern's modifier list,

 in which case they are applied to every subject line that is processed with that

 pattern. These modifiers do not affect the compilation process.

 aftertext show text after match

 allaftertext show text after captures

 allcaptures show all captures

 allvector show the entire ovector

 allusedtext show all consulted text

 altglobal alternative global matching

 /g global global matching

 jitstack=<n> set size of JIT stack

 mark show mark values

 replace=<string> specify a replacement string

 startchar show starting character when relevant

 substitute_callout use substitution callouts

 substitute_extended use PCRE2_SUBSTITUTE_EXTENDED

 substitute_skip=<n> skip substitution number n

 substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

 substitute_stop=<n> skip substitution number n and greater

 substitute_unknown_unset use PCRE2_SUBSTITUTE_UNKNOWN_UNSET

 substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET_EMPTY

 These modifiers may not appear in a #pattern command. If you want them as defaults,

 set them in a #subject command.

 Specifying literal subject lines

 If the subject_literal modifier is present on a pattern, all the subject lines that

 it matches are taken as literal strings, with no interpretation of backslashes. It

 is not possible to set subject modifiers on such lines, but any that are set as de?

 faults by a #subject command are recognized.

 Saving a compiled pattern

 When a pattern with the push modifier is successfully compiled, it is pushed onto a Page 21/43

 stack of compiled patterns, and pcre2test expects the next line to contain a new

 pattern (or a command) instead of a subject line. This facility is used when saving

 compiled patterns to a file, as described in the section entitled "Saving and

 restoring compiled patterns" below. If pushcopy is used instead of push, a copy of

 the compiled pattern is stacked, leaving the original as current, ready to match

 the following input lines. This provides a way of testing the pcre2_code_copy()

 function. The push and pushcopy modifiers are incompatible with compilation modi?

 fiers such as global that act at match time. Any that are specified are ignored

 (for the stacked copy), with a warning message, except for replace, which causes an

 error. Note that jitverify, which is allowed, does not carry through to any subse?

 quent matching that uses a stacked pattern.

 Testing foreign pattern conversion

 The experimental foreign pattern conversion functions in PCRE2 can be tested by

 setting the convert modifier. Its argument is a colon-separated list of options,

 which set the equivalent option for the pcre2_pattern_convert() function:

 glob PCRE2_CONVERT_GLOB

 glob_no_starstar PCRE2_CONVERT_GLOB_NO_STARSTAR

 glob_no_wild_separator PCRE2_CONVERT_GLOB_NO_WILD_SEPARATOR

 posix_basic PCRE2_CONVERT_POSIX_BASIC

 posix_extended PCRE2_CONVERT_POSIX_EXTENDED

 unset Unset all options

 The "unset" value is useful for turning off a default that has been set by a #pat?

 tern command. When one of these options is set, the input pattern is passed to

 pcre2_pattern_convert(). If the conversion is successful, the result is reflected

 in the output and then passed to pcre2_compile(). The normal utf and no_utf_check

 options, if set, cause the PCRE2_CONVERT_UTF and PCRE2_CONVERT_NO_UTF_CHECK options

 to be passed to pcre2_pattern_convert().

 By default, the conversion function is allowed to allocate a buffer for its output.

 However, if the convert_length modifier is set to a value greater than zero,

 pcre2test passes a buffer of the given length. This makes it possible to test the

 length check.

 The convert_glob_escape and convert_glob_separator modifiers can be used to specify

 the escape and separator characters for glob processing, overriding the defaults, Page 22/43

 which are operating-system dependent.

SUBJECT MODIFIERS

 The modifiers that can appear in subject lines and the #subject command are of two

 types.

 Setting match options

 The following modifiers set options for pcre2_match() or pcre2_dfa_match(). See

 pcreapi for a description of their effects.

 anchored set PCRE2_ANCHORED

 endanchored set PCRE2_ENDANCHORED

 dfa_restart set PCRE2_DFA_RESTART

 dfa_shortest set PCRE2_DFA_SHORTEST

 no_jit set PCRE2_NO_JIT

 no_utf_check set PCRE2_NO_UTF_CHECK

 notbol set PCRE2_NOTBOL

 notempty set PCRE2_NOTEMPTY

 notempty_atstart set PCRE2_NOTEMPTY_ATSTART

 noteol set PCRE2_NOTEOL

 partial_hard (or ph) set PCRE2_PARTIAL_HARD

 partial_soft (or ps) set PCRE2_PARTIAL_SOFT

 The partial matching modifiers are provided with abbreviations because they appear

 frequently in tests.

