
Rocky Enterprise Linux 9.2 Manual Pages on command 'perldiag.1'

$ man perldiag.1

PERLDIAG(1)                      Perl Programmers Reference Guide                     PERLDIAG(1)

NAME

       perldiag - various Perl diagnostics

DESCRIPTION

       These messages are classified as follows (listed in increasing order of desperation):

           (W) A warning (optional).

           (D) A deprecation (enabled by default).

           (S) A severe warning (enabled by default).

           (F) A fatal error (trappable).

           (P) An internal error you should never see (trappable).

           (X) A very fatal error (nontrappable).

           (A) An alien error message (not generated by Perl).

       The majority of messages from the first three classifications above (W, D & S) can be

       controlled using the "warnings" pragma.

       If a message can be controlled by the "warnings" pragma, its warning category is included

       with the classification letter in the description below.  E.g. "(W closed)" means a

       warning in the "closed" category.

       Optional warnings are enabled by using the "warnings" pragma or the -w and -W switches.

       Warnings may be captured by setting $SIG{__WARN__} to a reference to a routine that will

       be called on each warning instead of printing it.  See perlvar.

       Severe warnings are always enabled, unless they are explicitly disabled with the

       "warnings" pragma or the -X switch.

       Trappable errors may be trapped using the eval operator.  See "eval" in perlfunc.  In Page 1/146



       almost all cases, warnings may be selectively disabled or promoted to fatal errors using

       the "warnings" pragma.  See warnings.

       The messages are in alphabetical order, without regard to upper or lower-case.  Some of

       these messages are generic.  Spots that vary are denoted with a %s or other printf-style

       escape.  These escapes are ignored by the alphabetical order, as are all characters other

       than letters.  To look up your message, just ignore anything that is not a letter.

       accept() on closed socket %s

           (W closed) You tried to do an accept on a closed socket.  Did you forget to check the

           return value of your socket() call?  See "accept" in perlfunc.

       Aliasing via reference is experimental

           (S experimental::refaliasing) This warning is emitted if you use a reference

           constructor on the left-hand side of an assignment to alias one variable to another.

           Simply suppress the warning if you want to use the feature, but know that in doing so

           you are taking the risk of using an experimental feature which may change or be

           removed in a future Perl version:

               no warnings "experimental::refaliasing";

               use feature "refaliasing";

               \$x = \$y;

       Allocation too large: %x

           (X) You can't allocate more than 64K on an MS-DOS machine.

       '%c' allowed only after types %s in %s

           (F) The modifiers '!', '<' and '>' are allowed in pack() or unpack() only after

           certain types.  See "pack" in perlfunc.

       alpha->numify() is lossy

           (W numeric) An alpha version can not be numified without losing information.

       Ambiguous call resolved as CORE::%s(), qualify as such or use &

           (W ambiguous) A subroutine you have declared has the same name as a Perl keyword, and

           you have used the name without qualification for calling one or the other.  Perl

           decided to call the builtin because the subroutine is not imported.

           To force interpretation as a subroutine call, either put an ampersand before the

           subroutine name, or qualify the name with its package.  Alternatively, you can import

           the subroutine (or pretend that it's imported with the "use subs" pragma).

           To silently interpret it as the Perl operator, use the "CORE::" prefix on the operator Page 2/146



           (e.g. "CORE::log($x)") or declare the subroutine to be an object method (see

           "Subroutine Attributes" in perlsub or attributes).

       Ambiguous range in transliteration operator

           (F) You wrote something like "tr/a-z-0//" which doesn't mean anything at all.  To

           include a "-" character in a transliteration, put it either first or last.  (In the

           past, "tr/a-z-0//" was synonymous with "tr/a-y//", which was probably not what you

           would have expected.)

       Ambiguous use of %s resolved as %s

           (S ambiguous) You said something that may not be interpreted the way you thought.

           Normally it's pretty easy to disambiguate it by supplying a missing quote, operator,

           parenthesis pair or declaration.

       Ambiguous use of -%s resolved as -&%s()

           (S ambiguous) You wrote something like "-foo", which might be the string "-foo", or a

           call to the function "foo", negated.  If you meant the string, just write "-foo".  If

           you meant the function call, write "-foo()".

       Ambiguous use of %c resolved as operator %c

           (S ambiguous) "%", "&", and "*" are both infix operators (modulus, bitwise and, and

           multiplication) and initial special characters (denoting hashes, subroutines and

           typeglobs), and you said something like "*foo * foo" that might be interpreted as

           either of them.  We assumed you meant the infix operator, but please try to make it

           more clear -- in the example given, you might write "*foo * foo()" if you really meant

           to multiply a glob by the result of calling a function.

       Ambiguous use of %c{%s} resolved to %c%s

           (W ambiguous) You wrote something like "@{foo}", which might be asking for the

           variable @foo, or it might be calling a function named foo, and dereferencing it as an

           array reference.  If you wanted the variable, you can just write @foo.  If you wanted

           to call the function, write "@{foo()}" ... or you could just not have a variable and a

           function with the same name, and save yourself a lot of trouble.

       Ambiguous use of %c{%s[...]} resolved to %c%s[...]

       Ambiguous use of %c{%s{...}} resolved to %c%s{...}

           (W ambiguous) You wrote something like "${foo[2]}" (where foo represents the name of a

           Perl keyword), which might be looking for element number 2 of the array named @foo, in

           which case please write $foo[2], or you might have meant to pass an anonymous arrayref Page 3/146



           to the function named foo, and then do a scalar deref on the value it returns.  If you

           meant that, write "${foo([2])}".

           In regular expressions, the "${foo[2]}" syntax is sometimes necessary to disambiguate

           between array subscripts and character classes.  "/$length[2345]/", for instance, will

           be interpreted as $length followed by the character class "[2345]".  If an array

           subscript is what you want, you can avoid the warning by changing "/${length[2345]}/"

           to the unsightly "/${\$length[2345]}/", by renaming your array to something that does

           not coincide with a built-in keyword, or by simply turning off warnings with "no

           warnings 'ambiguous';".

       '|' and '<' may not both be specified on command line

           (F) An error peculiar to VMS.  Perl does its own command line redirection, and found

           that STDIN was a pipe, and that you also tried to redirect STDIN using '<'.  Only one

           STDIN stream to a customer, please.

       '|' and '>' may not both be specified on command line

           (F) An error peculiar to VMS.  Perl does its own command line redirection, and thinks

           you tried to redirect stdout both to a file and into a pipe to another command.  You

           need to choose one or the other, though nothing's stopping you from piping into a

           program or Perl script which 'splits' output into two streams, such as

               open(OUT,">$ARGV[0]") or die "Can't write to $ARGV[0]: $!";

               while (<STDIN>) {

                   print;

                   print OUT;

               }

               close OUT;

       Applying %s to %s will act on scalar(%s)

           (W misc) The pattern match ("//"), substitution ("s///"), and transliteration

           ("tr///") operators work on scalar values.  If you apply one of them to an array or a

           hash, it will convert the array or hash to a scalar value (the length of an array, or

           the population info of a hash) and then work on that scalar value.  This is probably

           not what you meant to do.  See "grep" in perlfunc and "map" in perlfunc for

           alternatives.

       Arg too short for msgsnd

           (F) msgsnd() requires a string at least as long as sizeof(long). Page 4/146



       Argument "%s" isn't numeric%s

           (W numeric) The indicated string was fed as an argument to an operator that expected a

           numeric value instead.  If you're fortunate the message will identify which operator

           was so unfortunate.

           Note that for the "Inf" and "NaN" (infinity and not-a-number) the definition of

           "numeric" is somewhat unusual: the strings themselves (like "Inf") are considered

           numeric, and anything following them is considered non-numeric.

       Argument list not closed for PerlIO layer "%s"

           (W layer) When pushing a layer with arguments onto the Perl I/O system you forgot the

           ) that closes the argument list.  (Layers take care of transforming data between

           external and internal representations.)  Perl stopped parsing the layer list at this

           point and did not attempt to push this layer.  If your program didn't explicitly

           request the failing operation, it may be the result of the value of the environment

           variable PERLIO.

       Argument "%s" treated as 0 in increment (++)

           (W numeric) The indicated string was fed as an argument to the "++" operator which

           expects either a number or a string matching "/^[a-zA-Z]*[0-9]*\z/".  See "Auto-

           increment and Auto-decrement" in perlop for details.

       Array passed to stat will be coerced to a scalar%s

           (W syntax) You called stat() on an array, but the array will be coerced to a scalar -

           the number of elements in the array.

       A signature parameter must start with '$', '@' or '%'

           (F) Each subroutine signature parameter declaration must start with a valid sigil; for

           example:

               sub foo ($a, $, $b = 1, @c) {}

       A slurpy parameter may not have a default value

           (F) Only scalar subroutine signature parameters may have a default value; for example:

               sub foo ($a = 1)        {} # legal

               sub foo (@a = (1))      {} # invalid

               sub foo (%a = (a => b)) {} # invalid

       assertion botched: %s

           (X) The malloc package that comes with Perl had an internal failure.

       Assertion %s failed: file "%s", line %d Page 5/146



           (X) A general assertion failed.  The file in question must be examined.

       Assigned value is not a reference

           (F) You tried to assign something that was not a reference to an lvalue reference

           (e.g., "\$x = $y").  If you meant to make $x an alias to $y, use "\$x = \$y".

       Assigned value is not %s reference

           (F) You tried to assign a reference to a reference constructor, but the two references

           were not of the same type.  You cannot alias a scalar to an array, or an array to a

           hash; the two types must match.

               \$x = \@y;  # error

               \@x = \%y;  # error

                $y = [];

               \$x = $y;   # error; did you mean \$y?

       Assigning non-zero to $[ is no longer possible

           (F) When the "array_base" feature is disabled (e.g., and under "use v5.16;", and as of

           Perl 5.30) the special variable $[, which is deprecated, is now a fixed zero value.

       Assignment to both a list and a scalar

           (F) If you assign to a conditional operator, the 2nd and 3rd arguments must either

           both be scalars or both be lists.  Otherwise Perl won't know which context to supply

           to the right side.

       Assuming NOT a POSIX class since %s in regex; marked by <--?HERE in m/%s/

           (W regexp) You had something like these:

            [[:alnum]]

            [[:digit:xyz]

           They look like they might have been meant to be the POSIX classes "[:alnum:]" or

           "[:digit:]".  If so, they should be written:

            [[:alnum:]]

            [[:digit:]xyz]

           Since these aren't legal POSIX class specifications, but are legal bracketed character

           classes, Perl treats them as the latter.  In the first example, it matches the

           characters ":", "[", "a", "l", "m", "n", and "u".

           If these weren't meant to be POSIX classes, this warning message is spurious, and can

           be suppressed by reordering things, such as

            [[al:num]] Page 6/146



           or

            [[:munla]]

       <> at require-statement should be quotes

           (F) You wrote "require <file>" when you should have written "require 'file'".

       Attempt to access disallowed key '%s' in a restricted hash

           (F) The failing code has attempted to get or set a key which is not in the current set

           of allowed keys of a restricted hash.

       Attempt to bless into a freed package

           (F) You wrote "bless $foo" with one argument after somehow causing the current package

           to be freed.  Perl cannot figure out what to do, so it throws up its hands in despair.

       Attempt to bless into a reference

           (F) The CLASSNAME argument to the bless() operator is expected to be the name of the

           package to bless the resulting object into.  You've supplied instead a reference to

           something: perhaps you wrote

               bless $self, $proto;

           when you intended

               bless $self, ref($proto) || $proto;

           If you actually want to bless into the stringified version of the reference supplied,

           you need to stringify it yourself, for example by:

               bless $self, "$proto";

       Attempt to clear deleted array

           (S debugging) An array was assigned to when it was being freed.  Freed values are not

           supposed to be visible to Perl code.  This can also happen if XS code calls "av_clear"

           from a custom magic callback on the array.

       Attempt to delete disallowed key '%s' from a restricted hash

           (F) The failing code attempted to delete from a restricted hash a key which is not in

           its key set.

       Attempt to delete readonly key '%s' from a restricted hash

           (F) The failing code attempted to delete a key whose value has been declared readonly

           from a restricted hash.

       Attempt to free non-arena SV: 0x%x

           (S internal) All SV objects are supposed to be allocated from arenas that will be

           garbage collected on exit.  An SV was discovered to be outside any of those arenas. Page 7/146



       Attempt to free nonexistent shared string '%s'%s

           (S internal) Perl maintains a reference-counted internal table of strings to optimize

           the storage and access of hash keys and other strings.  This indicates someone tried

           to decrement the reference count of a string that can no longer be found in the table.

       Attempt to free temp prematurely: SV 0x%x

           (S debugging) Mortalized values are supposed to be freed by the free_tmps() routine.

           This indicates that something else is freeing the SV before the free_tmps() routine

           gets a chance, which means that the free_tmps() routine will be freeing an

           unreferenced scalar when it does try to free it.

       Attempt to free unreferenced glob pointers

           (S internal) The reference counts got screwed up on symbol aliases.

       Attempt to free unreferenced scalar: SV 0x%x

           (S internal) Perl went to decrement the reference count of a scalar to see if it would

           go to 0, and discovered that it had already gone to 0 earlier, and should have been

           freed, and in fact, probably was freed.  This could indicate that SvREFCNT_dec() was

           called too many times, or that SvREFCNT_inc() was called too few times, or that the SV

           was mortalized when it shouldn't have been, or that memory has been corrupted.

       Attempt to pack pointer to temporary value

           (W pack) You tried to pass a temporary value (like the result of a function, or a

           computed expression) to the "p" pack() template.  This means the result contains a

           pointer to a location that could become invalid anytime, even before the end of the

           current statement.  Use literals or global values as arguments to the "p" pack()

           template to avoid this warning.

       Attempt to reload %s aborted.

           (F) You tried to load a file with "use" or "require" that failed to compile once

           already.  Perl will not try to compile this file again unless you delete its entry

           from %INC.  See "require" in perlfunc and "%INC" in perlvar.

       Attempt to set length of freed array

           (W misc) You tried to set the length of an array which has been freed.  You can do

           this by storing a reference to the scalar representing the last index of an array and

           later assigning through that reference.  For example

               $r = do {my @a; \$#a};

               $$r = 503 Page 8/146



       Attempt to use reference as lvalue in substr

           (W substr) You supplied a reference as the first argument to substr() used as an

           lvalue, which is pretty strange.  Perhaps you forgot to dereference it first.  See

           "substr" in perlfunc.

       Attribute prototype(%s) discards earlier prototype attribute in same sub

           (W misc) A sub was declared as sub foo : prototype(A) : prototype(B) {}, for example.

           Since each sub can only have one prototype, the earlier declaration(s) are discarded

           while the last one is applied.

       av_reify called on tied array

           (S debugging) This indicates that something went wrong and Perl got very confused

           about @_ or @DB::args being tied.

       Bad arg length for %s, is %u, should be %d

           (F) You passed a buffer of the wrong size to one of msgctl(), semctl() or shmctl().

           In C parlance, the correct sizes are, respectively, sizeof(struct?msqid_ds?*),

           sizeof(struct?semid_ds?*), and sizeof(struct?shmid_ds?*).

       Bad evalled substitution pattern

           (F) You've used the "/e" switch to evaluate the replacement for a substitution, but

           perl found a syntax error in the code to evaluate, most likely an unexpected right

           brace '}'.

       Bad filehandle: %s

           (F) A symbol was passed to something wanting a filehandle, but the symbol has no

           filehandle associated with it.  Perhaps you didn't do an open(), or did it in another

           package.

       Bad free() ignored

           (S malloc) An internal routine called free() on something that had never been

           malloc()ed in the first place.  Mandatory, but can be disabled by setting environment

           variable "PERL_BADFREE" to 0.

           This message can be seen quite often with DB_File on systems with "hard" dynamic

           linking, like "AIX" and "OS/2".  It is a bug of "Berkeley DB" which is left unnoticed

           if "DB" uses forgiving system malloc().

       Bad hash

           (P) One of the internal hash routines was passed a null HV pointer.

       Badly placed ()'s Page 9/146



           (A) You've accidentally run your script through csh instead of Perl.  Check the #!

           line, or manually feed your script into Perl yourself.

       Bad name after %s

           (F) You started to name a symbol by using a package prefix, and then didn't finish the

           symbol.  In particular, you can't interpolate outside of quotes, so

               $var = 'myvar';

               $sym = mypack::$var;

           is not the same as

               $var = 'myvar';

               $sym = "mypack::$var";

       Bad plugin affecting keyword '%s'

           (F) An extension using the keyword plugin mechanism violated the plugin API.

       Bad realloc() ignored

           (S malloc) An internal routine called realloc() on something that had never been

           malloc()ed in the first place.  Mandatory, but can be disabled by setting the

           environment variable "PERL_BADFREE" to 1.

       Bad symbol for array

           (P) An internal request asked to add an array entry to something that wasn't a symbol

           table entry.

       Bad symbol for dirhandle

           (P) An internal request asked to add a dirhandle entry to something that wasn't a

           symbol table entry.

       Bad symbol for filehandle

           (P) An internal request asked to add a filehandle entry to something that wasn't a

           symbol table entry.

       Bad symbol for hash

           (P) An internal request asked to add a hash entry to something that wasn't a symbol

           table entry.

       Bad symbol for scalar

           (P) An internal request asked to add a scalar entry to something that wasn't a symbol

           table entry.

       Bareword found in conditional

           (W bareword) The compiler found a bareword where it expected a conditional, which Page 10/146



           often indicates that an || or && was parsed as part of the last argument of the

           previous construct, for example:

               open FOO || die;

           It may also indicate a misspelled constant that has been interpreted as a bareword:

               use constant TYPO => 1;

               if (TYOP) { print "foo" }

           The "strict" pragma is useful in avoiding such errors.

       Bareword in require contains "%s"

       Bareword in require maps to disallowed filename "%s"

       Bareword in require maps to empty filename

           (F) The bareword form of require has been invoked with a filename which could not have

           been generated by a valid bareword permitted by the parser.  You shouldn't be able to

           get this error from Perl code, but XS code may throw it if it passes an invalid module

           name to "Perl_load_module".

       Bareword in require must not start with a double-colon: "%s"

           (F) In "require Bare::Word", the bareword is not allowed to start with a double-colon.

           Write "require ::Foo::Bar" as  "require Foo::Bar" instead.

       Bareword "%s" not allowed while "strict subs" in use

           (F) With "strict subs" in use, a bareword is only allowed as a subroutine identifier,

           in curly brackets or to the left of the "=>" symbol.  Perhaps you need to predeclare a

           subroutine?

       Bareword "%s" refers to nonexistent package

           (W bareword) You used a qualified bareword of the form "Foo::", but the compiler saw

           no other uses of that namespace before that point.  Perhaps you need to predeclare a

           package?

       Bareword filehandle "%s" not allowed under 'no feature "bareword_filehandles"'

           (F) You attempted to use a bareword filehandle with the "bareword_filehandles" feature

           disabled.

           Only the built-in handles "STDIN", "STDOUT", "STDERR", "ARGV", "ARGVOUT" and "DATA"

           can be used with the "bareword_filehandles" feature disabled.

       BEGIN failed--compilation aborted

           (F) An untrapped exception was raised while executing a BEGIN subroutine.  Compilation

           stops immediately and the interpreter is exited. Page 11/146



       BEGIN not safe after errors--compilation aborted

           (F) Perl found a "BEGIN {}" subroutine (or a "use" directive, which implies a "BEGIN

           {}") after one or more compilation errors had already occurred.  Since the intended

           environment for the "BEGIN {}" could not be guaranteed (due to the errors), and since

           subsequent code likely depends on its correct operation, Perl just gave up.