 If the posix or posix_nosub modifier was present on the pattern, causing the POSIX

 wrapper API to be used, the only option-setting modifiers that have any effect are

 notbol, notempty, and noteol, causing REG_NOTBOL, REG_NOTEMPTY, and REG_NOTEOL, re?

 spectively, to be passed to regexec(). The other modifiers are ignored, with a

 warning message.

 There is one additional modifier that can be used with the POSIX wrapper. It is ig?

 nored (with a warning) if used for non-POSIX matching.

 posix_startend=<n>[:<m>]

 This causes the subject string to be passed to regexec() using the REG_STARTEND op?

 tion, which uses offsets to specify which part of the string is searched. If only

 one number is given, the end offset is passed as the end of the subject string. For

 more detail of REG_STARTEND, see the pcre2posix documentation. If the subject Page 23/43

 string contains binary zeros (coded as escapes such as \x{00} because pcre2test

 does not support actual binary zeros in its input), you must use posix_startend to

 specify its length.

 Setting match controls

 The following modifiers affect the matching process or request additional informa?

 tion. Some of them may also be specified on a pattern line (see above), in which

 case they apply to every subject line that is matched against that pattern.

 aftertext show text after match

 allaftertext show text after captures

 allcaptures show all captures

 allvector show the entire ovector

 allusedtext show all consulted text (non-JIT only)

 altglobal alternative global matching

 callout_capture show captures at callout time

 callout_data=<n> set a value to pass via callouts

 callout_error=<n>[:<m>] control callout error

 callout_extra show extra callout information

 callout_fail=<n>[:<m>] control callout failure

 callout_no_where do not show position of a callout

 callout_none do not supply a callout function

 copy=<number or name> copy captured substring

 depth_limit=<n> set a depth limit

 dfa use pcre2_dfa_match()

 find_limits find match and depth limits

 get=<number or name> extract captured substring

 getall extract all captured substrings

 /g global global matching

 heap_limit=<n> set a limit on heap memory (Kbytes)

 jitstack=<n> set size of JIT stack

 mark show mark values

 match_limit=<n> set a match limit

 memory show heap memory usage

 null_context match with a NULL context Page 24/43

 offset=<n> set starting offset

 offset_limit=<n> set offset limit

 ovector=<n> set size of output vector

 recursion_limit=<n> obsolete synonym for depth_limit

 replace=<string> specify a replacement string

 startchar show startchar when relevant

 startoffset=<n> same as offset=<n>

 substitute_callout use substitution callouts

 substitute_extedded use PCRE2_SUBSTITUTE_EXTENDED

 substitute_skip=<n> skip substitution number n

 substitute_overflow_length use PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

 substitute_stop=<n> skip substitution number n and greater

 substitute_unknown_unset use PCRE2_SUBSTITUTE_UNKNOWN_UNSET

 substitute_unset_empty use PCRE2_SUBSTITUTE_UNSET_EMPTY

 zero_terminate pass the subject as zero-terminated

 The effects of these modifiers are described in the following sections. When match?

 ing via the POSIX wrapper API, the aftertext, allaftertext, and ovector subject

 modifiers work as described below. All other modifiers are either ignored, with a

 warning message, or cause an error.

 Showing more text

 The aftertext modifier requests that as well as outputting the part of the subject

 string that matched the entire pattern, pcre2test should in addition output the re?

 mainder of the subject string. This is useful for tests where the subject contains

 multiple copies of the same substring. The allaftertext modifier requests the same

 action for captured substrings as well as the main matched substring. In each case

 the remainder is output on the following line with a plus character following the

 capture number.

 The allusedtext modifier requests that all the text that was consulted during a

 successful pattern match by the interpreter should be shown, for both full and par?

 tial matches. This feature is not supported for JIT matching, and if requested with

 JIT it is ignored (with a warning message). Setting this modifier affects the out?

 put if there is a lookbehind at the start of a match, or, for a complete match, a

 lookahead at the end, or if \K is used in the pattern. Characters that precede or Page 25/43

 follow the start and end of the actual match are indicated in the output by '<' or

 '>' characters underneath them. Here is an example:

 re> /(?<=pqr)abc(?=xyz)/

 data> 123pqrabcxyz456\=allusedtext

 0: pqrabcxyz

 <<< >>>

 data> 123pqrabcxy\=ph,allusedtext

 Partial match: pqrabcxy

 <<<

 The first, complete match shows that the matched string is "abc", with the preced?

 ing and following strings "pqr" and "xyz" having been consulted during the match

 (when processing the assertions). The partial match can indicate only the preceding

 string.

 The startchar modifier requests that the starting character for the match be indi?

 cated, if it is different to the start of the matched string. The only time when

 this occurs is when \K has been processed as part of the match. In this situation,

 the output for the matched string is displayed from the starting character instead

 of from the match point, with circumflex characters under the earlier characters.

 For example:

 re> /abc\Kxyz/

 data> abcxyz\=startchar

 0: abcxyz

 ^^^

 Unlike allusedtext, the startchar modifier can be used with JIT. However, these

 two modifiers are mutually exclusive.

 Showing the value of all capture groups

 The allcaptures modifier requests that the values of all potential captured paren?

 theses be output after a match. By default, only those up to the highest one actu?

 ally used in the match are output (corresponding to the return code from

 pcre2_match()). Groups that did not take part in the match are output as "<unset>".

 This modifier is not relevant for DFA matching (which does no capturing) and does

 not apply when replace is specified; it is ignored, with a warning message, if

 present. Page 26/43

 Showing the entire ovector, for all outcomes

 The allvector modifier requests that the entire ovector be shown, whatever the out?

 come of the match. Compare allcaptures, which shows only up to the maximum number

 of capture groups for the pattern, and then only for a successful complete non-DFA

 match. This modifier, which acts after any match result, and also for DFA matching,

 provides a means of checking that there are no unexpected modifications to ovector

 fields. Before each match attempt, the ovector is filled with a special value, and

 if this is found in both elements of a capturing pair, "<unchanged>" is output. Af?

 ter a successful match, this applies to all groups after the maximum capture group

 for the pattern. In other cases it applies to the entire ovector. After a partial

 match, the first two elements are the only ones that should be set. After a DFA

 match, the amount of ovector that is used depends on the number of matches that

 were found.

 Testing pattern callouts

 A callout function is supplied when pcre2test calls the library matching functions,

 unless callout_none is specified. Its behaviour can be controlled by various modi?

 fiers listed above whose names begin with callout_. Details are given in the sec?

 tion entitled "Callouts" below. Testing callouts from pcre2_substitute() is de?

 cribed separately in "Testing the substitution function" below.

 Finding all matches in a string

 Searching for all possible matches within a subject can be requested by the global

 or altglobal modifier. After finding a match, the matching function is called again

 to search the remainder of the subject. The difference between global and altglobal

 is that the former uses the start_offset argument to pcre2_match() or

 pcre2_dfa_match() to start searching at a new point within the entire string (which

 is what Perl does), whereas the latter passes over a shortened subject. This makes

 a difference to the matching process if the pattern begins with a lookbehind asser?

 tion (including \b or \B).

 If an empty string is matched, the next match is done with the PCRE2_NOTEMPTY_AT?

 START and PCRE2_ANCHORED flags set, in order to search for another, non-empty,

 match at the same point in the subject. If this match fails, the start offset is

 advanced, and the normal match is retried. This imitates the way Perl handles such

 cases when using the /g modifier or the split() function. Normally, the start off? Page 27/43

 set is advanced by one character, but if the newline convention recognizes CRLF as

 a newline, and the current character is CR followed by LF, an advance of two char?

 acters occurs.

 Testing substring extraction functions

 The copy and get modifiers can be used to test the pcre2_substring_copy_xxx() and

 pcre2_substring_get_xxx() functions. They can be given more than once, and each

 can specify a capture group name or number, for example:

 abcd\=copy=1,copy=3,get=G1

 If the #subject command is used to set default copy and/or get lists, these can be

 unset by specifying a negative number to cancel all numbered groups and an empty

 name to cancel all named groups.

 The getall modifier tests pcre2_substring_list_get(), which extracts all captured

 substrings.

 If the subject line is successfully matched, the substrings extracted by the conve?

 nience functions are output with C, G, or L after the string number instead of a

 colon. This is in addition to the normal full list. The string length (that is, the

 return from the extraction function) is given in parentheses after each substring,

 followed by the name when the extraction was by name.

 Testing the substitution function

 If the replace modifier is set, the pcre2_substitute() function is called instead

 of one of the matching functions. Note that replacement strings cannot contain com?

 mas, because a comma signifies the end of a modifier. This is not thought to be an

 issue in a test program.

 Unlike subject strings, pcre2test does not process replacement strings for escape

 sequences. In UTF mode, a replacement string is checked to see if it is a valid

 UTF-8 string. If so, it is correctly converted to a UTF string of the appropriate

 code unit width. If it is not a valid UTF-8 string, the individual code units are

 copied directly. This provides a means of passing an invalid UTF-8 string for test?

 ing purposes.