       \%d better written as $%d

           (W syntax) Outside of patterns, backreferences live on as variables.  The use of

           backslashes is grandfathered on the right-hand side of a substitution, but

           stylistically it's better to use the variable form because other Perl programmers will

           expect it, and it works better if there are more than 9 backreferences.

       Binary number > 0b11111111111111111111111111111111 non-portable

           (W portable) The binary number you specified is larger than 2**32-1 (4294967295) and

           therefore non-portable between systems.  See perlport for more on portability

           concerns.

       bind() on closed socket %s

           (W closed) You tried to do a bind on a closed socket.  Did you forget to check the

           return value of your socket() call?  See "bind" in perlfunc.

       binmode() on closed filehandle %s

           (W unopened) You tried binmode() on a filehandle that was never opened.  Check your

           control flow and number of arguments.

       Bit vector size > 32 non-portable

           (W portable) Using bit vector sizes larger than 32 is non-portable.

       Bizarre copy of %s

           (P) Perl detected an attempt to copy an internal value that is not copiable.

       Bizarre SvTYPE [%d]

           (P) When starting a new thread or returning values from a thread, Perl encountered an

           invalid data type.

       Both or neither range ends should be Unicode in regex; marked by <--?HERE in m/%s/

           (W regexp) (only under "use?re?'strict'" or within "(?[...])")

           In a bracketed character class in a regular expression pattern, you had a range which

           has exactly one end of it specified using "\N{}", and the other end is specified using

           a non-portable mechanism.  Perl treats the range as a Unicode range, that is, all the

           characters in it are considered to be the Unicode characters, and which may be Page 12/146



           different code points on some platforms Perl runs on.  For example, "[\N{U+06}-\x08]"

           is treated as if you had instead said "[\N{U+06}-\N{U+08}]", that is it matches the

           characters whose code points in Unicode are 6, 7, and 8.  But that "\x08" might

           indicate that you meant something different, so the warning gets raised.

       Buffer overflow in prime_env_iter: %s

           (W internal) A warning peculiar to VMS.  While Perl was preparing to iterate over

           %ENV, it encountered a logical name or symbol definition which was too long, so it was

           truncated to the string shown.

       Callback called exit

           (F) A subroutine invoked from an external package via call_sv() exited by calling

           exit.

       %s() called too early to check prototype

           (W prototype) You've called a function that has a prototype before the parser saw a

           definition or declaration for it, and Perl could not check that the call conforms to

           the prototype.  You need to either add an early prototype declaration for the

           subroutine in question, or move the subroutine definition ahead of the call to get

           proper prototype checking.  Alternatively, if you are certain that you're calling the

           function correctly, you may put an ampersand before the name to avoid the warning.

           See perlsub.

       Cannot chr %f

           (F) You passed an invalid number (like an infinity or not-a-number) to "chr".

       Cannot complete in-place edit of %s: %s

           (F) Your perl script appears to have changed directory while performing an in-place

           edit of a file specified by a relative path, and your system doesn't include the

           directory relative POSIX functions needed to handle that.

       Cannot compress %f in pack

           (F) You tried compressing an infinity or not-a-number as an unsigned integer with BER,

           which makes no sense.

       Cannot compress integer in pack

           (F) An argument to pack("w",...) was too large to compress.  The BER compressed

           integer format can only be used with positive integers, and you attempted to compress

           a very large number (> 1e308).  See "pack" in perlfunc.

       Cannot compress negative numbers in pack Page 13/146



           (F) An argument to pack("w",...) was negative.  The BER compressed integer format can

           only be used with positive integers.  See "pack" in perlfunc.

       Cannot convert a reference to %s to typeglob

           (F) You manipulated Perl's symbol table directly, stored a reference in it, then tried

           to access that symbol via conventional Perl syntax.  The access triggers Perl to

           autovivify that typeglob, but it there is no legal conversion from that type of

           reference to a typeglob.

       Cannot copy to %s

           (P) Perl detected an attempt to copy a value to an internal type that cannot be

           directly assigned to.

       Cannot find encoding "%s"

           (S io) You tried to apply an encoding that did not exist to a filehandle, either with

           open() or binmode().

       Cannot open %s as a dirhandle: it is already open as a filehandle

           (F) You tried to use opendir() to associate a dirhandle to a symbol (glob or scalar)

           that already holds a filehandle.  Since this idiom might render your code confusing,

           it was deprecated in Perl 5.10.  As of Perl 5.28, it is a fatal error.

       Cannot open %s as a filehandle: it is already open as a dirhandle

           (F) You tried to use open() to associate a filehandle to a symbol (glob or scalar)

           that already holds a dirhandle.  Since this idiom might render your code confusing, it

           was deprecated in Perl 5.10.  As of Perl 5.28, it is a fatal error.

       Cannot pack %f with '%c'

           (F) You tried converting an infinity or not-a-number to an integer, which makes no

           sense.

       Cannot printf %f with '%c'

           (F) You tried printing an infinity or not-a-number as a character (%c), which makes no

           sense.  Maybe you meant '%s', or just stringifying it?

       Cannot set tied @DB::args

           (F) "caller" tried to set @DB::args, but found it tied.  Tying @DB::args is not

           supported.  (Before this error was added, it used to crash.)

       Cannot tie unreifiable array

           (P) You somehow managed to call "tie" on an array that does not keep a reference count

           on its arguments and cannot be made to do so.  Such arrays are not even supposed to be Page 14/146



           accessible to Perl code, but are only used internally.

       Cannot yet reorder sv_vcatpvfn() arguments from va_list

           (F) Some XS code tried to use "sv_vcatpvfn()" or a related function with a format

           string that specifies explicit indexes for some of the elements, and using a C-style

           variable-argument list (a "va_list").  This is not currently supported.  XS authors

           wanting to do this must instead construct a C array of "SV*" scalars containing the

           arguments.

       Can only compress unsigned integers in pack

           (F) An argument to pack("w",...) was not an integer.  The BER compressed integer

           format can only be used with positive integers, and you attempted to compress

           something else.  See "pack" in perlfunc.

       Can't bless non-reference value

           (F) Only hard references may be blessed.  This is how Perl "enforces" encapsulation of

           objects.  See perlobj.

       Can't "break" in a loop topicalizer

           (F) You called "break", but you're in a "foreach" block rather than a "given" block.

           You probably meant to use "next" or "last".

       Can't "break" outside a given block

           (F) You called "break", but you're not inside a "given" block.

       Can't call method "%s" on an undefined value

           (F) You used the syntax of a method call, but the slot filled by the object reference

           or package name contains an undefined value.  Something like this will reproduce the

           error:

               $BADREF = undef;

               process $BADREF 1,2,3;

               $BADREF->process(1,2,3);

       Can't call method "%s" on unblessed reference

           (F) A method call must know in what package it's supposed to run.  It ordinarily finds

           this out from the object reference you supply, but you didn't supply an object

           reference in this case.  A reference isn't an object reference until it has been

           blessed.  See perlobj.

       Can't call method "%s" without a package or object reference

           (F) You used the syntax of a method call, but the slot filled by the object reference Page 15/146



           or package name contains an expression that returns a defined value which is neither

           an object reference nor a package name.  Something like this will reproduce the error:

               $BADREF = 42;

               process $BADREF 1,2,3;

               $BADREF->process(1,2,3);

       Can't call mro_isa_changed_in() on anonymous symbol table

           (P) Perl got confused as to whether a hash was a plain hash or a symbol table hash

           when trying to update @ISA caches.

       Can't call mro_method_changed_in() on anonymous symbol table

           (F) An XS module tried to call "mro_method_changed_in" on a hash that was not attached

           to the symbol table.

       Can't chdir to %s

           (F) You called "perl -x/foo/bar", but /foo/bar is not a directory that you can chdir

           to, possibly because it doesn't exist.

       Can't check filesystem of script "%s" for nosuid

           (P) For some reason you can't check the filesystem of the script for nosuid.

       Can't coerce %s to %s in %s

           (F) Certain types of SVs, in particular real symbol table entries (typeglobs), can't

           be forced to stop being what they are.  So you can't say things like:

               *foo += 1;

           You CAN say

               $foo = *foo;

               $foo += 1;

           but then $foo no longer contains a glob.

       Can't "continue" outside a when block

           (F) You called "continue", but you're not inside a "when" or "default" block.

       Can't create pipe mailbox

           (P) An error peculiar to VMS.  The process is suffering from exhausted quotas or other

           plumbing problems.

       Can't declare %s in "%s"

           (F) Only scalar, array, and hash variables may be declared as "my", "our" or "state"

           variables.  They must have ordinary identifiers as names.

       Can't "default" outside a topicalizer Page 16/146



           (F) You have used a "default" block that is neither inside a "foreach" loop nor a

           "given" block.  (Note that this error is issued on exit from the "default" block, so

           you won't get the error if you use an explicit "continue".)

       Can't determine class of operator %s, assuming BASEOP

           (S) This warning indicates something wrong in the internals of perl.  Perl was trying

           to find the class (e.g. LISTOP) of a particular OP, and was unable to do so. This is

           likely to be due to a bug in the perl internals, or due to a bug in XS code which

           manipulates perl optrees.

       Can't do inplace edit: %s is not a regular file

           (S inplace) You tried to use the -i switch on a special file, such as a file in /dev,

           a FIFO or an uneditable directory.  The file was ignored.

       Can't do inplace edit on %s: %s

           (S inplace) The creation of the new file failed for the indicated reason.

       Can't do inplace edit: %s would not be unique

           (S inplace) Your filesystem does not support filenames longer than 14 characters and

           Perl was unable to create a unique filename during inplace editing with the -i switch.

           The file was ignored.

       Can't do %s("%s") on non-UTF-8 locale; resolved to "%s".

           (W locale) You are 1) running under ""use locale""; 2) the current locale is not a

           UTF-8 one; 3) you tried to do the designated case-change operation on the specified

           Unicode character; and 4) the result of this operation would mix Unicode and locale

           rules, which likely conflict.  Mixing of different rule types is forbidden, so the

           operation was not done; instead the result is the indicated value, which is the best

           available that uses entirely Unicode rules.  That turns out to almost always be the

           original character, unchanged.

           It is generally a bad idea to mix non-UTF-8 locales and Unicode, and this issue is one

           of the reasons why.  This warning is raised when Unicode rules would normally cause

           the result of this operation to contain a character that is in the range specified by

           the locale, 0..255, and hence is subject to the locale's rules, not Unicode's.

           If you are using locale purely for its characteristics related to things like its

           numeric and time formatting (and not "LC_CTYPE"), consider using a restricted form of

           the locale pragma (see "The "use locale" pragma" in perllocale) like

           ""use?locale?':not_characters'"". Page 17/146



           Note that failed case-changing operations done as a result of case-insensitive "/i"

           regular expression matching will show up in this warning as having the "fc" operation

           (as that is what the regular expression engine calls behind the scenes.)

       Can't do waitpid with flags

           (F) This machine doesn't have either waitpid() or wait4(), so only waitpid() without

           flags is emulated.

       Can't emulate -%s on #! line

           (F) The #! line specifies a switch that doesn't make sense at this point.  For

           example, it'd be kind of silly to put a -x on the #!  line.

       Can't %s %s-endian %ss on this platform

           (F) Your platform's byte-order is neither big-endian nor little-endian, or it has a

           very strange pointer size.  Packing and unpacking big- or little-endian floating point

           values and pointers may not be possible.  See "pack" in perlfunc.

       Can't exec "%s": %s

           (W exec) A system(), exec(), or piped open call could not execute the named program

           for the indicated reason.  Typical reasons include: the permissions were wrong on the

           file, the file wasn't found in $ENV{PATH}, the executable in question was compiled for

           another architecture, or the #! line in a script points to an interpreter that can't

           be run for similar reasons.  (Or maybe your system doesn't support #! at all.)

       Can't exec %s

           (F) Perl was trying to execute the indicated program for you because that's what the

           #! line said.  If that's not what you wanted, you may need to mention "perl" on the #!

           line somewhere.

       Can't execute %s

           (F) You used the -S switch, but the copies of the script to execute found in the PATH

           did not have correct permissions.

       Can't find an opnumber for "%s"

           (F) A string of a form "CORE::word" was given to prototype(), but there is no builtin

           with the name "word".

       Can't find label %s

           (F) You said to goto a label that isn't mentioned anywhere that it's possible for us

           to go to.  See "goto" in perlfunc.

       Can't find %s on PATH Page 18/146



           (F) You used the -S switch, but the script to execute could not be found in the PATH.

       Can't find %s on PATH, '.' not in PATH

           (F) You used the -S switch, but the script to execute could not be found in the PATH,

           or at least not with the correct permissions.  The script exists in the current

           directory, but PATH prohibits running it.

       Can't find string terminator %s anywhere before EOF

           (F) Perl strings can stretch over multiple lines.  This message means that the closing

           delimiter was omitted.  Because bracketed quotes count nesting levels, the following

           is missing its final parenthesis:

               print q(The character '(' starts a side comment.);

           If you're getting this error from a here-document, you may have included unseen

           whitespace before or after your closing tag or there may not be a linebreak after it.

           A good programmer's editor will have a way to help you find these characters (or lack

           of characters).  See perlop for the full details on here-documents.

       Can't find Unicode property definition "%s"

       Can't find Unicode property definition "%s" in regex; marked by <-- HERE in m/%s/

           (F) The named property which you specified via "\p" or "\P" is not one known to Perl.

           Perhaps you misspelled the name?  See "Properties accessible through \p{} and \P{}" in

           perluniprops for a complete list of available official properties.  If it is a user-

           defined property it must have been defined by the time the regular expression is

           matched.

           If you didn't mean to use a Unicode property, escape the "\p", either by "\\p" (just

           the "\p") or by "\Q\p" (the rest of the string, or until "\E").

       Can't fork: %s

           (F) A fatal error occurred while trying to fork while opening a pipeline.

       Can't fork, trying again in 5 seconds

           (W pipe) A fork in a piped open failed with EAGAIN and will be retried after five

           seconds.

       Can't get filespec - stale stat buffer?

           (S) A warning peculiar to VMS.  This arises because of the difference between access

           checks under VMS and under the Unix model Perl assumes.  Under VMS, access checks are

           done by filename, rather than by bits in the stat buffer, so that ACLs and other

           protections can be taken into account.  Unfortunately, Perl assumes that the stat Page 19/146



           buffer contains all the necessary information, and passes it, instead of the filespec,

           to the access-checking routine.  It will try to retrieve the filespec using the device

           name and FID present in the stat buffer, but this works only if you haven't made a

           subsequent call to the CRTL stat() routine, because the device name is overwritten

           with each call.  If this warning appears, the name lookup failed, and the access-

           checking routine gave up and returned FALSE, just to be conservative.  (Note: The

           access-checking routine knows about the Perl "stat" operator and file tests, so you

           shouldn't ever see this warning in response to a Perl command; it arises only if some

           internal code takes stat buffers lightly.)

       Can't get pipe mailbox device name

           (P) An error peculiar to VMS.  After creating a mailbox to act as a pipe, Perl can't

           retrieve its name for later use.

       Can't get SYSGEN parameter value for MAXBUF

           (P) An error peculiar to VMS.  Perl asked $GETSYI how big you want your mailbox

           buffers to be, and didn't get an answer.

       Can't "goto" into a binary or list expression

           (F) A "goto" statement was executed to jump into the middle of a binary or list

           expression.  You can't get there from here.  The reason for this restriction is that

           the interpreter would get confused as to how many arguments there are, resulting in

           stack corruption or crashes.  This error occurs in cases such as these:

               goto F;

               print do { F: }; # Can't jump into the arguments to print

               goto G;

               $x + do { G: $y }; # How is + supposed to get its first operand?

       Can't "goto" into a "given" block

           (F) A "goto" statement was executed to jump into the middle of a "given" block.  You

           can't get there from here.  See "goto" in perlfunc.

       Can't "goto" into the middle of a foreach loop

           (F) A "goto" statement was executed to jump into the middle of a foreach loop.  You

           can't get there from here.  See "goto" in perlfunc.

       Can't "goto" out of a pseudo block

           (F) A "goto" statement was executed to jump out of what might look like a block,

           except that it isn't a proper block.  This usually occurs if you tried to jump out of Page 20/146



           a sort() block or subroutine, which is a no-no.  See "goto" in perlfunc.

       Can't goto subroutine from an eval-%s

           (F) The "goto subroutine" call can't be used to jump out of an eval "string" or block.

       Can't goto subroutine from a sort sub (or similar callback)

           (F) The "goto subroutine" call can't be used to jump out of the comparison sub for a

           sort(), or from a similar callback (such as the reduce() function in List::Util).

       Can't goto subroutine outside a subroutine

           (F) The deeply magical "goto subroutine" call can only replace one subroutine call for

           another.  It can't manufacture one out of whole cloth.  In general you should be

           calling it out of only an AUTOLOAD routine anyway.  See "goto" in perlfunc.

       Can't ignore signal CHLD, forcing to default

           (W signal) Perl has detected that it is being run with the SIGCHLD signal (sometimes

           known as SIGCLD) disabled.  Since disabling this signal will interfere with proper

           determination of exit status of child processes, Perl has reset the signal to its

           default value.  This situation typically indicates that the parent program under which

           Perl may be running (e.g. cron) is being very careless.

       Can't kill a non-numeric process ID

           (F) Process identifiers must be (signed) integers.  It is a fatal error to attempt to

           kill() an undefined, empty-string or otherwise non-numeric process identifier.

       Can't "last" outside a loop block

           (F) A "last" statement was executed to break out of the current block, except that

           there's this itty bitty problem called there isn't a current block.  Note that an "if"

           or "else" block doesn't count as a "loopish" block, as doesn't a block given to

           sort(), map() or grep().  You can usually double the curlies to get the same effect

           though, because the inner curlies will be considered a block that loops once.  See

           "last" in perlfunc.

       Can't linearize anonymous symbol table

           (F) Perl tried to calculate the method resolution order (MRO) of a package, but failed

           because the package stash has no name.

       Can't load '%s' for module %s

           (F) The module you tried to load failed to load a dynamic extension.  This may either

           mean that you upgraded your version of perl to one that is incompatible with your old

           dynamic extensions (which is known to happen between major versions of perl), or (more Page 21/146



           likely) that your dynamic extension was built against an older version of the library

           that is installed on your system.  You may need to rebuild your old dynamic

           extensions.

       Can't localize lexical variable %s

           (F) You used local on a variable name that was previously declared as a lexical

           variable using "my" or "state".  This is not allowed.  If you want to localize a

           package variable of the same name, qualify it with the package name.

       Can't localize through a reference

           (F) You said something like "local $$ref", which Perl can't currently handle, because

           when it goes to restore the old value of whatever $ref pointed to after the scope of

           the local() is finished, it can't be sure that $ref will still be a reference.

       Can't locate %s

           (F) You said to "do" (or "require", or "use") a file that couldn't be found.  Perl

           looks for the file in all the locations mentioned in @INC, unless the file name

           included the full path to the file.  Perhaps you need to set the PERL5LIB or PERL5OPT

           environment variable to say where the extra library is, or maybe the script needs to

           add the library name to @INC.  Or maybe you just misspelled the name of the file.  See

           "require" in perlfunc and lib.

       Can't locate auto/%s.al in @INC

           (F) A function (or method) was called in a package which allows autoload, but there is

           no function to autoload.  Most probable causes are a misprint in a function/method

           name or a failure to "AutoSplit" the file, say, by doing "make install".

       Can't locate loadable object for module %s in @INC

           (F) The module you loaded is trying to load an external library, like for example,

           foo.so or bar.dll, but the DynaLoader module was unable to locate this library.  See

           DynaLoader.

       Can't locate object method "%s" via package "%s"

           (F) You called a method correctly, and it correctly indicated a package functioning as

           a class, but that package doesn't define that particular method, nor does any of its

           base classes.  See perlobj.