 The following modifiers set options (in additional to the normal match options) for

 pcre2_substitute():

 global PCRE2_SUBSTITUTE_GLOBAL

 substitute_extended PCRE2_SUBSTITUTE_EXTENDED Page 28/43

 substitute_overflow_length PCRE2_SUBSTITUTE_OVERFLOW_LENGTH

 substitute_unknown_unset PCRE2_SUBSTITUTE_UNKNOWN_UNSET

 substitute_unset_empty PCRE2_SUBSTITUTE_UNSET_EMPTY

 After a successful substitution, the modified string is output, preceded by the

 number of replacements. This may be zero if there were no matches. Here is a simple

 example of a substitution test:

 /abc/replace=xxx

 =abc=abc=

 1: =xxx=abc=

 =abc=abc=\=global

 2: =xxx=xxx=

 Subject and replacement strings should be kept relatively short (fewer than 256

 characters) for substitution tests, as fixed-size buffers are used. To make it easy

 to test for buffer overflow, if the replacement string starts with a number in

 square brackets, that number is passed to pcre2_substitute() as the size of the

 output buffer, with the replacement string starting at the next character. Here is

 an example that tests the edge case:

 /abc/

 123abc123\=replace=[10]XYZ

 1: 123XYZ123

 123abc123\=replace=[9]XYZ

 Failed: error -47: no more memory

 The default action of pcre2_substitute() is to return PCRE2_ERROR_NOMEMORY when the

 output buffer is too small. However, if the PCRE2_SUBSTITUTE_OVERFLOW_LENGTH option

 is set (by using the substitute_overflow_length modifier), pcre2_substitute() con?

 tinues to go through the motions of matching and substituting (but not doing any

 callouts), in order to compute the size of buffer that is required. When this hap?

 pens, pcre2test shows the required buffer length (which includes space for the

 trailing zero) as part of the error message. For example:

 /abc/substitute_overflow_length

 123abc123\=replace=[9]XYZ

 Failed: error -47: no more memory: 10 code units are needed

 A replacement string is ignored with POSIX and DFA matching. Specifying partial Page 29/43

 matching provokes an error return ("bad option value") from pcre2_substitute().

 Testing substitute callouts

 If the substitute_callout modifier is set, a substitution callout function is set

 up. The null_context modifier must not be set, because the address of the callout

 function is passed in a match context. When the callout function is called (after

 each substitution), details of the the input and output strings are output. For ex?

 ample:

 /abc/g,replace=<$0>,substitute_callout

 abcdefabcpqr

 1(1) Old 0 3 "abc" New 0 5 "<abc>"

 2(1) Old 6 9 "abc" New 8 13 "<abc>"

 2: <abc>def<abc>pqr

 The first number on each callout line is the count of matches. The parenthesized

 number is the number of pairs that are set in the ovector (that is, one more than

 the number of capturing groups that were set). Then are listed the offsets of the

 old substring, its contents, and the same for the replacement.

 By default, the substitution callout function returns zero, which accepts the re?

 placement and causes matching to continue if /g was used. Two further modifiers can

 be used to test other return values. If substitute_skip is set to a value greater

 than zero the callout function returns +1 for the match of that number, and simi?

 larly substitute_stop returns -1. These cause the replacement to be rejected, and

 -1 causes no further matching to take place. If either of them are set, substi?

 tute_callout is assumed. For example:

 /abc/g,replace=<$0>,substitute_skip=1

 abcdefabcpqr

 1(1) Old 0 3 "abc" New 0 5 "<abc> SKIPPED"

 2(1) Old 6 9 "abc" New 6 11 "<abc>"

 2: abcdef<abc>pqr

 abcdefabcpqr\=substitute_stop=1

 1(1) Old 0 3 "abc" New 0 5 "<abc> STOPPED"

 1: abcdefabcpqr

 If both are set for the same number, stop takes precedence. Only a single skip or

 stop is supported, which is sufficient for testing that the feature works. Page 30/43

 Setting the JIT stack size

 The jitstack modifier provides a way of setting the maximum stack size that is used

 by the just-in-time optimization code. It is ignored if JIT optimization is not be?

 ing used. The value is a number of kibibytes (units of 1024 bytes). Setting zero

 reverts to the default of 32KiB. Providing a stack that is larger than the default

 is necessary only for very complicated patterns. If jitstack is set non-zero on a

 subject line it overrides any value that was set on the pattern.

 Setting heap, match, and depth limits

 The heap_limit, match_limit, and depth_limit modifiers set the appropriate limits

 in the match context. These values are ignored when the find_limits modifier is

 specified.

 Finding minimum limits

 If the find_limits modifier is present on a subject line, pcre2test calls the rele?

 vant matching function several times, setting different values in the match context

 via pcre2_set_heap_limit(), pcre2_set_match_limit(), or pcre2_set_depth_limit() un?

 til it finds the minimum values for each parameter that allows the match to com?

 plete without error. If JIT is being used, only the match limit is relevant.

 When using this modifier, the pattern should not contain any limit settings such as

 (*LIMIT_MATCH=...) within it. If such a setting is present and is lower than the

 minimum matching value, the minimum value cannot be found because

 pcre2_set_match_limit() etc. are only able to reduce the value of an in-pattern

 limit; they cannot increase it.

 For non-DFA matching, the minimum depth_limit number is a measure of how much

 nested backtracking happens (that is, how deeply the pattern's tree is searched).

 In the case of DFA matching, depth_limit controls the depth of recursive calls of

 the internal function that is used for handling pattern recursion, lookaround as?

 sertions, and atomic groups.

 For non-DFA matching, the match_limit number is a measure of the amount of back?

 tracking that takes place, and learning the minimum value can be instructive. For

 most simple matches, the number is quite small, but for patterns with very large

 numbers of matching possibilities, it can become large very quickly with increasing

 length of subject string. In the case of DFA matching, match_limit controls the to?

 tal number of calls, both recursive and non-recursive, to the internal matching Page 31/43

 function, thus controlling the overall amount of computing resource that is used.

 For both kinds of matching, the heap_limit number, which is in kibibytes (units of

 1024 bytes), limits the amount of heap memory used for matching. A value of zero

 disables the use of any heap memory; many simple pattern matches can be done with?

 out using the heap, so zero is not an unreasonable setting.

 Showing MARK names

 The mark modifier causes the names from backtracking control verbs that are re?

 turned from calls to pcre2_match() to be displayed. If a mark is returned for a

 match, non-match, or partial match, pcre2test shows it. For a match, it is on a

 line by itself, tagged with "MK:". Otherwise, it is added to the non-match message.

 Showing memory usage

 The memory modifier causes pcre2test to log the sizes of all heap memory allocation

 and freeing calls that occur during a call to pcre2_match() or pcre2_dfa_match().

 These occur only when a match requires a bigger vector than the default for remem?

 bering backtracking points (pcre2_match()) or for internal workspace

 (pcre2_dfa_match()). In many cases there will be no heap memory used and therefore

 no additional output. No heap memory is allocated during matching with JIT, so in

 that case the memory modifier never has any effect. For this modifier to work, the

 null_context modifier must not be set on both the pattern and the subject, though

 it can be set on one or the other.

 Setting a starting offset

 The offset modifier sets an offset in the subject string at which matching starts.

 Its value is a number of code units, not characters.

 Setting an offset limit

 The offset_limit modifier sets a limit for unanchored matches. If a match cannot be

 found starting at or before this offset in the subject, a "no match" return is

 given. The data value is a number of code units, not characters. When this modifier

 is used, the use_offset_limit modifier must have been set for the pattern; if not,

 an error is generated.

 Setting the size of the output vector

 The ovector modifier applies only to the subject line in which it appears, though

 of course it can also be used to set a default in a #subject command. It specifies

 the number of pairs of offsets that are available for storing matching information. Page 32/43

 The default is 15.

 A value of zero is useful when testing the POSIX API because it causes regexec() to

 be called with a NULL capture vector. When not testing the POSIX API, a value of

 zero is used to cause pcre2_match_data_create_from_pattern() to be called, in order

 to create a match block of exactly the right size for the pattern. (It is not pos?

 sible to create a match block with a zero-length ovector; there is always at least

 one pair of offsets.)

 Passing the subject as zero-terminated

 By default, the subject string is passed to a native API matching function with its

 correct length. In order to test the facility for passing a zero-terminated string,

 the zero_terminate modifier is provided. It causes the length to be passed as

 PCRE2_ZERO_TERMINATED. When matching via the POSIX interface, this modifier is ig?

 nored, with a warning.

 When testing pcre2_substitute(), this modifier also has the effect of passing the

 replacement string as zero-terminated.

 Passing a NULL context

 Normally, pcre2test passes a context block to pcre2_match(), pcre2_dfa_match(),

 pcre2_jit_match() or pcre2_substitute(). If the null_context modifier is set, how?

 ever, NULL is passed. This is for testing that the matching and substitution func?

 tions behave correctly in this case (they use default values). This modifier cannot

 be used with the find_limits or substitute_callout modifiers.

THE ALTERNATIVE MATCHING FUNCTION

 By default, pcre2test uses the standard PCRE2 matching function, pcre2_match() to

 match each subject line. PCRE2 also supports an alternative matching function,

 pcre2_dfa_match(), which operates in a different way, and has some restrictions.