       Can't locate object method "%s" via package "%s" (perhaps you forgot to load "%s"?)

           (F) You called a method on a class that did not exist, and the method could not be

           found in UNIVERSAL.  This often means that a method requires a package that has not Page 22/146



           been loaded.

       Can't locate package %s for @%s::ISA

           (W syntax) The @ISA array contained the name of another package that doesn't seem to

           exist.

       Can't locate PerlIO%s

           (F) You tried to use in open() a PerlIO layer that does not exist, e.g. open(FH,

           ">:nosuchlayer", "somefile").

       Can't make list assignment to %ENV on this system

           (F) List assignment to %ENV is not supported on some systems, notably VMS.

       Can't make loaded symbols global on this platform while loading %s

           (S) A module passed the flag 0x01 to DynaLoader::dl_load_file() to request that

           symbols from the stated file are made available globally within the process, but that

           functionality is not available on this platform.  Whilst the module likely will still

           work, this may prevent the perl interpreter from loading other XS-based extensions

           which need to link directly to functions defined in the C or XS code in the stated

           file.

       Can't modify %s in %s

           (F) You aren't allowed to assign to the item indicated, or otherwise try to change it,

           such as with an auto-increment.

       Can't modify nonexistent substring

           (P) The internal routine that does assignment to a substr() was handed a NULL.

       Can't modify non-lvalue subroutine call of &%s

       Can't modify non-lvalue subroutine call of &%s in %s

           (F) Subroutines meant to be used in lvalue context should be declared as such.  See

           "Lvalue subroutines" in perlsub.

       Can't modify reference to %s in %s assignment

           (F) Only a limited number of constructs can be used as the argument to a reference

           constructor on the left-hand side of an assignment, and what you used was not one of

           them.  See "Assigning to References" in perlref.

       Can't modify reference to localized parenthesized array in list assignment

           (F) Assigning to "\local(@array)" or "\(local @array)" is not supported, as it is not

           clear exactly what it should do.  If you meant to make @array refer to some other

           array, use "\@array = \@other_array".  If you want to make the elements of @array Page 23/146



           aliases of the scalars referenced on the right-hand side, use "\(@array) =

           @scalar_refs".

       Can't modify reference to parenthesized hash in list assignment

           (F) Assigning to "\(%hash)" is not supported.  If you meant to make %hash refer to

           some other hash, use "\%hash = \%other_hash".  If you want to make the elements of

           %hash into aliases of the scalars referenced on the right-hand side, use a hash slice:

           "\@hash{@keys} = @those_scalar_refs".

       Can't msgrcv to read-only var

           (F) The target of a msgrcv must be modifiable to be used as a receive buffer.

       Can't "next" outside a loop block

           (F) A "next" statement was executed to reiterate the current block, but there isn't a

           current block.  Note that an "if" or "else" block doesn't count as a "loopish" block,

           as doesn't a block given to sort(), map() or grep().  You can usually double the

           curlies to get the same effect though, because the inner curlies will be considered a

           block that loops once.  See "next" in perlfunc.

       Can't open %s: %s

           (S inplace) The implicit opening of a file through use of the "<>" filehandle, either

           implicitly under the "-n" or "-p" command-line switches, or explicitly, failed for the

           indicated reason.  Usually this is because you don't have read permission for a file

           which you named on the command line.

           (F) You tried to call perl with the -e switch, but /dev/null (or your operating

           system's equivalent) could not be opened.

       Can't open a reference

           (W io) You tried to open a scalar reference for reading or writing, using the 3-arg

           open() syntax:

               open FH, '>', $ref;

           but your version of perl is compiled without perlio, and this form of open is not

           supported.

       Can't open bidirectional pipe

           (W pipe) You tried to say "open(CMD, "|cmd|")", which is not supported.  You can try

           any of several modules in the Perl library to do this, such as IPC::Open2.

           Alternately, direct the pipe's output to a file using ">", and then read it in under a

           different file handle. Page 24/146



       Can't open error file %s as stderr

           (F) An error peculiar to VMS.  Perl does its own command line redirection, and

           couldn't open the file specified after '2>' or '2>>' on the command line for writing.

       Can't open input file %s as stdin

           (F) An error peculiar to VMS.  Perl does its own command line redirection, and

           couldn't open the file specified after '<' on the command line for reading.

       Can't open output file %s as stdout

           (F) An error peculiar to VMS.  Perl does its own command line redirection, and

           couldn't open the file specified after '>' or '>>' on the command line for writing.

       Can't open output pipe (name: %s)

           (P) An error peculiar to VMS.  Perl does its own command line redirection, and

           couldn't open the pipe into which to send data destined for stdout.

       Can't open perl script "%s": %s

           (F) The script you specified can't be opened for the indicated reason.

           If you're debugging a script that uses #!, and normally relies on the shell's $PATH

           search, the -S option causes perl to do that search, so you don't have to type the

           path or "`which $scriptname`".

       Can't read CRTL environ

           (S) A warning peculiar to VMS.  Perl tried to read an element of %ENV from the CRTL's

           internal environment array and discovered the array was missing.  You need to figure

           out where your CRTL misplaced its environ or define PERL_ENV_TABLES (see perlvms) so

           that environ is not searched.

       Can't redeclare "%s" in "%s"

           (F) A "my", "our" or "state" declaration was found within another declaration, such as

           "my ($x, my($y), $z)" or "our (my $x)".

       Can't "redo" outside a loop block

           (F) A "redo" statement was executed to restart the current block, but there isn't a

           current block.  Note that an "if" or "else" block doesn't count as a "loopish" block,

           as doesn't a block given to sort(), map() or grep().  You can usually double the

           curlies to get the same effect though, because the inner curlies will be considered a

           block that loops once.  See "redo" in perlfunc.

       Can't remove %s: %s, skipping file

           (S inplace) You requested an inplace edit without creating a backup file.  Perl was Page 25/146



           unable to remove the original file to replace it with the modified file.  The file was

           left unmodified.

       Can't rename in-place work file '%s' to '%s': %s

           (F) When closed implicitly, the temporary file for in-place editing couldn't be

           renamed to the original filename.

       Can't rename %s to %s: %s, skipping file

           (F) The rename done by the -i switch failed for some reason, probably because you

           don't have write permission to the directory.

       Can't reopen input pipe (name: %s) in binary mode

           (P) An error peculiar to VMS.  Perl thought stdin was a pipe, and tried to reopen it

           to accept binary data.  Alas, it failed.

       Can't represent character for Ox%X on this platform

           (F) There is a hard limit to how big a character code point can be due to the

           fundamental properties of UTF-8, especially on EBCDIC platforms.  The given code point

           exceeds that.  The only work-around is to not use such a large code point.

       Can't reset %ENV on this system

           (F) You called "reset('E')" or similar, which tried to reset all variables in the

           current package beginning with "E".  In the main package, that includes %ENV.

           Resetting %ENV is not supported on some systems, notably VMS.

       Can't resolve method "%s" overloading "%s" in package "%s"

           (F)(P) Error resolving overloading specified by a method name (as opposed to a

           subroutine reference): no such method callable via the package.  If the method name is

           "???", this is an internal error.

       Can't return %s from lvalue subroutine

           (F) Perl detected an attempt to return illegal lvalues (such as temporary or readonly

           values) from a subroutine used as an lvalue.  This is not allowed.

       Can't return outside a subroutine

           (F) The return statement was executed in mainline code, that is, where there was no

           subroutine call to return out of.  See perlsub.

       Can't return %s to lvalue scalar context

           (F) You tried to return a complete array or hash from an lvalue subroutine, but you

           called the subroutine in a way that made Perl think you meant to return only one

           value.  You probably meant to write parentheses around the call to the subroutine, Page 26/146



           which tell Perl that the call should be in list context.

       Can't stat script "%s"

           (P) For some reason you can't fstat() the script even though you have it open already.

           Bizarre.

       Can't take log of %g

           (F) For ordinary real numbers, you can't take the logarithm of a negative number or

           zero.  There's a Math::Complex package that comes standard with Perl, though, if you

           really want to do that for the negative numbers.

       Can't take sqrt of %g

           (F) For ordinary real numbers, you can't take the square root of a negative number.

           There's a Math::Complex package that comes standard with Perl, though, if you really

           want to do that.

       Can't undef active subroutine

           (F) You can't undefine a routine that's currently running.  You can, however, redefine

           it while it's running, and you can even undef the redefined subroutine while the old

           routine is running.  Go figure.

       Can't unweaken a nonreference

           (F) You attempted to unweaken something that was not a reference.  Only references can

           be unweakened.

       Can't upgrade %s (%d) to %d

           (P) The internal sv_upgrade routine adds "members" to an SV, making it into a more

           specialized kind of SV.  The top several SV types are so specialized, however, that

           they cannot be interconverted.  This message indicates that such a conversion was

           attempted.

       Can't use '%c' after -mname

           (F) You tried to call perl with the -m switch, but you put something other than "="

           after the module name.

       Can't use a hash as a reference

           (F) You tried to use a hash as a reference, as in "%foo->{"bar"}" or

           "%$ref->{"hello"}".  Versions of perl <= 5.22.0 used to allow this syntax, but

           shouldn't have.  This was deprecated in perl 5.6.1.

       Can't use an array as a reference

           (F) You tried to use an array as a reference, as in "@foo->[23]" or "@$ref->[99]". Page 27/146



           Versions of perl <= 5.22.0 used to allow this syntax, but shouldn't have.  This was

           deprecated in perl 5.6.1.

       Can't use anonymous symbol table for method lookup

           (F) The internal routine that does method lookup was handed a symbol table that

           doesn't have a name.  Symbol tables can become anonymous for example by undefining

           stashes: "undef %Some::Package::".

       Can't use an undefined value as %s reference

           (F) A value used as either a hard reference or a symbolic reference must be a defined

           value.  This helps to delurk some insidious errors.

       Can't use bareword ("%s") as %s ref while "strict refs" in use

           (F) Only hard references are allowed by "strict refs".  Symbolic references are

           disallowed.  See perlref.

       Can't use %! because Errno.pm is not available

           (F) The first time the "%!" hash is used, perl automatically loads the Errno.pm

           module.  The Errno module is expected to tie the %! hash to provide symbolic names for

           $! errno values.

       Can't use both '<' and '>' after type '%c' in %s

           (F) A type cannot be forced to have both big-endian and little-endian byte-order at

           the same time, so this combination of modifiers is not allowed.  See "pack" in

           perlfunc.

       Can't use 'defined(@array)' (Maybe you should just omit the defined()?)

           (F) defined() is not useful on arrays because it checks for an undefined scalar value.

           If you want to see if the array is empty, just use "if (@array) { # not empty }" for

           example.

       Can't use 'defined(%hash)' (Maybe you should just omit the defined()?)

           (F) "defined()" is not usually right on hashes.

           Although "defined %hash" is false on a plain not-yet-used hash, it becomes true in

           several non-obvious circumstances, including iterators, weak references, stash names,

           even remaining true after "undef %hash".  These things make "defined %hash" fairly

           useless in practice, so it now generates a fatal error.

           If a check for non-empty is what you wanted then just put it in boolean context (see

           "Scalar values" in perldata):

               if (%hash) { Page 28/146



                  # not empty

               }

           If you had "defined %Foo::Bar::QUUX" to check whether such a package variable exists

           then that's never really been reliable, and isn't a good way to enquire about the

           features of a package, or whether it's loaded, etc.

       Can't use %s for loop variable

           (P) The parser got confused when trying to parse a "foreach" loop.

       Can't use global %s in %s

           (F) You tried to declare a magical variable as a lexical variable.  This is not

           allowed, because the magic can be tied to only one location (namely the global

           variable) and it would be incredibly confusing to have variables in your program that

           looked like magical variables but weren't.

       Can't use '%c' in a group with different byte-order in %s

           (F) You attempted to force a different byte-order on a type that is already inside a

           group with a byte-order modifier.  For example you cannot force little-endianness on a

           type that is inside a big-endian group.

       Can't use "my %s" in sort comparison

           (F) The global variables $a and $b are reserved for sort comparisons.  You mentioned

           $a or $b in the same line as the <=> or cmp operator, and the variable had earlier

           been declared as a lexical variable.  Either qualify the sort variable with the

           package name, or rename the lexical variable.

       Can't use %s ref as %s ref

           (F) You've mixed up your reference types.  You have to dereference a reference of the

           type needed.  You can use the ref() function to test the type of the reference, if

           need be.

       Can't use string ("%s") as %s ref while "strict refs" in use

       Can't use string ("%s"...) as %s ref while "strict refs" in use

           (F) You've told Perl to dereference a string, something which "use strict" blocks to

           prevent it happening accidentally.  See "Symbolic references" in perlref.  This can be

           triggered by an "@" or "$" in a double-quoted string immediately before interpolating

           a variable, for example in "user @$twitter_id", which says to treat the contents of

           $twitter_id as an array reference; use a "\" to have a literal "@" symbol followed by

           the contents of $twitter_id: "user \@$twitter_id". Page 29/146



       Can't use subscript on %s

           (F) The compiler tried to interpret a bracketed expression as a subscript.  But to the

           left of the brackets was an expression that didn't look like a hash or array

           reference, or anything else subscriptable.

       Can't use \%c to mean $%c in expression

           (W syntax) In an ordinary expression, backslash is a unary operator that creates a

           reference to its argument.  The use of backslash to indicate a backreference to a

           matched substring is valid only as part of a regular expression pattern.  Trying to do

           this in ordinary Perl code produces a value that prints out looking like

           SCALAR(0xdecaf).  Use the $1 form instead.

       Can't weaken a nonreference

           (F) You attempted to weaken something that was not a reference.  Only references can

           be weakened.

       Can't "when" outside a topicalizer

           (F) You have used a when() block that is neither inside a "foreach" loop nor a "given"

           block.  (Note that this error is issued on exit from the "when" block, so you won't

           get the error if the match fails, or if you use an explicit "continue".)

       Can't x= to read-only value

           (F) You tried to repeat a constant value (often the undefined value) with an

           assignment operator, which implies modifying the value itself.  Perhaps you need to

           copy the value to a temporary, and repeat that.

       Character following "\c" must be printable ASCII

           (F) In "\cX", X must be a printable (non-control) ASCII character.

           Note that ASCII characters that don't map to control characters are discouraged, and

           will generate the warning (when enabled) ""\c%c" is more clearly written simply as

           "%s"".

       Character following \%c must be '{' or a single-character Unicode property name in regex;

       marked by <-- HERE in m/%s/

           (F) (In the above the %c is replaced by either "p" or "P".)  You specified something

           that isn't a legal Unicode property name.  Most Unicode properties are specified by

           "\p{...}".  But if the name is a single character one, the braces may be omitted.

       Character in 'C' format wrapped in pack

           (W pack) You said Page 30/146



               pack("C", $x)

           where $x is either less than 0 or more than 255; the "C" format is only for encoding

           native operating system characters (ASCII, EBCDIC, and so on) and not for Unicode

           characters, so Perl behaved as if you meant

               pack("C", $x & 255)

           If you actually want to pack Unicode codepoints, use the "U" format instead.

       Character in 'c' format wrapped in pack

           (W pack) You said

               pack("c", $x)

           where $x is either less than -128 or more than 127; the "c" format is only for

           encoding native operating system characters (ASCII, EBCDIC, and so on) and not for

           Unicode characters, so Perl behaved as if you meant

               pack("c", $x & 255);

           If you actually want to pack Unicode codepoints, use the "U" format instead.

       Character in '%c' format wrapped in unpack

           (W unpack) You tried something like

              unpack("H", "\x{2a1}")

           where the format expects to process a byte (a character with a value below 256), but a

           higher value was provided instead.  Perl uses the value modulus 256 instead, as if you

           had provided:

              unpack("H", "\x{a1}")

       Character in 'W' format wrapped in pack

           (W pack) You said

               pack("U0W", $x)

           where $x is either less than 0 or more than 255.  However, "U0"-mode expects all

           values to fall in the interval [0, 255], so Perl behaved as if you meant:

               pack("U0W", $x & 255)

       Character(s) in '%c' format wrapped in pack

           (W pack) You tried something like

              pack("u", "\x{1f3}b")

           where the format expects to process a sequence of bytes (character with a value below

           256), but some of the characters had a higher value.  Perl uses the character values

           modulus 256 instead, as if you had provided: Page 31/146



              pack("u", "\x{f3}b")

       Character(s) in '%c' format wrapped in unpack

           (W unpack) You tried something like

              unpack("s", "\x{1f3}b")

           where the format expects to process a sequence of bytes (character with a value below

           256), but some of the characters had a higher value.  Perl uses the character values

           modulus 256 instead, as if you had provided:

              unpack("s", "\x{f3}b")

       charnames alias definitions may not contain a sequence of multiple spaces; marked by

       <--?HERE in %s

           (F) You defined a character name which had multiple space characters in a row.  Change

           them to single spaces.  Usually these names are defined in the ":alias" import

           argument to "use charnames", but they could be defined by a translator installed into

           $^H{charnames}.  See "CUSTOM ALIASES" in charnames.

       chdir() on unopened filehandle %s

           (W unopened) You tried chdir() on a filehandle that was never opened.

       "\c%c" is more clearly written simply as "%s"

           (W syntax) The "\cX" construct is intended to be a way to specify non-printable

           characters.  You used it for a printable one, which is better written as simply

           itself, perhaps preceded by a backslash for non-word characters.  Doing it the way you

           did is not portable between ASCII and EBCDIC platforms.

       Cloning substitution context is unimplemented

           (F) Creating a new thread inside the "s///" operator is not supported.

       closedir() attempted on invalid dirhandle %s

           (W io) The dirhandle you tried to close is either closed or not really a dirhandle.

           Check your control flow.

       close() on unopened filehandle %s

           (W unopened) You tried to close a filehandle that was never opened.

       Closure prototype called

           (F) If a closure has attributes, the subroutine passed to an attribute handler is the

           prototype that is cloned when a new closure is created.  This subroutine cannot be

           called.

       \C no longer supported in regex; marked by <--?HERE in m/%s/ Page 32/146



           (F) The \C character class used to allow a match of single byte within a multi-byte

           utf-8 character, but was removed in v5.24 as it broke encapsulation and its

           implementation was extremely buggy.  If you really need to process the individual

           bytes, you probably want to convert your string to one where each underlying byte is

           stored as a character, with utf8::encode().

       Code missing after '/'

           (F) You had a (sub-)template that ends with a '/'.  There must be another template

           code following the slash.  See "pack" in perlfunc.

       Code point 0x%X is not Unicode, and not portable

           (S non_unicode portable) You had a code point that has never been in any standard, so

           it is likely that languages other than Perl will NOT understand it.  This code point

           also will not fit in a 32-bit word on ASCII platforms and therefore is non-portable

           between systems.

           At one time, it was legal in some standards to have code points up to 0x7FFF_FFFF, but

           not higher, and this code point is higher.

           Acceptance of these code points is a Perl extension, and you should expect that

           nothing other than Perl can handle them; Perl itself on EBCDIC platforms before v5.24

           does not handle them.

           Perl also makes no guarantees that the representation of these code points won't

           change at some point in the future, say when machines become available that have

           larger than a 64-bit word.  At that time, files containing any of these, written by an

           older Perl might require conversion before being readable by a newer Perl.

       Code point 0x%X is not Unicode, may not be portable

           (S non_unicode) You had a code point above the Unicode maximum of U+10FFFF.

           Perl allows strings to contain a superset of Unicode code points, but these may not be

           accepted by other languages/systems.  Further, even if these languages/systems accept

           these large code points, they may have chosen a different representation for them than

           the UTF-8-like one that Perl has, which would mean files are not exchangeable between

           them and Perl.

           On EBCDIC platforms, code points above 0x3FFF_FFFF have a different representation in

           Perl v5.24 than before, so any file containing these that was written before that

           version will require conversion before being readable by a later Perl.