 The differences between the two functions are described in the pcre2matching docu?

 mentation.

 If the dfa modifier is set, the alternative matching function is used. This func?

 tion finds all possible matches at a given point in the subject. If, however, the

 dfa_shortest modifier is set, processing stops after the first match is found. This

 is always the shortest possible match.

DEFAULT OUTPUT FROM pcre2test

 This section describes the output when the normal matching function, pcre2_match(), Page 33/43

 is being used.

 When a match succeeds, pcre2test outputs the list of captured substrings, starting

 with number 0 for the string that matched the whole pattern. Otherwise, it outputs

 "No match" when the return is PCRE2_ERROR_NOMATCH, or "Partial match:" followed by

 the partially matching substring when the return is PCRE2_ERROR_PARTIAL. (Note that

 this is the entire substring that was inspected during the partial match; it may

 include characters before the actual match start if a lookbehind assertion, \K, \b,

 or \B was involved.)

 For any other return, pcre2test outputs the PCRE2 negative error number and a short

 descriptive phrase. If the error is a failed UTF string check, the code unit offset

 of the start of the failing character is also output. Here is an example of an in?

 teractive pcre2test run.

 $ pcre2test

 PCRE2 version 10.22 2016-07-29

 re> /^abc(\d+)/

 data> abc123

 0: abc123

 1: 123

 data> xyz

 No match

 Unset capturing substrings that are not followed by one that is set are not shown

 by pcre2test unless the allcaptures modifier is specified. In the following exam?

 ple, there are two capturing substrings, but when the first data line is matched,

 the second, unset substring is not shown. An "internal" unset substring is shown as

 "<unset>", as for the second data line.

 re> /(a)|(b)/

 data> a

 0: a

 1: a

 data> b

 0: b

 1: <unset>

 2: b Page 34/43

 If the strings contain any non-printing characters, they are output as \xhh escapes

 if the value is less than 256 and UTF mode is not set. Otherwise they are output as

 \x{hh...} escapes. See below for the definition of non-printing characters. If the

 aftertext modifier is set, the output for substring 0 is followed by the the rest

 of the subject string, identified by "0+" like this:

 re> /cat/aftertext

 data> cataract

 0: cat

 0+ aract

 If global matching is requested, the results of successive matching attempts are

 output in sequence, like this:

 re> /\Bi(\w\w)/g

 data> Mississippi

 0: iss

 1: ss

 0: iss

 1: ss

 0: ipp

 1: pp

 "No match" is output only if the first match attempt fails. Here is an example of a

 failure message (the offset 4 that is specified by the offset modifier is past the

 end of the subject string):

 re> /xyz/

 data> xyz\=offset=4

 Error -24 (bad offset value)

 Note that whereas patterns can be continued over several lines (a plain ">" prompt

 is used for continuations), subject lines may not. However newlines can be included

 in a subject by means of the \n escape (or \r, \r\n, etc., depending on the newline

 sequence setting).

OUTPUT FROM THE ALTERNATIVE MATCHING FUNCTION

 When the alternative matching function, pcre2_dfa_match(), is used, the output con?

 sists of a list of all the matches that start at the first point in the subject

 where there is at least one match. For example: Page 35/43

 re> /(tang|tangerine|tan)/

 data> yellow tangerine\=dfa

 0: tangerine

 1: tang

 2: tan

 Using the normal matching function on this data finds only "tang". The longest

 matching string is always given first (and numbered zero). After a PCRE2_ERROR_PAR?

 TIAL return, the output is "Partial match:", followed by the partially matching

 substring. Note that this is the entire substring that was inspected during the

 partial match; it may include characters before the actual match start if a lookbe?

 hind assertion, \b, or \B was involved. (\K is not supported for DFA matching.)

 If global matching is requested, the search for further matches resumes at the end

 of the longest match. For example:

 re> /(tang|tangerine|tan)/g

 data> yellow tangerine and tangy sultana\=dfa

 0: tangerine

 1: tang

 2: tan

 0: tang

 1: tan

 0: tan

 The alternative matching function does not support substring capture, so the modi?

 fiers that are concerned with captured substrings are not relevant.

RESTARTING AFTER A PARTIAL MATCH

 When the alternative matching function has given the PCRE2_ERROR_PARTIAL return,

 indicating that the subject partially matched the pattern, you can restart the

 match with additional subject data by means of the dfa_restart modifier. For exam?

 ple:

 re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/

 data> 23ja\=ps,dfa

 Partial match: 23ja

 data> n05\=dfa,dfa_restart

 0: n05 Page 36/43

 For further information about partial matching, see the pcre2partial documentation.

CALLOUTS

 If the pattern contains any callout requests, pcre2test's callout function is

 called during matching unless callout_none is specified. This works with both

 matching functions, and with JIT, though there are some differences in behaviour.

 The output for callouts with numerical arguments and those with string arguments is

 slightly different.

 Callouts with numerical arguments

 By default, the callout function displays the callout number, the start and current

 positions in the subject text at the callout time, and the next pattern item to be

 tested. For example:

 --->pqrabcdef

 0 ^ ^ \d

 This output indicates that callout number 0 occurred for a match attempt starting

 at the fourth character of the subject string, when the pointer was at the seventh

 character, and when the next pattern item was \d. Just one circumflex is output if

 the start and current positions are the same, or if the current position precedes

 the start position, which can happen if the callout is in a lookbehind assertion.

 Callouts numbered 255 are assumed to be automatic callouts, inserted as a result of

 the auto_callout pattern modifier. In this case, instead of showing the callout

 number, the offset in the pattern, preceded by a plus, is output. For example:

 re> /\d?[A-E]*/auto_callout

 data> E*

 --->E*

 +0 ^ \d?

 +3 ^ [A-E]

 +8 ^^ *

 +10 ^ ^

 0: E*

 If a pattern contains (*MARK) items, an additional line is output whenever a change

 of latest mark is passed to the callout function. For example:

 re> /a(*MARK:X)bc/auto_callout

 data> abc Page 37/43

 --->abc

 +0 ^ a

 +1 ^^ (*MARK:X)

 +10 ^^ b

 Latest Mark: X

 +11 ^ ^ c

 +12 ^ ^

 0: abc

 The mark changes between matching "a" and "b", but stays the same for the rest of

 the match, so nothing more is output. If, as a result of backtracking, the mark re?

 verts to being unset, the text "<unset>" is output.

 Callouts with string arguments

 The output for a callout with a string argument is similar, except that instead of

 outputting a callout number before the position indicators, the callout string and

 its offset in the pattern string are output before the reflection of the subject

 string, and the subject string is reflected for each callout. For example:

 re> /^ab(?C'first')cd(?C"second")ef/

 data> abcdefg

 Callout (7): 'first'

 --->abcdefg

 ^ ^ c

 Callout (20): "second"

 --->abcdefg

 ^ ^ e

 0: abcdef

 Callout modifiers

 The callout function in pcre2test returns zero (carry on matching) by default, but

 you can use a callout_fail modifier in a subject line to change this and other pa?

 rameters of the callout (see below).

 If the callout_capture modifier is set, the current captured groups are output when

 a callout occurs. This is useful only for non-DFA matching, as pcre2_dfa_match()

 does not support capturing, so no captures are ever shown.

 The normal callout output, showing the callout number or pattern offset (as de? Page 38/43

 scribed above) is suppressed if the callout_no_where modifier is set.

 When using the interpretive matching function pcre2_match() without JIT, setting

 the callout_extra modifier causes additional output from pcre2test's callout func?

 tion to be generated. For the first callout in a match attempt at a new starting

 position in the subject, "New match attempt" is output. If there has been a back?

 track since the last callout (or start of matching if this is the first callout),

 "Backtrack" is output, followed by "No other matching paths" if the backtrack ended

 the previous match attempt. For example:

 re> /(a+)b/auto_callout,no_start_optimize,no_auto_possess

 data> aac\=callout_extra

 New match attempt

 --->aac

 +0 ^ (

 +1 ^ a+

 +3 ^ ^)

 +4 ^ ^ b

 Backtrack

 --->aac

 +3 ^^)

 +4 ^^ b

 Backtrack

 No other matching paths

 New match attempt

 --->aac

 +0 ^ (

 +1 ^ a+

 +3 ^^)

 +4 ^^ b

 Backtrack

 No other matching paths

 New match attempt

 --->aac

 +0 ^ (Page 39/43

 +1 ^ a+

 Backtrack

 No other matching paths

 New match attempt

 --->aac

 +0 ^ (

 +1 ^ a+

 No match

 Notice that various optimizations must be turned off if you want all possible

 matching paths to be scanned. If no_start_optimize is not used, there is an immedi?

 ate "no match", without any callouts, because the starting optimization fails to

 find "b" in the subject, which it knows must be present for any match. If

 no_auto_possess is not used, the "a+" item is turned into "a++", which reduces the

 number of backtracks.

 The callout_extra modifier has no effect if used with the DFA matching function, or

 with JIT.