       %s: Command not found Page 33/146



           (A) You've accidentally run your script through csh or another shell instead of Perl.

           Check the #! line, or manually feed your script into Perl yourself.  The #! line at

           the top of your file could look like

             #!/usr/bin/perl

       %s: command not found

           (A) You've accidentally run your script through bash or another shell instead of Perl.

           Check the #! line, or manually feed your script into Perl yourself.  The #! line at

           the top of your file could look like

             #!/usr/bin/perl

       %s: command not found: %s

           (A) You've accidentally run your script through zsh or another shell instead of Perl.

           Check the #! line, or manually feed your script into Perl yourself.  The #! line at

           the top of your file could look like

             #!/usr/bin/perl

       Compilation failed in require

           (F) Perl could not compile a file specified in a "require" statement.  Perl uses this

           generic message when none of the errors that it encountered were severe enough to halt

           compilation immediately.

       Complex regular subexpression recursion limit (%d) exceeded

           (W regexp) The regular expression engine uses recursion in complex situations where

           back-tracking is required.  Recursion depth is limited to 32766, or perhaps less in

           architectures where the stack cannot grow arbitrarily.  ("Simple" and "medium"

           situations are handled without recursion and are not subject to a limit.)  Try

           shortening the string under examination; looping in Perl code (e.g. with "while")

           rather than in the regular expression engine; or rewriting the regular expression so

           that it is simpler or backtracks less.  (See perlfaq2 for information on Mastering

           Regular Expressions.)

       connect() on closed socket %s

           (W closed) You tried to do a connect on a closed socket.  Did you forget to check the

           return value of your socket() call?  See "connect" in perlfunc.

       Constant(%s): Call to &{$^H{%s}} did not return a defined value

           (F) The subroutine registered to handle constant overloading (see overload) or a

           custom charnames handler (see "CUSTOM TRANSLATORS" in charnames) returned an undefined Page 34/146



           value.

       Constant(%s): $^H{%s} is not defined

           (F) The parser found inconsistencies while attempting to define an overloaded

           constant.  Perhaps you forgot to load the corresponding overload pragma?

       Constant is not %s reference

           (F) A constant value (perhaps declared using the "use constant" pragma) is being

           dereferenced, but it amounts to the wrong type of reference.  The message indicates

           the type of reference that was expected.  This usually indicates a syntax error in

           dereferencing the constant value.  See "Constant Functions" in perlsub and constant.

       Constants from lexical variables potentially modified elsewhere are no longer permitted

           (F) You wrote something like

               my $var;

               $sub = sub () { $var };

           but $var is referenced elsewhere and could be modified after the "sub" expression is

           evaluated.  Either it is explicitly modified elsewhere ("$var = 3") or it is passed to

           a subroutine or to an operator like "printf" or "map", which may or may not modify the

           variable.

           Traditionally, Perl has captured the value of the variable at that point and turned

           the subroutine into a constant eligible for inlining.  In those cases where the

           variable can be modified elsewhere, this breaks the behavior of closures, in which the

           subroutine captures the variable itself, rather than its value, so future changes to

           the variable are reflected in the subroutine's return value.

           This usage was deprecated, and as of Perl 5.32 is no longer allowed, making it

           possible to change the behavior in the future.

           If you intended for the subroutine to be eligible for inlining, then make sure the

           variable is not referenced elsewhere, possibly by copying it:

               my $var2 = $var;

               $sub = sub () { $var2 };

           If you do want this subroutine to be a closure that reflects future changes to the

           variable that it closes over, add an explicit "return":

               my $var;

               $sub = sub () { return $var };

       Constant subroutine %s redefined Page 35/146



           (W redefine)(S) You redefined a subroutine which had previously been eligible for

           inlining.  See "Constant Functions" in perlsub for commentary and workarounds.

       Constant subroutine %s undefined

           (W misc) You undefined a subroutine which had previously been eligible for inlining.

           See "Constant Functions" in perlsub for commentary and workarounds.

       Constant(%s) unknown

           (F) The parser found inconsistencies either while attempting to define an overloaded

           constant, or when trying to find the character name specified in the "\N{...}" escape.

           Perhaps you forgot to load the corresponding overload pragma?

       :const is experimental

           (S experimental::const_attr) The "const" attribute is experimental.  If you want to

           use the feature, disable the warning with "no warnings 'experimental::const_attr'",

           but know that in doing so you are taking the risk that your code may break in a future

           Perl version.

       :const is not permitted on named subroutines

           (F) The "const" attribute causes an anonymous subroutine to be run and its value

           captured at the time that it is cloned.  Named subroutines are not cloned like this,

           so the attribute does not make sense on them.

       Copy method did not return a reference

           (F) The method which overloads "=" is buggy.  See "Copy Constructor" in overload.

       &CORE::%s cannot be called directly

           (F) You tried to call a subroutine in the "CORE::" namespace with &foo syntax or

           through a reference.  Some subroutines in this package cannot yet be called that way,

           but must be called as barewords.  Something like this will work:

               BEGIN { *shove = \&CORE::push; }

               shove @array, 1,2,3; # pushes on to @array

       CORE::%s is not a keyword

           (F) The CORE:: namespace is reserved for Perl keywords.

       Corrupted regexp opcode %d > %d

           (P) This is either an error in Perl, or, if you're using one, your custom regular

           expression engine.  If not the latter, report the problem to

           <https://github.com/Perl/perl5/issues>.

       corrupted regexp pointers Page 36/146



           (P) The regular expression engine got confused by what the regular expression compiler

           gave it.

       corrupted regexp program

           (P) The regular expression engine got passed a regexp program without a valid magic

           number.

       Corrupt malloc ptr 0x%x at 0x%x

           (P) The malloc package that comes with Perl had an internal failure.

       Count after length/code in unpack

           (F) You had an unpack template indicating a counted-length string, but you have also

           specified an explicit size for the string.  See "pack" in perlfunc.

       Declaring references is experimental

           (S experimental::declared_refs) This warning is emitted if you use a reference

           constructor on the right-hand side of "my", "state", "our", or "local".  Simply

           suppress the warning if you want to use the feature, but know that in doing so you are

           taking the risk of using an experimental feature which may change or be removed in a

           future Perl version:

               no warnings "experimental::declared_refs";

               use feature "declared_refs";

               $fooref = my \$foo;

       Deep recursion on anonymous subroutine

       Deep recursion on subroutine "%s"

           (W recursion) This subroutine has called itself (directly or indirectly) 100 times

           more than it has returned.  This probably indicates an infinite recursion, unless

           you're writing strange benchmark programs, in which case it indicates something else.

           This threshold can be changed from 100, by recompiling the perl binary, setting the C

           pre-processor macro "PERL_SUB_DEPTH_WARN" to the desired value.

       (?(DEFINE)....) does not allow branches in regex; marked by <--?HERE in m/%s/

           (F) You used something like "(?(DEFINE)...|..)" which is illegal.  The most likely

           cause of this error is that you left out a parenthesis inside of the "...." part.

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

       %s defines neither package nor VERSION--version check failed

           (F) You said something like "use Module 42" but in the Module file there are neither

           package declarations nor a $VERSION. Page 37/146



       delete argument is not a HASH or ARRAY element or slice

           (F) The argument to "delete" must be either a hash or array element, such as:

               $foo{$bar}

               $ref->{"susie"}[12]

           or a hash or array slice, such as:

               @foo[$bar, $baz, $xyzzy]

               $ref->[12]->@{"susie", "queue"}

           or a hash key/value or array index/value slice, such as:

               %foo[$bar, $baz, $xyzzy]

               $ref->[12]->%{"susie", "queue"}

       Delimiter for here document is too long

           (F) In a here document construct like "<<FOO", the label "FOO" is too long for Perl to

           handle.  You have to be seriously twisted to write code that triggers this error.

       Deprecated use of my() in false conditional. This will be a fatal error in Perl 5.30

           (D deprecated) You used a declaration similar to "my $x if 0".  There has been a long-

           standing bug in Perl that causes a lexical variable not to be cleared at scope exit

           when its declaration includes a false conditional.  Some people have exploited this

           bug to achieve a kind of static variable.  Since we intend to fix this bug, we don't

           want people relying on this behavior.  You can achieve a similar static effect by

           declaring the variable in a separate block outside the function, eg

               sub f { my $x if 0; return $x++ }

           becomes

               { my $x; sub f { return $x++ } }

           Beginning with perl 5.10.0, you can also use "state" variables to have lexicals that

           are initialized only once (see feature):

               sub f { state $x; return $x++ }

           This use of "my()" in a false conditional has been deprecated since Perl 5.10, and it

           will become a fatal error in Perl 5.30.

       DESTROY created new reference to dead object '%s'

           (F) A DESTROY() method created a new reference to the object which is just being

           DESTROYed.  Perl is confused, and prefers to abort rather than to create a dangling

           reference.

       Did not produce a valid header Page 38/146



           See "500 Server error".

       %s did not return a true value

           (F) A required (or used) file must return a true value to indicate that it compiled

           correctly and ran its initialization code correctly.  It's traditional to end such a

           file with a "1;", though any true value would do.  See "require" in perlfunc.

       (Did you mean &%s instead?)

           (W misc) You probably referred to an imported subroutine &FOO as $FOO or some such.

       (Did you mean "local" instead of "our"?)

           (W shadow) Remember that "our" does not localize the declared global variable.  You

           have declared it again in the same lexical scope, which seems superfluous.

       (Did you mean $ or @ instead of %?)

           (W) You probably said %hash{$key} when you meant $hash{$key} or @hash{@keys}.  On the

           other hand, maybe you just meant %hash and got carried away.

       Died

           (F) You passed die() an empty string (the equivalent of "die """) or you called it

           with no args and $@ was empty.

       Document contains no data

           See "500 Server error".

       %s does not define %s::VERSION--version check failed

           (F) You said something like "use Module 42" but the Module did not define a $VERSION.

       '/' does not take a repeat count

           (F) You cannot put a repeat count of any kind right after the '/' code.  See "pack" in

           perlfunc.

       do "%s" failed, '.' is no longer in @INC; did you mean do "./%s"?

           (D deprecated) Previously " do "somefile"; " would search the current directory for

           the specified file.  Since perl v5.26.0, . has been removed from @INC by default, so

           this is no longer true.  To search the current directory (and only the current

           directory) you can write " do "./somefile"; ".

       Don't know how to get file name

           (P) "PerlIO_getname", a perl internal I/O function specific to VMS, was somehow called

           on another platform.  This should not happen.

       Don't know how to handle magic of type \%o

           (P) The internal handling of magical variables has been cursed. Page 39/146



       do_study: out of memory

           (P) This should have been caught by safemalloc() instead.

       (Do you need to predeclare %s?)

           (S syntax) This is an educated guess made in conjunction with the message "%s found

           where operator expected".  It often means a subroutine or module name is being

           referenced that hasn't been declared yet.  This may be because of ordering problems in

           your file, or because of a missing "sub", "package", "require", or "use" statement.

           If you're referencing something that isn't defined yet, you don't actually have to

           define the subroutine or package before the current location.  You can use an empty

           "sub foo;" or "package FOO;" to enter a "forward" declaration.

       dump() must be written as CORE::dump() as of Perl 5.30

           (F) You used the obsolete "dump()" built-in function.  That was deprecated in Perl

           5.8.0.  As of Perl 5.30 it must be written in fully qualified format: "CORE::dump()".

           See "dump" in perlfunc.

       dump is not supported

           (F) Your machine doesn't support dump/undump.

       Duplicate free() ignored

           (S malloc) An internal routine called free() on something that had already been freed.

       Duplicate modifier '%c' after '%c' in %s

           (W unpack) You have applied the same modifier more than once after a type in a pack

           template.  See "pack" in perlfunc.

       elseif should be elsif

           (S syntax) There is no keyword "elseif" in Perl because Larry thinks it's ugly.  Your

           code will be interpreted as an attempt to call a method named "elseif" for the class

           returned by the following block.  This is unlikely to be what you want.

       Empty \%c in regex; marked by <--?HERE in m/%s/

       Empty \%c{}

       Empty \%c{} in regex; marked by <--?HERE in m/%s/

           (F) You used something like "\b{}", "\B{}", "\o{}", "\p", "\P", or "\x" without

           specifying anything for it to operate on.

           Unfortunately, for backwards compatibility reasons, an empty "\x" is legal outside

           "use?re?'strict'" and expands to a NUL character.

       Empty (?) without any modifiers in regex; marked by <-- HERE in m/%s/ Page 40/146



           (W regexp) (only under "use?re?'strict'") "(?)" does nothing, so perhaps this is a

           typo.

       ${^ENCODING} is no longer supported

           (F) The special variable "${^ENCODING}", formerly used to implement the "encoding"

           pragma, is no longer supported as of Perl 5.26.0.

           Setting it to anything other than "undef" is a fatal error as of Perl 5.28.

       entering effective %s failed

           (F) While under the "use filetest" pragma, switching the real and effective uids or

           gids failed.

       %ENV is aliased to %s

           (F) You're running under taint mode, and the %ENV variable has been aliased to another

           hash, so it doesn't reflect anymore the state of the program's environment.  This is

           potentially insecure.

       Error converting file specification %s

           (F) An error peculiar to VMS.  Because Perl may have to deal with file specifications

           in either VMS or Unix syntax, it converts them to a single form when it must operate

           on them directly.  Either you've passed an invalid file specification to Perl, or

           you've found a case the conversion routines don't handle.  Drat.

       Error %s in expansion of %s

           (F) An error was encountered in handling a user-defined property ("User-Defined

           Character Properties" in perlunicode).  These are programmer written subroutines,

           hence subject to errors that may prevent them from compiling or running.  The calls to

           these subs are "eval"'d, and if there is a failure, this message is raised, using the

           contents of $@ from the failed "eval".

           Another possibility is that tainted data was encountered somewhere in the chain of

           expanding the property.  If so, the message wording will indicate that this is the

           problem.  See "Insecure user-defined property %s".

       Eval-group in insecure regular expression

           (F) Perl detected tainted data when trying to compile a regular expression that

           contains the "(?{ ... })" zero-width assertion, which is unsafe.  See "(?{ code })" in

           perlre, and perlsec.

       Eval-group not allowed at runtime, use re 'eval' in regex m/%s/

           (F) Perl tried to compile a regular expression containing the "(?{ ... })" zero-width Page 41/146



           assertion at run time, as it would when the pattern contains interpolated values.

           Since that is a security risk, it is not allowed.  If you insist, you may still do

           this by using the "re 'eval'" pragma or by explicitly building the pattern from an

           interpolated string at run time and using that in an eval().  See "(?{ code })" in

           perlre.

       Eval-group not allowed, use re 'eval' in regex m/%s/

           (F) A regular expression contained the "(?{ ... })" zero-width assertion, but that

           construct is only allowed when the "use re 'eval'" pragma is in effect.  See "(?{ code

           })" in perlre.

       EVAL without pos change exceeded limit in regex; marked by <--?HERE in m/%s/

           (F) You used a pattern that nested too many EVAL calls without consuming any text.

           Restructure the pattern so that text is consumed.

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

       Excessively long <> operator

           (F) The contents of a <> operator may not exceed the maximum size of a Perl

           identifier.  If you're just trying to glob a long list of filenames, try using the

           glob() operator, or put the filenames into a variable and glob that.

       exec? I'm not *that* kind of operating system

           (F) The "exec" function is not implemented on some systems, e.g.  Catamount. See

           perlport.

       %sExecution of %s aborted due to compilation errors.

           (F) The final summary message when a Perl compilation fails.

       exists argument is not a HASH or ARRAY element or a subroutine

           (F) The argument to "exists" must be a hash or array element or a subroutine with an

           ampersand, such as:

               $foo{$bar}

               $ref->{"susie"}[12]

               &do_something

       exists argument is not a subroutine name

           (F) The argument to "exists" for "exists &sub" must be a subroutine name, and not a

           subroutine call.  "exists &sub()" will generate this error.

       Exiting eval via %s

           (W exiting) You are exiting an eval by unconventional means, such as a goto, or a loop Page 42/146



           control statement.

       Exiting format via %s

           (W exiting) You are exiting a format by unconventional means, such as a goto, or a

           loop control statement.

       Exiting pseudo-block via %s

           (W exiting) You are exiting a rather special block construct (like a sort block or

           subroutine) by unconventional means, such as a goto, or a loop control statement.  See

           "sort" in perlfunc.

       Exiting subroutine via %s

           (W exiting) You are exiting a subroutine by unconventional means, such as a goto, or a

           loop control statement.

       Exiting substitution via %s

           (W exiting) You are exiting a substitution by unconventional means, such as a return,

           a goto, or a loop control statement.

       Expecting close bracket in regex; marked by <--?HERE in m/%s/

           (F) You wrote something like

            (?13

           to denote a capturing group of the form "(?PARNO)", but omitted the ")".

       Expecting interpolated extended charclass in regex; marked by <-- HERE in m/%s/

           (F) It looked like you were attempting to interpolate an already-compiled extended

           character class, like so:

            my $thai_or_lao = qr/(?[ \p{Thai} + \p{Lao} ])/;

            ...

            qr/(?[ \p{Digit} & $thai_or_lao ])/;

           But the marked code isn't syntactically correct to be such an interpolated class.

       Experimental aliasing via reference not enabled

           (F) To do aliasing via references, you must first enable the feature:

               no warnings "experimental::refaliasing";

               use feature "refaliasing";

               \$x = \$y;

       Experimental %s on scalar is now forbidden

           (F) An experimental feature added in Perl 5.14 allowed "each", "keys", "push", "pop",

           "shift", "splice", "unshift", and "values" to be called with a scalar argument.  This Page 43/146



           experiment is considered unsuccessful, and has been removed.  The "postderef" feature

           may meet your needs better.

       Experimental subroutine signatures not enabled

           (F) To use subroutine signatures, you must first enable them:

               no warnings "experimental::signatures";

               use feature "signatures";

               sub foo ($left, $right) { ... }

       Explicit blessing to '' (assuming package main)

           (W misc) You are blessing a reference to a zero length string.  This has the effect of

           blessing the reference into the package main.  This is usually not what you want.

           Consider providing a default target package, e.g. bless($ref, $p || 'MyPackage');

       %s: Expression syntax

           (A) You've accidentally run your script through csh instead of Perl.  Check the #!

           line, or manually feed your script into Perl yourself.

       %s failed--call queue aborted

           (F) An untrapped exception was raised while executing a UNITCHECK, CHECK, INIT, or END

           subroutine.  Processing of the remainder of the queue of such routines has been

           prematurely ended.

       Failed to close in-place work file %s: %s

           (F) Closing an output file from in-place editing, as with the "-i" command-line

           switch, failed.

       False [] range "%s" in regex; marked by <--?HERE in m/%s/

           (W regexp)(F) A character class range must start and end at a literal character, not

           another character class like "\d" or "[:alpha:]".  The "-" in your false range is

           interpreted as a literal "-".  In a "(?[...])"  construct, this is an error, rather

           than a warning.  Consider quoting the "-", "\-".  The <--?HERE shows whereabouts in

           the regular expression the problem was discovered.  See perlre.

       Fatal VMS error (status=%d) at %s, line %d

           (P) An error peculiar to VMS.  Something untoward happened in a VMS system service or

           RTL routine; Perl's exit status should provide more details.  The filename in "at %s"

           and the line number in "line %d" tell you which section of the Perl source code is

           distressed.

       fcntl is not implemented Page 44/146



           (F) Your machine apparently doesn't implement fcntl().  What is this, a PDP-11 or

           something?

       FETCHSIZE returned a negative value

           (F) A tied array claimed to have a negative number of elements, which is not possible.

       Field too wide in 'u' format in pack

           (W pack) Each line in an uuencoded string starts with a length indicator which can't

           encode values above 63.  So there is no point in asking for a line length bigger than

           that.  Perl will behave as if you specified "u63" as the format.

       File::Glob::glob() will disappear in perl 5.30. Use File::Glob::bsd_glob() instead.

           (D deprecated) "File::Glob" has a function called "glob", which just calls "bsd_glob".

           However, its prototype is different from the prototype of "CORE::glob", and hence,

           "File::Glob::glob" should not be used.

           "File::Glob::glob()" was deprecated in perl 5.8.0. A deprecation message was issued

           from perl 5.26.0 onwards, and the function will disappear in perl 5.30.0.

           Code using "File::Glob::glob()" should call "File::Glob::bsd_glob()" instead.

       Filehandle %s opened only for input

           (W io) You tried to write on a read-only filehandle.  If you intended it to be a read-

           write filehandle, you needed to open it with "+<" or "+>" or "+>>" instead of with "<"

           or nothing.  If you intended only to write the file, use ">" or ">>".  See "open" in

           perlfunc.

       Filehandle %s opened only for output

           (W io) You tried to read from a filehandle opened only for writing, If you intended it

           to be a read/write filehandle, you needed to open it with "+<" or "+>" or "+>>"

           instead of with ">".  If you intended only to read from the file, use "<".  See "open"

           in perlfunc.  Another possibility is that you attempted to open filedescriptor 0 (also

           known as STDIN) for output (maybe you closed STDIN earlier?).

       Filehandle %s reopened as %s only for input

           (W io) You opened for reading a filehandle that got the same filehandle id as STDOUT

           or STDERR.  This occurred because you closed STDOUT or STDERR previously.

       Filehandle STDIN reopened as %s only for output

           (W io) You opened for writing a filehandle that got the same filehandle id as STDIN.

           This occurred because you closed STDIN previously.

       Final $ should be \$ or $name Page 45/146



           (F) You must now decide whether the final $ in a string was meant to be a literal

           dollar sign, or was meant to introduce a variable name that happens to be missing.  So

           you have to put either the backslash or the name.

       flock() on closed filehandle %s

           (W closed) The filehandle you're attempting to flock() got itself closed some time

           before now.  Check your control flow.  flock() operates on filehandles.  Are you

           attempting to call flock() on a dirhandle by the same name?

       Format not terminated

           (F) A format must be terminated by a line with a solitary dot.  Perl got to the end of

           your file without finding such a line.

       Format %s redefined

           (W redefine) You redefined a format.  To suppress this warning, say

               {

                   no warnings 'redefine';

                   eval "format NAME =...";

               }

       Found = in conditional, should be ==

           (W syntax) You said

               if ($foo = 123)

           when you meant

               if ($foo == 123)

           (or something like that).

       %s found where operator expected

           (S syntax) The Perl lexer knows whether to expect a term or an operator.  If it sees

           what it knows to be a term when it was expecting to see an operator, it gives you this

           warning.  Usually it indicates that an operator or delimiter was omitted, such as a

           semicolon.

       gdbm store returned %d, errno %d, key "%s"

           (S) A warning from the GDBM_File extension that a store failed.

       gethostent not implemented

           (F) Your C library apparently doesn't implement gethostent(), probably because if it

           did, it'd feel morally obligated to return every hostname on the Internet.

       get%sname() on closed socket %s Page 46/146



           (W closed) You tried to get a socket or peer socket name on a closed socket.  Did you

           forget to check the return value of your socket() call?

       getpwnam returned invalid UIC %#o for user "%s"

           (S) A warning peculiar to VMS.  The call to "sys$getuai" underlying the "getpwnam"

           operator returned an invalid UIC.

       getsockopt() on closed socket %s

           (W closed) You tried to get a socket option on a closed socket.  Did you forget to

           check the return value of your socket() call?  See "getsockopt" in perlfunc.

       given is experimental

           (S experimental::smartmatch) "given" depends on smartmatch, which is experimental, so

           its behavior may change or even be removed in any future release of perl.  See the

           explanation under "Experimental Details on given and when" in perlsyn.

       Global symbol "%s" requires explicit package name (did you forget to declare "my %s"?)

           (F) You've said "use strict" or "use strict vars", which indicates that all variables

           must either be lexically scoped (using "my" or "state"), declared beforehand using

           "our", or explicitly qualified to say which package the global variable is in (using

           "::").

       glob failed (%s)

           (S glob) Something went wrong with the external program(s) used for "glob" and

           "<*.c>".  Usually, this means that you supplied a "glob" pattern that caused the

           external program to fail and exit with a nonzero status.  If the message indicates

           that the abnormal exit resulted in a coredump, this may also mean that your csh (C

           shell) is broken.  If so, you should change all of the csh-related variables in

           config.sh:  If you have tcsh, make the variables refer to it as if it were csh (e.g.

           "full_csh='/usr/bin/tcsh'"); otherwise, make them all empty (except that "d_csh"

           should be 'undef') so that Perl will think csh is missing.  In either case, after

           editing config.sh, run "./Configure -S" and rebuild Perl.

       Glob not terminated

           (F) The lexer saw a left angle bracket in a place where it was expecting a term, so

           it's looking for the corresponding right angle bracket, and not finding it.  Chances

           are you left some needed parentheses out earlier in the line, and you really meant a

           "less than".

       gmtime(%f) failed Page 47/146



           (W overflow) You called "gmtime" with a number that it could not handle: too large,

           too small, or NaN.  The returned value is "undef".

       gmtime(%f) too large

           (W overflow) You called "gmtime" with a number that was larger than it can reliably

           handle and "gmtime" probably returned the wrong date.  This warning is also triggered

           with NaN (the special not-a-number value).

       gmtime(%f) too small

           (W overflow) You called "gmtime" with a number that was smaller than it can reliably

           handle and "gmtime" probably returned the wrong date.

       Got an error from DosAllocMem

           (P) An error peculiar to OS/2.  Most probably you're using an obsolete version of

           Perl, and this should not happen anyway.

       goto must have label

           (F) Unlike with "next" or "last", you're not allowed to goto an unspecified

           destination.  See "goto" in perlfunc.

       Goto undefined subroutine%s

           (F) You tried to call a subroutine with "goto &sub" syntax, but the indicated

           subroutine hasn't been defined, or if it was, it has since been undefined.

       Group name must start with a non-digit word character in regex; marked by <--?HERE in

       m/%s/

           (F) Group names must follow the rules for perl identifiers, meaning they must start

           with a non-digit word character.  A common cause of this error is using (?&0) instead

           of (?0).  See perlre.

       ()-group starts with a count

           (F) A ()-group started with a count.  A count is supposed to follow something: a

           template character or a ()-group.  See "pack" in perlfunc.

       %s had compilation errors.

           (F) The final summary message when a "perl -c" fails.

       Had to create %s unexpectedly

           (S internal) A routine asked for a symbol from a symbol table that ought to have

           existed already, but for some reason it didn't, and had to be created on an emergency

           basis to prevent a core dump.

       %s has too many errors Page 48/146



           (F) The parser has given up trying to parse the program after 10 errors.  Further

           error messages would likely be uninformative.

       Hexadecimal float: exponent overflow

           (W overflow) The hexadecimal floating point has a larger exponent than the floating

           point supports.

       Hexadecimal float: exponent underflow

           (W overflow) The hexadecimal floating point has a smaller exponent than the floating

           point supports.  With the IEEE 754 floating point, this may also mean that the

           subnormals (formerly known as denormals) are being used, which may or may not be an

           error.

       Hexadecimal float: internal error (%s)

           (F) Something went horribly bad in hexadecimal float handling.

       Hexadecimal float: mantissa overflow

           (W overflow) The hexadecimal floating point literal had more bits in the mantissa (the

           part between the 0x and the exponent, also known as the fraction or the significand)

           than the floating point supports.

       Hexadecimal float: precision loss

           (W overflow) The hexadecimal floating point had internally more digits than could be

           output.  This can be caused by unsupported long double formats, or by 64-bit integers

           not being available (needed to retrieve the digits under some configurations).

       Hexadecimal float: unsupported long double format

           (F) You have configured Perl to use long doubles but the internals of the long double

           format are unknown; therefore the hexadecimal float output is impossible.

       Hexadecimal number > 0xffffffff non-portable

           (W portable) The hexadecimal number you specified is larger than 2**32-1 (4294967295)

           and therefore non-portable between systems.  See perlport for more on portability

           concerns.

       Identifier too long

           (F) Perl limits identifiers (names for variables, functions, etc.) to about 250

           characters for simple names, and somewhat more for compound names (like $A::B).

           You've exceeded Perl's limits.  Future versions of Perl are likely to eliminate these

           arbitrary limitations.

       Ignoring zero length \N{} in character class in regex; marked by <--?HERE in m/%s/ Page 49/146



           (W regexp) Named Unicode character escapes ("\N{...}") may return a zero-length

           sequence.  When such an escape is used in a character class its behavior is not well

           defined.  Check that the correct escape has been used, and the correct charname

           handler is in scope.

       Illegal %s digit '%c' ignored

           (W digit) Here %s is one of "binary", "octal", or "hex".  You may have tried to use a

           digit other than one that is legal for the given type, such as only 0 and 1 for

           binary.  For octals, this is raised only if the illegal character is an '8' or '9'.

           For hex, 'A' - 'F' and 'a' - 'f' are legal.  Interpretation of the number stopped just

           before the offending digit or character.

       Illegal binary digit '%c'

           (F) You used a digit other than 0 or 1 in a binary number.

       Illegal character after '_' in prototype for %s : %s

           (W illegalproto) An illegal character was found in a prototype declaration.  The '_'

           in a prototype must be followed by a ';', indicating the rest of the parameters are

           optional, or one of '@' or '%', since those two will accept 0 or more final

           parameters.

       Illegal character \%o (carriage return)

           (F) Perl normally treats carriage returns in the program text as it would any other

           whitespace, which means you should never see this error when Perl was built using

           standard options.  For some reason, your version of Perl appears to have been built

           without this support.  Talk to your Perl administrator.

       Illegal character following sigil in a subroutine signature

           (F) A parameter in a subroutine signature contained an unexpected character following

           the "$", "@" or "%" sigil character.  Normally the sigil should be followed by the

           variable name or "=" etc.  Perhaps you are trying use a prototype while in the scope

           of "use feature 'signatures'"?  For example:

               sub foo ($$) {}            # legal - a prototype

               use feature 'signatures;

               sub foo ($$) {}            # illegal - was expecting a signature

               sub foo ($a, $b)

                       :prototype($$) {}  # legal

       Illegal character in prototype for %s : %s Page 50/146



           (W illegalproto) An illegal character was found in a prototype declaration.  Legal

           characters in prototypes are $, @, %, *, ;, [, ], &, \, and +.  Perhaps you were

           trying to write a subroutine signature but didn't enable that feature first ("use

           feature 'signatures'"), so your signature was instead interpreted as a bad prototype.

       Illegal declaration of anonymous subroutine

           (F) When using the "sub" keyword to construct an anonymous subroutine, you must always

           specify a block of code.  See perlsub.

       Illegal declaration of subroutine %s

           (F) A subroutine was not declared correctly.  See perlsub.

       Illegal division by zero

           (F) You tried to divide a number by 0.  Either something was wrong in your logic, or

           you need to put a conditional in to guard against meaningless input.

       Illegal modulus zero

           (F) You tried to divide a number by 0 to get the remainder.  Most numbers don't take

           to this kindly.

       Illegal number of bits in vec

           (F) The number of bits in vec() (the third argument) must be a power of two from 1 to

           32 (or 64, if your platform supports that).

       Illegal octal digit '%c'

           (F) You used an 8 or 9 in an octal number.

       Illegal operator following parameter in a subroutine signature

           (F) A parameter in a subroutine signature, was followed by something other than "="

           introducing a default, "," or ")".

               use feature 'signatures';

               sub foo ($=1) {}           # legal

               sub foo ($a = 1) {}        # legal

               sub foo ($a += 1) {}       # illegal

               sub foo ($a == 1) {}       # illegal

       Illegal pattern in regex; marked by <--?HERE in m/%s/

           (F) You wrote something like

            (?+foo)

           The "+" is valid only when followed by digits, indicating a capturing group.  See

           "(?PARNO)". Page 51/146



       Illegal suidscript

           (F) The script run under suidperl was somehow illegal.

       Illegal switch in PERL5OPT: -%c

           (X) The PERL5OPT environment variable may only be used to set the following switches:

           -[CDIMUdmtw].

       Illegal user-defined property name

           (F) You specified a Unicode-like property name in a regular expression pattern (using

           "\p{}" or "\P{}") that Perl knows isn't an official Unicode property, and was likely

           meant to be a user-defined property name, but it can't be one of those, as they must

           begin with either "In" or "Is".  Check the spelling.  See also "Can't find Unicode

           property definition "%s"".

       Ill-formed CRTL environ value "%s"

           (W internal) A warning peculiar to VMS.  Perl tried to read the CRTL's internal

           environ array, and encountered an element without the "=" delimiter used to separate

           keys from values.  The element is ignored.

       Ill-formed message in prime_env_iter: |%s|

           (W internal) A warning peculiar to VMS.  Perl tried to read a logical name or CLI

           symbol definition when preparing to iterate over %ENV, and didn't see the expected

           delimiter between key and value, so the line was ignored.

       (in cleanup) %s

           (W misc) This prefix usually indicates that a DESTROY() method raised the indicated

           exception.  Since destructors are usually called by the system at arbitrary points

           during execution, and often a vast number of times, the warning is issued only once

           for any number of failures that would otherwise result in the same message being

           repeated.

           Failure of user callbacks dispatched using the "G_KEEPERR" flag could also result in

           this warning.  See "G_KEEPERR" in perlcall.

       Incomplete expression within '(?[ ])' in regex; marked by <--?HERE in m/%s/

           (F) There was a syntax error within the "(?[ ])".  This can happen if the expression

           inside the construct was completely empty, or if there are too many or few operands

           for the number of operators.  Perl is not smart enough to give you a more precise

           indication as to what is wrong.

       Inconsistent hierarchy during C3 merge of class '%s': merging failed on parent '%s' Page 52/146



           (F) The method resolution order (MRO) of the given class is not C3-consistent, and you

           have enabled the C3 MRO for this class.  See the C3 documentation in mro for more

           information.

       Indentation on line %d of here-doc doesn't match delimiter

           (F) You have an indented here-document where one or more of its lines have whitespace

           at the beginning that does not match the closing delimiter.

           For example, line 2 below is wrong because it does not have at least 2 spaces, but

           lines 1 and 3 are fine because they have at least 2:

               if ($something) {

                 print <<~EOF;

                   Line 1

                  Line 2 not

                     Line 3

                   EOF

               }

           Note that tabs and spaces are compared strictly, meaning 1 tab will not match 8

           spaces.

       Infinite recursion in regex

           (F) You used a pattern that references itself without consuming any input text.  You

           should check the pattern to ensure that recursive patterns either consume text or

           fail.

       Infinite recursion in user-defined property

           (F) A user-defined property ("User-Defined Character Properties" in perlunicode) can

           depend on the definitions of other user-defined properties.  If the chain of

           dependencies leads back to this property, infinite recursion would occur, were it not

           for the check that raised this error.

           Restructure your property definitions to avoid this.

       Infinite recursion via empty pattern

           (F) You tried to use the empty pattern inside of a regex code block, for instance

           "/(?{ s!!! })/", which resulted in re-executing the same pattern, which is an infinite

           loop which is broken by throwing an exception.

       Initialization of state variables in list currently forbidden

           (F) "state" only permits initializing a single variable, specified without Page 53/146



           parentheses.  So "state $a = 42" and "state @a = qw(a b c)" are allowed, but not

           "state ($a) = 42" or "(state $a) = 42".  To initialize more than one "state" variable,

           initialize them one at a time.

       %%s[%s] in scalar context better written as $%s[%s]

           (W syntax) In scalar context, you've used an array index/value slice (indicated by %)

           to select a single element of an array.  Generally it's better to ask for a scalar

           value (indicated by $).  The difference is that $foo[&bar] always behaves like a

           scalar, both in the value it returns and when evaluating its argument, while

           %foo[&bar] provides a list context to its subscript, which can do weird things if

           you're expecting only one subscript.  When called in list context, it also returns the

           index (what &bar returns) in addition to the value.

       %%s{%s} in scalar context better written as $%s{%s}

           (W syntax) In scalar context, you've used a hash key/value slice (indicated by %) to

           select a single element of a hash.  Generally it's better to ask for a scalar value

           (indicated by $).  The difference is that $foo{&bar} always behaves like a scalar,

           both in the value it returns and when evaluating its argument, while @foo{&bar} and

           provides a list context to its subscript, which can do weird things if you're

           expecting only one subscript.  When called in list context, it also returns the key in

           addition to the value.

       Insecure dependency in %s

           (F) You tried to do something that the tainting mechanism didn't like.  The tainting

           mechanism is turned on when you're running setuid or setgid, or when you specify -T to

           turn it on explicitly.  The tainting mechanism labels all data that's derived directly

           or indirectly from the user, who is considered to be unworthy of your trust.  If any

           such data is used in a "dangerous" operation, you get this error.  See perlsec for

           more information.

       Insecure directory in %s

           (F) You can't use system(), exec(), or a piped open in a setuid or setgid script if

           $ENV{PATH} contains a directory that is writable by the world.  Also, the PATH must

           not contain any relative directory.  See perlsec.

       Insecure $ENV{%s} while running %s

           (F) You can't use system(), exec(), or a piped open in a setuid or setgid script if

           any of $ENV{PATH}, $ENV{IFS}, $ENV{CDPATH}, $ENV{ENV}, $ENV{BASH_ENV} or $ENV{TERM} Page 54/146



           are derived from data supplied (or potentially supplied) by the user.  The script must

           set the path to a known value, using trustworthy data.  See perlsec.

       Insecure user-defined property %s

           (F) Perl detected tainted data when trying to compile a regular expression that

           contains a call to a user-defined character property function, i.e. "\p{IsFoo}" or

           "\p{InFoo}".  See "User-Defined Character Properties" in perlunicode and perlsec.

       Integer overflow in format string for %s

           (F) The indexes and widths specified in the format string of "printf()" or "sprintf()"

           are too large.  The numbers must not overflow the size of integers for your

           architecture.

       Integer overflow in %s number

           (S overflow) The hexadecimal, octal or binary number you have specified either as a

           literal or as an argument to hex() or oct() is too big for your architecture, and has

           been converted to a floating point number.  On a 32-bit architecture the largest

           hexadecimal, octal or binary number representable without overflow is 0xFFFFFFFF,

           037777777777, or 0b11111111111111111111111111111111 respectively.  Note that Perl

           transparently promotes all numbers to a floating point representation

           internally--subject to loss of precision errors in subsequent operations.

       Integer overflow in srand

           (S overflow) The number you have passed to srand is too big to fit in your

           architecture's integer representation.  The number has been replaced with the largest

           integer supported (0xFFFFFFFF on 32-bit architectures).  This means you may be getting

           less randomness than you expect, because different random seeds above the maximum will

           return the same sequence of random numbers.

       Integer overflow in version

       Integer overflow in version %d

           (W overflow) Some portion of a version initialization is too large for the size of

           integers for your architecture.  This is not a warning because there is no rational

           reason for a version to try and use an element larger than typically 2**32.  This is

           usually caused by trying to use some odd mathematical operation as a version, like

           100/9.

       Internal disaster in regex; marked by <--?HERE in m/%s/

           (P) Something went badly wrong in the regular expression parser.  The <--?HERE shows Page 55/146



           whereabouts in the regular expression the problem was discovered.