 Return values from callouts

 The default return from the callout function is zero, which allows matching to con?

 tinue. The callout_fail modifier can be given one or two numbers. If there is only

 one number, 1 is returned instead of 0 (causing matching to backtrack) when a call?

 out of that number is reached. If two numbers (<n>:<m>) are given, 1 is returned

 when callout <n> is reached and there have been at least <m> callouts. The call?

 out_error modifier is similar, except that PCRE2_ERROR_CALLOUT is returned, causing

 the entire matching process to be aborted. If both these modifiers are set for the

 same callout number, callout_error takes precedence. Note that callouts with string

 arguments are always given the number zero.

 The callout_data modifier can be given an unsigned or a negative number. This is

 set as the "user data" that is passed to the matching function, and passed back

 when the callout function is invoked. Any value other than zero is used as a return

 from pcre2test's callout function.

 Inserting callouts can be helpful when using pcre2test to check complicated regular

 expressions. For further information about callouts, see the pcre2callout documen?

 tation. Page 40/43

NON-PRINTING CHARACTERS

 When pcre2test is outputting text in the compiled version of a pattern, bytes other

 than 32-126 are always treated as non-printing characters and are therefore shown

 as hex escapes.

 When pcre2test is outputting text that is a matched part of a subject string, it

 behaves in the same way, unless a different locale has been set for the pattern

 (using the locale modifier). In this case, the isprint() function is used to dis?

 tinguish printing and non-printing characters.

SAVING AND RESTORING COMPILED PATTERNS

 It is possible to save compiled patterns on disc or elsewhere, and reload them

 later, subject to a number of restrictions. JIT data cannot be saved. The host on

 which the patterns are reloaded must be running the same version of PCRE2, with the

 same code unit width, and must also have the same endianness, pointer width and

 PCRE2_SIZE type. Before compiled patterns can be saved they must be serialized,

 that is, converted to a stream of bytes. A single byte stream may contain any num?

 ber of compiled patterns, but they must all use the same character tables. A single

 copy of the tables is included in the byte stream (its size is 1088 bytes).

 The functions whose names begin with pcre2_serialize_ are used for serializing and

 de-serializing. They are described in the pcre2serialize documentation. In this

 section we describe the features of pcre2test that can be used to test these func?

 tions.

 Note that "serialization" in PCRE2 does not convert compiled patterns to an ab?

 stract format like Java or .NET. It just makes a reloadable byte code stream.

 Hence the restrictions on reloading mentioned above.

 In pcre2test, when a pattern with push modifier is successfully compiled, it is

 pushed onto a stack of compiled patterns, and pcre2test expects the next line to

 contain a new pattern (or command) instead of a subject line. By contrast, the

 pushcopy modifier causes a copy of the compiled pattern to be stacked, leaving the

 original available for immediate matching. By using push and/or pushcopy, a number

 of patterns can be compiled and retained. These modifiers are incompatible with

 posix, and control modifiers that act at match time are ignored (with a message)

 for the stacked patterns. The jitverify modifier applies only at compile time.

 The command Page 41/43

 #save <filename>

 causes all the stacked patterns to be serialized and the result written to the

 named file. Afterwards, all the stacked patterns are freed. The command

 #load <filename>

 reads the data in the file, and then arranges for it to be de-serialized, with the

 resulting compiled patterns added to the pattern stack. The pattern on the top of

 the stack can be retrieved by the #pop command, which must be followed by lines of

 subjects that are to be matched with the pattern, terminated as usual by an empty

 line or end of file. This command may be followed by a modifier list containing

 only control modifiers that act after a pattern has been compiled. In particular,

 hex, posix, posix_nosub, push, and pushcopy are not allowed, nor are any option-

 setting modifiers. The JIT modifiers are, however permitted. Here is an example

 that saves and reloads two patterns.

 /abc/push

 /xyz/push

 #save tempfile

 #load tempfile

 #pop info

 xyz

 #pop jit,bincode

 abc

 If jitverify is used with #pop, it does not automatically imply jit, which is dif?

 ferent behaviour from when it is used on a pattern.

 The #popcopy command is analagous to the pushcopy modifier in that it makes current

 a copy of the topmost stack pattern, leaving the original still on the stack.

SEE ALSO

 pcre2(3), pcre2api(3), pcre2callout(3), pcre2jit, pcre2matching(3), pcre2par?

 tial(d), pcre2pattern(3), pcre2serialize(3).

AUTHOR

 Philip Hazel

 University Computing Service

 Cambridge, England.

REVISION Page 42/43

 Last updated: 30 July 2019

 Copyright (c) 1997-2019 University of Cambridge.

PCRE 10.34 30 July 2019 PCRE2TEST(1)

Page 43/43