       Internal inconsistency in tracking vforks

           (S) A warning peculiar to VMS.  Perl keeps track of the number of times you've called

           "fork" and "exec", to determine whether the current call to "exec" should affect the

           current script or a subprocess (see "exec LIST" in perlvms).  Somehow, this count has

           become scrambled, so Perl is making a guess and treating this "exec" as a request to

           terminate the Perl script and execute the specified command.

       internal %<num>p might conflict with future printf extensions

           (S internal) Perl's internal routine that handles "printf" and "sprintf" formatting

           follows a slightly different set of rules when called from C or XS code.

           Specifically, formats consisting of digits followed by "p" (e.g., "%7p") are reserved

           for future use.  If you see this message, then an XS module tried to call that routine

           with one such reserved format.

       Internal urp in regex; marked by <--?HERE in m/%s/

           (P) Something went badly awry in the regular expression parser.  The <--?HERE shows

           whereabouts in the regular expression the problem was discovered.

       %s (...) interpreted as function

           (W syntax) You've run afoul of the rule that says that any list operator followed by

           parentheses turns into a function, with all the list operators arguments found inside

           the parentheses.  See "Terms and List Operators (Leftward)" in perlop.

       In '(?...)', the '(' and '?' must be adjacent in regex; marked by <--?HERE in m/%s/

           (F) The two-character sequence "(?" in this context in a regular expression pattern

           should be an indivisible token, with nothing intervening between the "(" and the "?",

           but you separated them with whitespace.

       In '(*...)', the '(' and '*' must be adjacent in regex; marked by <--?HERE in m/%s/

           (F) The two-character sequence "(*" in this context in a regular expression pattern

           should be an indivisible token, with nothing intervening between the "(" and the "*",

           but you separated them.  Fix the pattern and retry.

       Invalid %s attribute: %s

           (F) The indicated attribute for a subroutine or variable was not recognized by Perl or

           by a user-supplied handler.  See attributes.

       Invalid %s attributes: %s

           (F) The indicated attributes for a subroutine or variable were not recognized by Perl Page 56/146



           or by a user-supplied handler.  See attributes.

       Invalid character in charnames alias definition; marked by <--?HERE in '%s

           (F) You tried to create a custom alias for a character name, with the ":alias" option

           to "use charnames" and the specified character in the indicated name isn't valid.  See

           "CUSTOM ALIASES" in charnames.

       Invalid \0 character in %s for %s: %s\0%s

           (W syscalls) Embedded \0 characters in pathnames or other system call arguments

           produce a warning as of 5.20.  The parts after the \0 were formerly ignored by system

           calls.

       Invalid character in \N{...}; marked by <--?HERE in \N{%s}

           (F) Only certain characters are valid for character names.  The indicated one isn't.

           See "CUSTOM ALIASES" in charnames.

       Invalid conversion in %s: "%s"

           (W printf) Perl does not understand the given format conversion.  See "sprintf" in

           perlfunc.

       Invalid escape in the specified encoding in regex; marked by <--?HERE in m/%s/

           (W regexp)(F) The numeric escape (for example "\xHH") of value < 256 didn't correspond

           to a single character through the conversion from the encoding specified by the

           encoding pragma.  The escape was replaced with REPLACEMENT CHARACTER (U+FFFD) instead,

           except within "(?[???])", where it is a fatal error.  The <--?HERE shows whereabouts

           in the regular expression the escape was discovered.

       Invalid hexadecimal number in \N{U+...}

       Invalid hexadecimal number in \N{U+...} in regex; marked by <--?HERE in m/%s/

           (F) The character constant represented by "..." is not a valid hexadecimal number.

           Either it is empty, or you tried to use a character other than 0 - 9 or A - F, a - f

           in a hexadecimal number.

       Invalid module name %s with -%c option: contains single ':'

           (F) The module argument to perl's -m and -M command-line options cannot contain single

           colons in the module name, but only in the arguments after "=".  In other words,

           -MFoo::Bar=:baz is ok, but -MFoo:Bar=baz is not.

       Invalid mro name: '%s'

           (F) You tried to "mro::set_mro("classname", "foo")" or "use mro 'foo'", where "foo" is

           not a valid method resolution order (MRO).  Currently, the only valid ones supported Page 57/146



           are "dfs" and "c3", unless you have loaded a module that is a MRO plugin.  See mro and

           perlmroapi.

       Invalid negative number (%s) in chr

           (W utf8) You passed a negative number to "chr".  Negative numbers are not valid

           character numbers, so it returns the Unicode replacement character (U+FFFD).

       Invalid number '%s' for -C option.

           (F) You supplied a number to the -C option that either has extra leading zeroes or

           overflows perl's unsigned integer representation.

       invalid option -D%c, use -D'' to see choices

           (S debugging) Perl was called with invalid debugger flags.  Call perl with the -D

           option with no flags to see the list of acceptable values.  See also "-Dletters" in

           perlrun.

       Invalid quantifier in {,} in regex; marked by <--?HERE in m/%s/

           (F) The pattern looks like a {min,max} quantifier, but the min or max could not be

           parsed as a valid number - either it has leading zeroes, or it represents too big a

           number to cope with.  The <--?HERE shows where in the regular expression the problem

           was discovered.  See perlre.

       Invalid [] range "%s" in regex; marked by <--?HERE in m/%s/

           (F) The range specified in a character class had a minimum character greater than the

           maximum character.  One possibility is that you forgot the "{}" from your ending

           "\x{}" - "\x" without the curly braces can go only up to "ff".  The <--?HERE shows

           whereabouts in the regular expression the problem was discovered.  See perlre.

       Invalid range "%s" in transliteration operator

           (F) The range specified in the tr/// or y/// operator had a minimum character greater

           than the maximum character.  See perlop.

       Invalid reference to group in regex; marked by <--?HERE in m/%s/

           (F) The capture group you specified can't possibly exist because the number you used

           is not within the legal range of possible values for this machine.

       Invalid separator character %s in attribute list

           (F) Something other than a colon or whitespace was seen between the elements of an

           attribute list.  If the previous attribute had a parenthesised parameter list, perhaps

           that list was terminated too soon.  See attributes.

       Invalid separator character %s in PerlIO layer specification %s Page 58/146



           (W layer) When pushing layers onto the Perl I/O system, something other than a colon

           or whitespace was seen between the elements of a layer list.  If the previous

           attribute had a parenthesised parameter list, perhaps that list was terminated too

           soon.

       Invalid strict version format (%s)

           (F) A version number did not meet the "strict" criteria for versions.  A "strict"

           version number is a positive decimal number (integer or decimal-fraction) without

           exponentiation or else a dotted-decimal v-string with a leading 'v' character and at

           least three components.  The parenthesized text indicates which criteria were not met.

           See the version module for more details on allowed version formats.

       Invalid type '%s' in %s

           (F) The given character is not a valid pack or unpack type.  See "pack" in perlfunc.

           (W) The given character is not a valid pack or unpack type but used to be silently

           ignored.

       Invalid version format (%s)

           (F) A version number did not meet the "lax" criteria for versions.  A "lax" version

           number is a positive decimal number (integer or decimal-fraction) without

           exponentiation or else a dotted-decimal v-string.  If the v-string has fewer than

           three components, it must have a leading 'v' character.  Otherwise, the leading 'v' is

           optional.  Both decimal and dotted-decimal versions may have a trailing "alpha"

           component separated by an underscore character after a fractional or dotted-decimal

           component.  The parenthesized text indicates which criteria were not met.  See the

           version module for more details on allowed version formats.

       Invalid version object

           (F) The internal structure of the version object was invalid.  Perhaps the internals

           were modified directly in some way or an arbitrary reference was blessed into the

           "version" class.

       In '(*VERB...)', the '(' and '*' must be adjacent in regex; marked by <--?HERE in m/%s/

       Inverting a character class which contains a multi-character sequence is illegal in regex;

       marked by <-- HERE in m/%s/

           (F) You wrote something like

            qr/\P{name=KATAKANA LETTER AINU P}/

            qr/[^\p{name=KATAKANA LETTER AINU P}]/ Page 59/146



           This name actually evaluates to a sequence of two Katakana characters, not just a

           single one, and it is illegal to try to take the complement of a sequence.

           (Mathematically it would mean any sequence of characters from 0 to infinity in length

           that weren't these two in a row, and that is likely not of any real use.)

           (F) The two-character sequence "(*" in this context in a regular expression pattern

           should be an indivisible token, with nothing intervening between the "(" and the "*",

           but you separated them.

       ioctl is not implemented

           (F) Your machine apparently doesn't implement ioctl(), which is pretty strange for a

           machine that supports C.

       ioctl() on unopened %s

           (W unopened) You tried ioctl() on a filehandle that was never opened.  Check your

           control flow and number of arguments.

       IO layers (like '%s') unavailable

           (F) Your Perl has not been configured to have PerlIO, and therefore you cannot use IO

           layers.  To have PerlIO, Perl must be configured with 'useperlio'.

       IO::Socket::atmark not implemented on this architecture

           (F) Your machine doesn't implement the sockatmark() functionality, neither as a system

           call nor an ioctl call (SIOCATMARK).

       '%s' is an unknown bound type in regex; marked by <--?HERE in m/%s/

           (F) You used "\b{...}" or "\B{...}" and the "..." is not known to Perl.  The current

           valid ones are given in "\b{}, \b, \B{}, \B" in perlrebackslash.

       %s is forbidden - matches null string many times in regex; marked by <--?HERE in m/%s/

           (F) The pattern you've specified might cause the regular expression to infinite loop

           so it is forbidden.  The <--?HERE shows whereabouts in the regular expression the

           problem was discovered.  See perlre.

       %s() isn't allowed on :utf8 handles

           (F) The sysread(), recv(), syswrite() and send() operators are not allowed on handles

           that have the ":utf8" layer, either explicitly, or implicitly, eg., with the

           ":encoding(UTF-16LE)" layer.

           Previously sysread() and recv() currently use only the ":utf8" flag for the stream,

           ignoring the actual layers.  Since sysread() and recv() did no UTF-8 validation they

           can end up creating invalidly encoded scalars. Page 60/146



           Similarly, syswrite() and send() used only the ":utf8" flag, otherwise ignoring any

           layers.  If the flag is set, both wrote the value UTF-8 encoded, even if the layer is

           some different encoding, such as the example above.

           Ideally, all of these operators would completely ignore the ":utf8" state, working

           only with bytes, but this would result in silently breaking existing code.

       "%s" is more clearly written simply as "%s" in regex; marked by <--?HERE in m/%s/

           (W regexp) (only under "use?re?'strict'" or within "(?[...])")

           You specified a character that has the given plainer way of writing it, and which is

           also portable to platforms running with different character sets.

       $* is no longer supported as of Perl 5.30

           (F) The special variable $*, deprecated in older perls, was removed in 5.10.0, is no

           longer supported and is a fatal error as of Perl 5.30.  In previous versions of perl

           the use of $* enabled or disabled multi-line matching within a string.

           Instead of using $* you should use the "/m" (and maybe "/s") regexp modifiers.  You

           can enable "/m" for a lexical scope (even a whole file) with "use re '/m'".  (In older

           versions: when $* was set to a true value then all regular expressions behaved as if

           they were written using "/m".)

           Use of this variable will be a fatal error in Perl 5.30.

       $# is no longer supported as of Perl 5.30

           (F) The special variable $#, deprecated in older perls, was removed as of 5.10.0, is

           no longer supported and is a fatal error as of Perl 5.30.  You should use the

           printf/sprintf functions instead.

       '%s' is not a code reference

           (W overload) The second (fourth, sixth, ...) argument of overload::constant needs to

           be a code reference.  Either an anonymous subroutine, or a reference to a subroutine.

       '%s' is not an overloadable type

           (W overload) You tried to overload a constant type the overload package is unaware of.

       isa is experimental

           (S experimental::isa) This warning is emitted if you use the ("isa") operator. This

           operator is currently experimental and its behaviour may change in future releases of

           Perl.

       -i used with no filenames on the command line, reading from STDIN

           (S inplace) The "-i" option was passed on the command line, indicating that the script Page 61/146



           is intended to edit files in place, but no files were given.  This is usually a

           mistake, since editing STDIN in place doesn't make sense, and can be confusing because

           it can make perl look like it is hanging when it is really just trying to read from

           STDIN.  You should either pass a filename to edit, or remove "-i" from the command

           line.  See perlrun for more details.

       Junk on end of regexp in regex m/%s/

           (P) The regular expression parser is confused.

       \K not permitted in lookahead/lookbehind in regex; marked by <-- HERE in m/%s/

           (F) Your regular expression used "\K" in a lookahead or lookbehind assertion, which

           currently isn't permitted.

           This may change in the future, see Support \K in lookarounds

           <https://github.com/Perl/perl5/issues/18134>.

       Label not found for "last %s"

           (F) You named a loop to break out of, but you're not currently in a loop of that name,

           not even if you count where you were called from.  See "last" in perlfunc.

       Label not found for "next %s"

           (F) You named a loop to continue, but you're not currently in a loop of that name, not

           even if you count where you were called from.  See "last" in perlfunc.

       Label not found for "redo %s"

           (F) You named a loop to restart, but you're not currently in a loop of that name, not

           even if you count where you were called from.  See "last" in perlfunc.

       leaving effective %s failed

           (F) While under the "use filetest" pragma, switching the real and effective uids or

           gids failed.

       length/code after end of string in unpack

           (F) While unpacking, the string buffer was already used up when an unpack length/code

           combination tried to obtain more data.  This results in an undefined value for the

           length.  See "pack" in perlfunc.

       length() used on %s (did you mean "scalar(%s)"?)

           (W syntax) You used length() on either an array or a hash when you probably wanted a

           count of the items.

           Array size can be obtained by doing:

               scalar(@array); Page 62/146



           The number of items in a hash can be obtained by doing:

               scalar(keys %hash);

       Lexing code attempted to stuff non-Latin-1 character into Latin-1 input

           (F) An extension is attempting to insert text into the current parse (using

           lex_stuff_pvn or similar), but tried to insert a character that couldn't be part of

           the current input.  This is an inherent pitfall of the stuffing mechanism, and one of

           the reasons to avoid it.  Where it is necessary to stuff, stuffing only plain ASCII is

           recommended.

       Lexing code internal error (%s)

           (F) Lexing code supplied by an extension violated the lexer's API in a detectable way.

       listen() on closed socket %s

           (W closed) You tried to do a listen on a closed socket.  Did you forget to check the

           return value of your socket() call?  See "listen" in perlfunc.

       List form of piped open not implemented

           (F) On some platforms, notably Windows, the three-or-more-arguments form of "open"

           does not support pipes, such as "open($pipe, '|-', @args)".  Use the two-argument

           "open($pipe, '|prog arg1 arg2...')" form instead.

       Literal vertical space in [] is illegal except under /x in regex; marked by <--?HERE in

       m/%s/

           (F) (only under "use?re?'strict'" or within "(?[...])")

           Likely you forgot the "/x" modifier or there was a typo in the pattern.  For example,

           did you really mean to match a form-feed?  If so, all the ASCII vertical space control

           characters are representable by escape sequences which won't present such a jarring

           appearance as your pattern does when displayed.

             \r    carriage return

             \f    form feed

             \n    line feed

             \cK   vertical tab

       %s: loadable library and perl binaries are mismatched (got handshake key %p, needed %p)

           (P) A dynamic loading library ".so" or ".dll" was being loaded into the process that

           was built against a different build of perl than the said library was compiled

           against.  Reinstalling the XS module will likely fix this error.

       Locale '%s' contains (at least) the following characters which have unexpected meanings: Page 63/146



       %s  The Perl program will use the expected meanings

           (W locale) You are using the named UTF-8 locale.  UTF-8 locales are expected to have

           very particular behavior, which most do.  This message arises when perl found some

           departures from the expectations, and is notifying you that the expected behavior

           overrides these differences.  In some cases the differences are caused by the locale

           definition being defective, but the most common causes of this warning are when there

           are ambiguities and conflicts in following the Standard, and the locale has chosen an

           approach that differs from Perl's.

           One of these is because that, contrary to the claims, Unicode is not completely locale

           insensitive.  Turkish and some related languages have two types of "I" characters.

           One is dotted in both upper- and lowercase, and the other is dotless in both cases.

           Unicode allows a locale to use either the Turkish rules, or the rules used in all

           other instances, where there is only one type of "I", which is dotless in the

           uppercase, and dotted in the lower.  The perl core does not (yet) handle the Turkish

           case, and this message warns you of that.  Instead, the Unicode::Casing module allows

           you to mostly implement the Turkish casing rules.

           The other common cause is for the characters

            $ + < = > ^ ` | ~

           These are problematic.  The C standard says that these should be considered

           punctuation in the C locale (and the POSIX standard defers to the C standard), and

           Unicode is generally considered a superset of the C locale.  But Unicode has added an

           extra category, "Symbol", and classifies these particular characters as being symbols.

           Most UTF-8 locales have them treated as punctuation, so that ispunct(2) returns non-

           zero for them.  But a few locales have it return 0.   Perl takes the first approach,

           not using "ispunct()" at all (see Note [5] in perlrecharclass), and this message is

           raised to notify you that you are getting Perl's approach, not the locale's.

       Locale '%s' may not work well.%s

           (W locale) You are using the named locale, which is a non-UTF-8 one, and which perl

           has determined is not fully compatible with what it can handle.  The second %s gives a

           reason.

           By far the most common reason is that the locale has characters in it that are

           represented by more than one byte.  The only such locales that Perl can handle are the

           UTF-8 locales.  Most likely the specified locale is a non-UTF-8 one for an East Asian Page 64/146



           language such as Chinese or Japanese.  If the locale is a superset of ASCII, the ASCII

           portion of it may work in Perl.

           Some essentially obsolete locales that aren't supersets of ASCII, mainly those in ISO

           646 or other 7-bit locales, such as ASMO 449, can also have problems, depending on

           what portions of the ASCII character set get changed by the locale and are also used

           by the program.  The warning message lists the determinable conflicting characters.

           Note that not all incompatibilities are found.

           If this happens to you, there's not much you can do except switch to use a different

           locale or use Encode to translate from the locale into UTF-8; if that's impracticable,

           you have been warned that some things may break.

           This message is output once each time a bad locale is switched into within the scope

           of "use?locale", or on the first possibly-affected operation if the "use?locale"

           inherits a bad one.  It is not raised for any operations from the POSIX module.

       localtime(%f) failed

           (W overflow) You called "localtime" with a number that it could not handle: too large,

           too small, or NaN.  The returned value is "undef".

       localtime(%f) too large

           (W overflow) You called "localtime" with a number that was larger than it can reliably

           handle and "localtime" probably returned the wrong date.  This warning is also

           triggered with NaN (the special not-a-number value).

       localtime(%f) too small

           (W overflow) You called "localtime" with a number that was smaller than it can

           reliably handle and "localtime" probably returned the wrong date.

       Lookbehind longer than %d not implemented in regex m/%s/

           (F) There is currently a limit on the length of string which lookbehind can handle.

           This restriction may be eased in a future release.

       Lost precision when %s %f by 1

           (W imprecision) You attempted to increment or decrement a value by one, but the result

           is too large for the underlying floating point representation to store accurately.

           Hence, the target of "++" or "--" is increased or decreased by quite different value

           than one, such as zero (i.e. the target is unchanged) or two, due to rounding.  Perl

           issues this warning because it has already switched from integers to floating point

           when values are too large for integers, and now even floating point is insufficient. Page 65/146



           You may wish to switch to using Math::BigInt explicitly.

       lstat() on filehandle%s

           (W io) You tried to do an lstat on a filehandle.  What did you mean by that?  lstat()

           makes sense only on filenames.  (Perl did a fstat() instead on the filehandle.)

       lvalue attribute %s already-defined subroutine

           (W misc) Although attributes.pm allows this, turning the lvalue attribute on or off on

           a Perl subroutine that is already defined does not always work properly.  It may or

           may not do what you want, depending on what code is inside the subroutine, with exact

           details subject to change between Perl versions.  Only do this if you really know what

           you are doing.

       lvalue attribute ignored after the subroutine has been defined

           (W misc) Using the ":lvalue" declarative syntax to make a Perl subroutine an lvalue

           subroutine after it has been defined is not permitted.  To make the subroutine an

           lvalue subroutine, add the lvalue attribute to the definition, or put the "sub foo

           :lvalue;" declaration before the definition.

           See also attributes.pm.

       Magical list constants are not supported

           (F) You assigned a magical array to a stash element, and then tried to use the

           subroutine from the same slot.  You are asking Perl to do something it cannot do,

           details subject to change between Perl versions.

       Malformed integer in [] in pack

           (F) Between the brackets enclosing a numeric repeat count only digits are permitted.

           See "pack" in perlfunc.

       Malformed integer in [] in unpack

           (F) Between the brackets enclosing a numeric repeat count only digits are permitted.

           See "pack" in perlfunc.

       Malformed PERLLIB_PREFIX

           (F) An error peculiar to OS/2.  PERLLIB_PREFIX should be of the form

               prefix1;prefix2

           or

               prefix1 prefix2

           with nonempty prefix1 and prefix2.  If "prefix1" is indeed a prefix of a builtin

           library search path, prefix2 is substituted.  The error may appear if components are Page 66/146



           not found, or are too long.  See "PERLLIB_PREFIX" in perlos2.

       Malformed prototype for %s: %s

           (F) You tried to use a function with a malformed prototype.  The syntax of function

           prototypes is given a brief compile-time check for obvious errors like invalid

           characters.  A more rigorous check is run when the function is called.  Perhaps the

           function's author was trying to write a subroutine signature but didn't enable that

           feature first ("use feature 'signatures'"), so the signature was instead interpreted

           as a bad prototype.

       Malformed UTF-8 character%s

           (S utf8)(F) Perl detected a string that should be UTF-8, but didn't comply with UTF-8

           encoding rules, or represents a code point whose ordinal integer value doesn't fit

           into the word size of the current platform (overflows).  Details as to the exact

           malformation are given in the variable, %s, part of the message.

           One possible cause is that you set the UTF8 flag yourself for data that you thought to

           be in UTF-8 but it wasn't (it was for example legacy 8-bit data).  To guard against

           this, you can use "Encode::decode('UTF-8', ...)".

           If you use the ":encoding(UTF-8)" PerlIO layer for input, invalid byte sequences are

           handled gracefully, but if you use ":utf8", the flag is set without validating the

           data, possibly resulting in this error message.

           See also "Handling Malformed Data" in Encode.

       Malformed UTF-8 returned by \N{%s} immediately after '%s'

           (F) The charnames handler returned malformed UTF-8.

       Malformed UTF-8 string in "%s"

           (F) This message indicates a bug either in the Perl core or in XS code. Such code was

           trying to find out if a character, allegedly stored internally encoded as UTF-8, was

           of a given type, such as being punctuation or a digit.  But the character was not

           encoded in legal UTF-8.  The %s is replaced by a string that can be used by

           knowledgeable people to determine what the type being checked against was.

           Passing malformed strings was deprecated in Perl 5.18, and became fatal in Perl 5.26.

       Malformed UTF-8 string in '%c' format in unpack

           (F) You tried to unpack something that didn't comply with UTF-8 encoding rules and

           perl was unable to guess how to make more progress.

       Malformed UTF-8 string in pack Page 67/146



           (F) You tried to pack something that didn't comply with UTF-8 encoding rules and perl

           was unable to guess how to make more progress.

       Malformed UTF-8 string in unpack

           (F) You tried to unpack something that didn't comply with UTF-8 encoding rules and

           perl was unable to guess how to make more progress.

       Malformed UTF-16 surrogate

           (F) Perl thought it was reading UTF-16 encoded character data but while doing it Perl

           met a malformed Unicode surrogate.

       Mandatory parameter follows optional parameter

           (F) In a subroutine signature, you wrote something like "$a = undef, $b", making an

           earlier parameter optional and a later one mandatory.  Parameters are filled from left

           to right, so it's impossible for the caller to omit an earlier one and pass a later

           one.  If you want to act as if the parameters are filled from right to left, declare

           the rightmost optional and then shuffle the parameters around in the subroutine's

           body.

       Matched non-Unicode code point 0x%X against Unicode property; may not be portable

           (S non_unicode) Perl allows strings to contain a superset of Unicode code points; each

           code point may be as large as what is storable in a signed integer on your system, but

           these may not be accepted by other languages/systems.  This message occurs when you

           matched a string containing such a code point against a regular expression pattern,

           and the code point was matched against a Unicode property, "\p{...}" or "\P{...}".

           Unicode properties are only defined on Unicode code points, so the result of this

           match is undefined by Unicode, but Perl (starting in v5.20) treats non-Unicode code

           points as if they were typical unassigned Unicode ones, and matched this one

           accordingly.  Whether a given property matches these code points or not is specified

           in "Properties accessible through \p{} and \P{}" in perluniprops.

           This message is suppressed (unless it has been made fatal) if it is immaterial to the

           results of the match if the code point is Unicode or not.  For example, the property

           "\p{ASCII_Hex_Digit}" only can match the 22 characters "[0-9A-Fa-f]", so obviously all

           other code points, Unicode or not, won't match it.  (And "\P{ASCII_Hex_Digit}" will

           match every code point except these 22.)

           Getting this message indicates that the outcome of the match arguably should have been

           the opposite of what actually happened.  If you think that is the case, you may wish Page 68/146



           to make the "non_unicode" warnings category fatal; if you agree with Perl's decision,

           you may wish to turn off this category.

           See "Beyond Unicode code points" in perlunicode for more information.

       %s matches null string many times in regex; marked by <--?HERE in m/%s/

           (W regexp) The pattern you've specified would be an infinite loop if the regular

           expression engine didn't specifically check for that.  The <--?HERE shows whereabouts

           in the regular expression the problem was discovered.  See perlre.

       Maximal count of pending signals (%u) exceeded

           (F) Perl aborted due to too high a number of signals pending.  This usually indicates

           that your operating system tried to deliver signals too fast (with a very high

           priority), starving the perl process from resources it would need to reach a point

           where it can process signals safely.  (See "Deferred Signals (Safe Signals)" in

           perlipc.)

       "%s" may clash with future reserved word

           (W) This warning may be due to running a perl5 script through a perl4 interpreter,

           especially if the word that is being warned about is "use" or "my".

       '%' may not be used in pack

           (F) You can't pack a string by supplying a checksum, because the checksumming process

           loses information, and you can't go the other way.  See "unpack" in perlfunc.

       Method for operation %s not found in package %s during blessing

           (F) An attempt was made to specify an entry in an overloading table that doesn't

           resolve to a valid subroutine.  See overload.

       Method %s not permitted

           See "500 Server error".

       Might be a runaway multi-line %s string starting on line %d

           (S) An advisory indicating that the previous error may have been caused by a missing

           delimiter on a string or pattern, because it eventually ended earlier on the current

           line.

       Misplaced _ in number

           (W syntax) An underscore (underbar) in a numeric constant did not separate two digits.

       Missing argument for %n in %s

           (F) A %n was used in a format string with no corresponding argument for perl to write

           the current string length to. Page 69/146



       Missing argument in %s

           (W missing) You called a function with fewer arguments than other arguments you

           supplied indicated would be needed.

           Currently only emitted when a printf-type format required more arguments than were

           supplied, but might be used in the future for other cases where we can statically

           determine that arguments to functions are missing, e.g. for the "pack" in perlfunc

           function.

       Missing argument to -%c

           (F) The argument to the indicated command line switch must follow immediately after

           the switch, without intervening spaces.

       Missing braces on \N{}

       Missing braces on \N{} in regex; marked by <--?HERE in m/%s/

           (F) Wrong syntax of character name literal "\N{charname}" within double-quotish

           context.  This can also happen when there is a space (or comment) between the "\N" and

           the "{" in a regex with the "/x" modifier.  This modifier does not change the

           requirement that the brace immediately follow the "\N".

       Missing braces on \o{}

           (F) A "\o" must be followed immediately by a "{" in double-quotish context.

       Missing comma after first argument to %s function

           (F) While certain functions allow you to specify a filehandle or an "indirect object"

           before the argument list, this ain't one of them.

       Missing command in piped open

           (W pipe) You used the "open(FH, "| command")" or "open(FH, "command |")" construction,

           but the command was missing or blank.

       Missing control char name in \c

           (F) A double-quoted string ended with "\c", without the required control character

           name.

       Missing ']' in prototype for %s : %s

           (W illegalproto) A grouping was started with "[" but never closed with "]".

       Missing name in "%s sub"

           (F) The syntax for lexically scoped subroutines requires that they have a name with

           which they can be found.

       Missing $ on loop variable Page 70/146



           (F) Apparently you've been programming in csh too much.  Variables are always

           mentioned with the $ in Perl, unlike in the shells, where it can vary from one line to

           the next.

       (Missing operator before %s?)

           (S syntax) This is an educated guess made in conjunction with the message "%s found

           where operator expected".  Often the missing operator is a comma.

       Missing or undefined argument to %s

           (F) You tried to call require or do with no argument or with an undefined value as an

           argument.  Require expects either a package name or a file-specification as an

           argument; do expects a filename.  See "require EXPR" in perlfunc and "do EXPR" in

           perlfunc.

       Missing right brace on \%c{} in regex; marked by <--?HERE in m/%s/

           (F) Missing right brace in "\x{...}", "\p{...}", "\P{...}", or "\N{...}".

       Missing right brace on \N{}

       Missing right brace on \N{} or unescaped left brace after \N

           (F) "\N" has two meanings.

           The traditional one has it followed by a name enclosed in braces, meaning the

           character (or sequence of characters) given by that name.  Thus "\N{ASTERISK}" is

           another way of writing "*", valid in both double-quoted strings and regular expression

           patterns.  In patterns, it doesn't have the meaning an unescaped "*" does.

           Starting in Perl 5.12.0, "\N" also can have an additional meaning (only) in patterns,

           namely to match a non-newline character.  (This is short for "[^\n]", and like "." but

           is not affected by the "/s" regex modifier.)

           This can lead to some ambiguities.  When "\N" is not followed immediately by a left

           brace, Perl assumes the "[^\n]" meaning.  Also, if the braces form a valid quantifier

           such as "\N{3}" or "\N{5,}", Perl assumes that this means to match the given quantity

           of non-newlines (in these examples, 3; and 5 or more, respectively).  In all other

           case, where there is a "\N{" and a matching "}", Perl assumes that a character name is

           desired.

           However, if there is no matching "}", Perl doesn't know if it was mistakenly omitted,

           or if "[^\n]{" was desired, and raises this error.  If you meant the former, add the

           right brace; if you meant the latter, escape the brace with a backslash, like so:

           "\N\{" Page 71/146



       Missing right curly or square bracket

           (F) The lexer counted more opening curly or square brackets than closing ones.  As a

           general rule, you'll find it's missing near the place you were last editing.

       (Missing semicolon on previous line?)

           (S syntax) This is an educated guess made in conjunction with the message "%s found

           where operator expected".  Don't automatically put a semicolon on the previous line

           just because you saw this message.

       Modification of a read-only value attempted

           (F) You tried, directly or indirectly, to change the value of a constant.  You didn't,

           of course, try "2 = 1", because the compiler catches that.  But an easy way to do the

           same thing is:

               sub mod { $_[0] = 1 }

               mod(2);

           Another way is to assign to a substr() that's off the end of the string.

           Yet another way is to assign to a "foreach" loop VAR when VAR is aliased to a constant

           in the look LIST:

               $x = 1;

               foreach my $n ($x, 2) {

                   $n *= 2; # modifies the $x, but fails on attempt to

               }            # modify the 2

           PerlIO::scalar will also produce this message as a warning if you attempt to open a

           read-only scalar for writing.

       Modification of non-creatable array value attempted, %s

           (F) You tried to make an array value spring into existence, and the subscript was

           probably negative, even counting from end of the array backwards.

       Modification of non-creatable hash value attempted, %s

           (P) You tried to make a hash value spring into existence, and it couldn't be created

           for some peculiar reason.

       Module name must be constant

           (F) Only a bare module name is allowed as the first argument to a "use".

       Module name required with -%c option

           (F) The "-M" or "-m" options say that Perl should load some module, but you omitted

           the name of the module.  Consult perlrun for full details about "-M" and "-m". Page 72/146



       More than one argument to '%s' open

           (F) The "open" function has been asked to open multiple files.  This can happen if you

           are trying to open a pipe to a command that takes a list of arguments, but have

           forgotten to specify a piped open mode.  See "open" in perlfunc for details.

       mprotect for COW string %p %u failed with %d

           (S) You compiled perl with -DPERL_DEBUG_READONLY_COW (see "Copy on Write" in

           perlguts), but a shared string buffer could not be made read-only.

       mprotect for %p %u failed with %d

           (S) You compiled perl with -DPERL_DEBUG_READONLY_OPS (see perlhacktips), but an op

           tree could not be made read-only.

       mprotect RW for COW string %p %u failed with %d

           (S) You compiled perl with -DPERL_DEBUG_READONLY_COW (see "Copy on Write" in

           perlguts), but a read-only shared string buffer could not be made mutable.

       mprotect RW for %p %u failed with %d

           (S) You compiled perl with -DPERL_DEBUG_READONLY_OPS (see perlhacktips), but a read-

           only op tree could not be made mutable before freeing the ops.

       msg%s not implemented

           (F) You don't have System V message IPC on your system.

       Multidimensional hash lookup is disabled

           (F) You supplied a list of subscripts to a hash lookup under "no feature

           "multidimensional";", eg:

             $z = $foo{$x, $y};

           which by default acts like:

             $z = $foo{join($;, $x, $y)};

       Multidimensional syntax %s not supported

           (W syntax) Multidimensional arrays aren't written like $foo[1,2,3].  They're written

           like $foo[1][2][3], as in C.

       Multiple slurpy parameters not allowed

           (F) In subroutine signatures, a slurpy parameter ("@" or "%") must be the last

           parameter, and there must not be more than one of them; for example:

               sub foo ($a, @b)    {} # legal

               sub foo ($a, @b, %) {} # invalid

       '/' must follow a numeric type in unpack Page 73/146



           (F) You had an unpack template that contained a '/', but this did not follow some

           unpack specification producing a numeric value.  See "pack" in perlfunc.

       %s must not be a named sequence in transliteration operator

           (F) Transliteration ("tr///" and "y///") transliterates individual characters.  But a

           named sequence by definition is more than an individual character, and hence doing

           this operation on it doesn't make sense.

       "my sub" not yet implemented

           (F) Lexically scoped subroutines are not yet implemented.  Don't try that yet.

       "my" subroutine %s can't be in a package

           (F) Lexically scoped subroutines aren't in a package, so it doesn't make sense to try

           to declare one with a package qualifier on the front.

       "my %s" used in sort comparison

           (W syntax) The package variables $a and $b are used for sort comparisons.  You used $a

           or $b in as an operand to the "<=>" or "cmp" operator inside a sort comparison block,

           and the variable had earlier been declared as a lexical variable.  Either qualify the

           sort variable with the package name, or rename the lexical variable.

       "my" variable %s can't be in a package

           (F) Lexically scoped variables aren't in a package, so it doesn't make sense to try to

           declare one with a package qualifier on the front.  Use local() if you want to

           localize a package variable.

       Name "%s::%s" used only once: possible typo

           (W once) Typographical errors often show up as unique variable names.  If you had a

           good reason for having a unique name, then just mention it again somehow to suppress

           the message.  The "our" declaration is also provided for this purpose.

           NOTE: This warning detects package symbols that have been used only once.  This means

           lexical variables will never trigger this warning.  It also means that all of the

           package variables $c, @c, %c, as well as *c, &c, sub c{}, c(), and c (the filehandle

           or format) are considered the same; if a program uses $c only once but also uses any

           of the others it will not trigger this warning.  Symbols beginning with an underscore

           and symbols using special identifiers (q.v. perldata) are exempt from this warning.

       Need exactly 3 octal digits in regex; marked by <--?HERE in m/%s/

           (F) Within "(?[???])", all constants interpreted as octal need to be exactly 3 digits

           long.  This helps catch some ambiguities.  If your constant is too short, add leading Page 74/146



           zeros, like

            (?[ [ \078 ] ])     # Syntax error!

            (?[ [ \0078 ] ])    # Works

            (?[ [ \007 8 ] ])   # Clearer

           The maximum number this construct can express is "\777".  If you need a larger one,

           you need to use \o{} instead.  If you meant two separate things, you need to separate

           them:

            (?[ [ \7776 ] ])        # Syntax error!

            (?[ [ \o{7776} ] ])     # One meaning

            (?[ [ \777 6 ] ])       # Another meaning

            (?[ [ \777 \006 ] ])    # Still another

       Negative '/' count in unpack

           (F) The length count obtained from a length/code unpack operation was negative.  See

           "pack" in perlfunc.

       Negative length

           (F) You tried to do a read/write/send/recv operation with a buffer length that is less

           than 0.  This is difficult to imagine.

       Negative offset to vec in lvalue context

           (F) When "vec" is called in an lvalue context, the second argument must be greater

           than or equal to zero.

       Negative repeat count does nothing

           (W numeric) You tried to execute the "x" repetition operator fewer than 0 times, which

           doesn't make sense.

       Nested quantifiers in regex; marked by <--?HERE in m/%s/

           (F) You can't quantify a quantifier without intervening parentheses.  So things like

           ** or +* or ?* are illegal.  The <--?HERE shows whereabouts in the regular expression

           the problem was discovered.

           Note that the minimal matching quantifiers, "*?", "+?", and "??" appear to be nested

           quantifiers, but aren't.  See perlre.

       %s never introduced

           (S internal) The symbol in question was declared but somehow went out of scope before

           it could possibly have been used.

       next::method/next::can/maybe::next::method cannot find enclosing method Page 75/146



           (F) "next::method" needs to be called within the context of a real method in a real

           package, and it could not find such a context.  See mro.

       \N in a character class must be a named character: \N{...} in regex; marked by <--?HERE in

       m/%s/

           (F) The new (as of Perl 5.12) meaning of "\N" as "[^\n]" is not valid in a bracketed

           character class, for the same reason that "." in a character class loses its

           specialness: it matches almost everything, which is probably not what you want.

       \N{} here is restricted to one character in regex; marked by <-- HERE in m/%s/

           (F) Named Unicode character escapes ("\N{...}") may return a multi-character sequence.

           Even though a character class is supposed to match just one character of input, perl

           will match the whole thing correctly, except under certain conditions.  These

           currently are

           When the class is inverted ("[^...]")

               The mathematically logical behavior for what matches when inverting is very

               different from what people expect, so we have decided to forbid it.

           The escape is the beginning or final end point of a range

               Similarly unclear is what should be generated when the "\N{...}" is used as one of

               the end points of the range, such as in

                [\x{41}-\N{ARABIC SEQUENCE YEH WITH HAMZA ABOVE WITH AE}]

               What is meant here is unclear, as the "\N{...}" escape is a sequence of code

               points, so this is made an error.

           In a regex set

               The syntax "(?[???])" in a regular expression yields a list of single code points,

               none can be a sequence.

       No %s allowed while running setuid

           (F) Certain operations are deemed to be too insecure for a setuid or setgid script to

           even be allowed to attempt.  Generally speaking there will be another way to do what

           you want that is, if not secure, at least securable.  See perlsec.

       No code specified for -%c

           (F) Perl's -e and -E command-line options require an argument.  If you want to run an

           empty program, pass the empty string as a separate argument or run a program

           consisting of a single 0 or 1:

               perl -e "" Page 76/146



               perl -e0

               perl -e1

       No comma allowed after %s

           (F) A list operator that has a filehandle or "indirect object" is not allowed to have

           a comma between that and the following arguments.  Otherwise it'd be just another one

           of the arguments.

           One possible cause for this is that you expected to have imported a constant to your

           name space with use or import while no such importing took place, it may for example

           be that your operating system does not support that particular constant.  Hopefully

           you did use an explicit import list for the constants you expect to see; please see

           "use" in perlfunc and "import" in perlfunc.  While an explicit import list would

           probably have caught this error earlier it naturally does not remedy the fact that

           your operating system still does not support that constant.  Maybe you have a typo in

           the constants of the symbol import list of use or import or in the constant name at

           the line where this error was triggered?

       No command into which to pipe on command line

           (F) An error peculiar to VMS.  Perl handles its own command line redirection, and

           found a '|' at the end of the command line, so it doesn't know where you want to pipe

           the output from this command.

       No DB::DB routine defined

           (F) The currently executing code was compiled with the -d switch, but for some reason

           the current debugger (e.g. perl5db.pl or a "Devel::" module) didn't define a routine

           to be called at the beginning of each statement.

       No dbm on this machine

           (P) This is counted as an internal error, because every machine should supply dbm

           nowadays, because Perl comes with SDBM.  See SDBM_File.

       No DB::sub routine defined

           (F) The currently executing code was compiled with the -d switch, but for some reason

           the current debugger (e.g. perl5db.pl or a "Devel::" module) didn't define a "DB::sub"

           routine to be called at the beginning of each ordinary subroutine call.

       No digits found for %s literal

           (F) No hexadecimal digits were found following "0x" or no binary digits were found

           following "0b". Page 77/146



       No directory specified for -I

           (F) The -I command-line switch requires a directory name as part of the same argument.

           Use -Ilib, for instance.  -I lib won't work.

       No error file after 2> or 2>> on command line

           (F) An error peculiar to VMS.  Perl handles its own command line redirection, and

           found a '2>' or a '2>>' on the command line, but can't find the name of the file to

           which to write data destined for stderr.

       No group ending character '%c' found in template

           (F) A pack or unpack template has an opening '(' or '[' without its matching

           counterpart.  See "pack" in perlfunc.

       No input file after < on command line

           (F) An error peculiar to VMS.  Perl handles its own command line redirection, and

           found a '<' on the command line, but can't find the name of the file from which to

           read data for stdin.

       No next::method '%s' found for %s

           (F) "next::method" found no further instances of this method name in the remaining

           packages of the MRO of this class.  If you don't want it throwing an exception, use

           "maybe::next::method" or "next::can".  See mro.

       Non-finite repeat count does nothing

           (W numeric) You tried to execute the "x" repetition operator "Inf" (or "-Inf") or

           "NaN" times, which doesn't make sense.

       Non-hex character in regex; marked by <--?HERE in m/%s/

           (F) In a regular expression, there was a non-hexadecimal character where a hex one was

           expected, like

            (?[ [ \xDG ] ])

            (?[ [ \x{DEKA} ] ])

       Non-hex character '%c' terminates \x early.  Resolved as "%s"

           (W digit) In parsing a hexadecimal numeric constant, a character was unexpectedly

           encountered that isn't hexadecimal.  The resulting value is as indicated.

           Note that, within braces, every character starting with the first non-hexadecimal up

           to the ending brace is ignored.

       Non-octal character in regex; marked by <--?HERE in m/%s/

           (F) In a regular expression, there was a non-octal character where an octal one was Page 78/146



           expected, like

            (?[ [ \o{1278} ] ])

       Non-octal character '%c' terminates \o early.  Resolved as "%s"

           (W digit) In parsing an octal numeric constant, a character was unexpectedly

           encountered that isn't octal.  The resulting value is as indicated.

           When not using "\o{...}", you wrote something like "\08", or "\179" in a double-

           quotish string.  The resolution is as indicated, with all but the last digit treated

           as a single character, specified in octal.  The last digit is the next character in

           the string.  To tell Perl that this is indeed what you want, you can use the "\o{ }"

           syntax, or use exactly three digits to specify the octal for the character.

           Note that, within braces, every character starting with the first non-octal up to the

           ending brace is ignored.

       "no" not allowed in expression

           (F) The "no" keyword is recognized and executed at compile time, and returns no useful

           value.  See perlmod.

       Non-string passed as bitmask

           (W misc) A number has been passed as a bitmask argument to select().  Use the vec()

           function to construct the file descriptor bitmasks for select.  See "select" in

           perlfunc.

       No output file after > on command line

           (F) An error peculiar to VMS.  Perl handles its own command line redirection, and

           found a lone '>' at the end of the command line, so it doesn't know where you wanted

           to redirect stdout.

       No output file after > or >> on command line

           (F) An error peculiar to VMS.  Perl handles its own command line redirection, and

           found a '>' or a '>>' on the command line, but can't find the name of the file to

           which to write data destined for stdout.

       No package name allowed for subroutine %s in "our"

       No package name allowed for variable %s in "our"

           (F) Fully qualified subroutine and variable names are not allowed in "our"

           declarations, because that doesn't make much sense under existing rules.  Such syntax

           is reserved for future extensions.

       No Perl script found in input Page 79/146



           (F) You called "perl -x", but no line was found in the file beginning with #! and

           containing the word "perl".

       No setregid available

           (F) Configure didn't find anything resembling the setregid() call for your system.

       No setreuid available

           (F) Configure didn't find anything resembling the setreuid() call for your system.

       No such class %s

           (F) You provided a class qualifier in a "my", "our" or "state" declaration, but this

           class doesn't exist at this point in your program.

       No such class field "%s" in variable %s of type %s

           (F) You tried to access a key from a hash through the indicated typed variable but

           that key is not allowed by the package of the same type.  The indicated package has

           restricted the set of allowed keys using the fields pragma.

       No such hook: %s

           (F) You specified a signal hook that was not recognized by Perl.  Currently, Perl

           accepts "__DIE__" and "__WARN__" as valid signal hooks.

       No such pipe open

           (P) An error peculiar to VMS.  The internal routine my_pclose() tried to close a pipe

           which hadn't been opened.  This should have been caught earlier as an attempt to close

           an unopened filehandle.

       No such signal: SIG%s

           (W signal) You specified a signal name as a subscript to %SIG that was not recognized.

           Say "kill -l" in your shell to see the valid signal names on your system.

       No Unicode property value wildcard matches:

           (W regexp) You specified a wildcard for a Unicode property value, but there is no

           property value in the current Unicode release that matches it.  Check your spelling.

       Not a CODE reference

           (F) Perl was trying to evaluate a reference to a code value (that is, a subroutine),

           but found a reference to something else instead.  You can use the ref() function to

           find out what kind of ref it really was.  See also perlref.

       Not a GLOB reference

           (F) Perl was trying to evaluate a reference to a "typeglob" (that is, a symbol table

           entry that looks like *foo), but found a reference to something else instead.  You can Page 80/146



           use the ref() function to find out what kind of ref it really was.  See perlref.

       Not a HASH reference

           (F) Perl was trying to evaluate a reference to a hash value, but found a reference to

           something else instead.  You can use the ref() function to find out what kind of ref

           it really was.  See perlref.

       '#' not allowed immediately following a sigil in a subroutine signature

           (F) In a subroutine signature definition, a comment following a sigil ("$", "@" or

           "%"), needs to be separated by whitespace or a comma etc., in particular to avoid

           confusion with the $# variable.  For example:

               # bad

               sub f ($# ignore first arg

                      , $b) {}

               # good

               sub f ($, # ignore first arg

                      $b) {}

       Not an ARRAY reference

           (F) Perl was trying to evaluate a reference to an array value, but found a reference

           to something else instead.  You can use the ref() function to find out what kind of

           ref it really was.  See perlref.

       Not a SCALAR reference

           (F) Perl was trying to evaluate a reference to a scalar value, but found a reference

           to something else instead.  You can use the ref() function to find out what kind of

           ref it really was.  See perlref.

       Not a subroutine reference

           (F) Perl was trying to evaluate a reference to a code value (that is, a subroutine),

           but found a reference to something else instead.  You can use the ref() function to

           find out what kind of ref it really was.  See also perlref.

       Not a subroutine reference in overload table

           (F) An attempt was made to specify an entry in an overloading table that doesn't

           somehow point to a valid subroutine.  See overload.

       Not enough arguments for %s

           (F) The function requires more arguments than you specified.

       Not enough format arguments Page 81/146



           (W syntax) A format specified more picture fields than the next line supplied.  See

           perlform.

       %s: not found

           (A) You've accidentally run your script through the Bourne shell instead of Perl.

           Check the #! line, or manually feed your script into Perl yourself.

       no UTC offset information; assuming local time is UTC

           (S) A warning peculiar to VMS.  Perl was unable to find the local timezone offset, so

           it's assuming that local system time is equivalent to UTC.  If it's not, define the

           logical name SYS$TIMEZONE_DIFFERENTIAL to translate to the number of seconds which

           need to be added to UTC to get local time.

       NULL OP IN RUN

           (S debugging) Some internal routine called run() with a null opcode pointer.

       Null picture in formline

           (F) The first argument to formline must be a valid format picture specification.  It

           was found to be empty, which probably means you supplied it an uninitialized value.

           See perlform.

       Null realloc

           (P) An attempt was made to realloc NULL.

       NULL regexp argument

           (P) The internal pattern matching routines blew it big time.

       NULL regexp parameter

           (P) The internal pattern matching routines are out of their gourd.

       Number too long

           (F) Perl limits the representation of decimal numbers in programs to about 250

           characters.  You've exceeded that length.  Future versions of Perl are likely to

           eliminate this arbitrary limitation.  In the meantime, try using scientific notation

           (e.g. "1e6" instead of "1_000_000").

       Number with no digits

           (F) Perl was looking for a number but found nothing that looked like a number.  This

           happens, for example with "\o{}", with no number between the braces.

       Numeric format result too large

           (F) The length of the result of a numeric format supplied to sprintf() or printf()

           would have been too large for the underlying C function to report.  This limit is Page 82/146



           typically 2GB.

       Numeric variables with more than one digit may not start with '0'

           (F) The only numeric variable which is allowed to start with a 0 is $0, and you

           mentioned a variable that starts with 0 that has more than one digit. You probably

           want to remove the leading 0, or if the intent was to express a variable name in octal

           you should convert to decimal.

       Octal number > 037777777777 non-portable

           (W portable) The octal number you specified is larger than 2**32-1 (4294967295) and

           therefore non-portable between systems.  See perlport for more on portability

           concerns.

       Odd name/value argument for subroutine '%s'

           (F) A subroutine using a slurpy hash parameter in its signature received an odd number

           of arguments to populate the hash.  It requires the arguments to be paired, with the

           same number of keys as values.  The caller of the subroutine is presumably at fault.

           The message attempts to include the name of the called subroutine. If the subroutine

           has been aliased, the subroutine's original name will be shown, regardless of what

           name the caller used.

       Odd number of arguments for overload::constant

           (W overload) The call to overload::constant contained an odd number of arguments.  The

           arguments should come in pairs.

       Odd number of elements in anonymous hash

           (W misc) You specified an odd number of elements to initialize a hash, which is odd,

           because hashes come in key/value pairs.

       Odd number of elements in hash assignment

           (W misc) You specified an odd number of elements to initialize a hash, which is odd,

           because hashes come in key/value pairs.

       Offset outside string

           (F)(W layer) You tried to do a read/write/send/recv/seek operation with an offset

           pointing outside the buffer.  This is difficult to imagine.  The sole exceptions to

           this are that zero padding will take place when going past the end of the string when

           either "sysread()"ing a file, or when seeking past the end of a scalar opened for I/O

           (in anticipation of future reads and to imitate the behavior with real files).

       Old package separator used in string Page 83/146



           (W syntax) You used the old package separator, "'", in a variable named inside a

           double-quoted string; e.g., "In $name's house".  This is equivalent to "In $name::s

           house".  If you meant the former, put a backslash before the apostrophe ("In $name\'s

           house").

       %s() on unopened %s

           (W unopened) An I/O operation was attempted on a filehandle that was never

           initialized.  You need to do an open(), a sysopen(), or a socket() call, or call a

           constructor from the FileHandle package.

       -%s on unopened filehandle %s

           (W unopened) You tried to invoke a file test operator on a filehandle that isn't open.

           Check your control flow.  See also "-X" in perlfunc.

       oops: oopsAV

           (S internal) An internal warning that the grammar is screwed up.

       oops: oopsHV

           (S internal) An internal warning that the grammar is screwed up.

       Operand with no preceding operator in regex; marked by <--?HERE in m/%s/

           (F) You wrote something like

            (?[ \p{Digit} \p{Thai} ])

           There are two operands, but no operator giving how you want to combine them.

       Operation "%s": no method found, %s

           (F) An attempt was made to perform an overloaded operation for which no handler was

           defined.  While some handlers can be autogenerated in terms of other handlers, there

           is no default handler for any operation, unless the "fallback" overloading key is

           specified to be true.  See overload.

       Operation "%s" returns its argument for non-Unicode code point 0x%X

           (S non_unicode) You performed an operation requiring Unicode rules on a code point

           that is not in Unicode, so what it should do is not defined.  Perl has chosen to have

           it do nothing, and warn you.

           If the operation shown is "ToFold", it means that case-insensitive matching in a

           regular expression was done on the code point.

           If you know what you are doing you can turn off this warning by "no warnings

           'non_unicode';".

       Operation "%s" returns its argument for UTF-16 surrogate U+%X Page 84/146



           (S surrogate) You performed an operation requiring Unicode rules on a Unicode

           surrogate.  Unicode frowns upon the use of surrogates for anything but storing strings

           in UTF-16, but rules are (reluctantly) defined for the surrogates, and they are to do

           nothing for this operation.  Because the use of surrogates can be dangerous, Perl

           warns.

           If the operation shown is "ToFold", it means that case-insensitive matching in a

           regular expression was done on the code point.

           If you know what you are doing you can turn off this warning by "no warnings

           'surrogate';".

       Operator or semicolon missing before %s

           (S ambiguous) You used a variable or subroutine call where the parser was expecting an

           operator.  The parser has assumed you really meant to use an operator, but this is

           highly likely to be incorrect.  For example, if you say "*foo *foo" it will be

           interpreted as if you said "*foo * 'foo'".

       Optional parameter lacks default expression

           (F) In a subroutine signature, you wrote something like "$a =", making a named

           optional parameter without a default value.  A nameless optional parameter is

           permitted to have no default value, but a named one must have a specific default.  You

           probably want "$a = undef".

       "our" variable %s redeclared

           (W shadow) You seem to have already declared the same global once before in the

           current lexical scope.

       Out of memory!

           (X) The malloc() function returned 0, indicating there was insufficient remaining

           memory (or virtual memory) to satisfy the request.  Perl has no option but to exit

           immediately.

           At least in Unix you may be able to get past this by increasing your process datasize

           limits: in csh/tcsh use "limit" and "limit datasize n" (where "n" is the number of

           kilobytes) to check the current limits and change them, and in ksh/bash/zsh use

           "ulimit -a" and "ulimit -d n", respectively.

       Out of memory during %s extend

           (X) An attempt was made to extend an array, a list, or a string beyond the largest

           possible memory allocation. Page 85/146



       Out of memory during "large" request for %s

           (F) The malloc() function returned 0, indicating there was insufficient remaining

           memory (or virtual memory) to satisfy the request.  However, the request was judged

           large enough (compile-time default is 64K), so a possibility to shut down by trapping

           this error is granted.

       Out of memory during request for %s

           (X)(F) The malloc() function returned 0, indicating there was insufficient remaining

           memory (or virtual memory) to satisfy the request.

           The request was judged to be small, so the possibility to trap it depends on the way

           perl was compiled.  By default it is not trappable.  However, if compiled for this,

           Perl may use the contents of $^M as an emergency pool after die()ing with this

           message.  In this case the error is trappable once, and the error message will include

           the line and file where the failed request happened.

       Out of memory during ridiculously large request

           (F) You can't allocate more than 2^31+"small amount" bytes.  This error is most likely

           to be caused by a typo in the Perl program. e.g., $arr[time] instead of $arr[$time].

       Out of memory for yacc stack

           (F) The yacc parser wanted to grow its stack so it could continue parsing, but

           realloc() wouldn't give it more memory, virtual or otherwise.

       '.' outside of string in pack

           (F) The argument to a '.' in your template tried to move the working position to

           before the start of the packed string being built.

       '@' outside of string in unpack

           (F) You had a template that specified an absolute position outside the string being

           unpacked.  See "pack" in perlfunc.

       '@' outside of string with malformed UTF-8 in unpack

           (F) You had a template that specified an absolute position outside the string being

           unpacked.  The string being unpacked was also invalid UTF-8.  See "pack" in perlfunc.

       overload arg '%s' is invalid

           (W overload) The overload pragma was passed an argument it did not recognize.  Did you

           mistype an operator?

       Overloaded dereference did not return a reference

           (F) An object with an overloaded dereference operator was dereferenced, but the Page 86/146



           overloaded operation did not return a reference.  See overload.

       Overloaded qr did not return a REGEXP

           (F) An object with a "qr" overload was used as part of a match, but the overloaded

           operation didn't return a compiled regexp.  See overload.

       %s package attribute may clash with future reserved word: %s

           (W reserved) A lowercase attribute name was used that had a package-specific handler.

           That name might have a meaning to Perl itself some day, even though it doesn't yet.

           Perhaps you should use a mixed-case attribute name, instead.  See attributes.

       pack/unpack repeat count overflow

           (F) You can't specify a repeat count so large that it overflows your signed integers.

           See "pack" in perlfunc.

       page overflow

           (W io) A single call to write() produced more lines than can fit on a page.  See

           perlform.

       panic: %s

           (P) An internal error.

       panic: attempt to call %s in %s

           (P) One of the file test operators entered a code branch that calls an ACL related-

           function, but that function is not available on this platform.  Earlier checks mean

           that it should not be possible to enter this branch on this platform.

       panic: child pseudo-process was never scheduled

           (P) A child pseudo-process in the ithreads implementation on Windows was not scheduled

           within the time period allowed and therefore was not able to initialize properly.

       panic: ck_grep, type=%u

           (P) Failed an internal consistency check trying to compile a grep.

       panic: corrupt saved stack index %ld

           (P) The savestack was requested to restore more localized values than there are in the

           savestack.

       panic: del_backref

           (P) Failed an internal consistency check while trying to reset a weak reference.

       panic: do_subst

           (P) The internal pp_subst() routine was called with invalid operational data.

       panic: do_trans_%s Page 87/146



           (P) The internal do_trans routines were called with invalid operational data.

       panic: fold_constants JMPENV_PUSH returned %d

           (P) While attempting folding constants an exception other than an "eval" failure was

           caught.

       panic: frexp: %f

           (P) The library function frexp() failed, making printf("%f") impossible.

       panic: goto, type=%u, ix=%ld

           (P) We popped the context stack to a context with the specified label, and then

           discovered it wasn't a context we know how to do a goto in.

       panic: gp_free failed to free glob pointer

           (P) The internal routine used to clear a typeglob's entries tried repeatedly, but each

           time something re-created entries in the glob.  Most likely the glob contains an

           object with a reference back to the glob and a destructor that adds a new object to

           the glob.

       panic: INTERPCASEMOD, %s

           (P) The lexer got into a bad state at a case modifier.

       panic: INTERPCONCAT, %s

           (P) The lexer got into a bad state parsing a string with brackets.

       panic: kid popen errno read

           (F) A forked child returned an incomprehensible message about its errno.

       panic: last, type=%u

           (P) We popped the context stack to a block context, and then discovered it wasn't a

           block context.

       panic: leave_scope clearsv

           (P) A writable lexical variable became read-only somehow within the scope.

       panic: leave_scope inconsistency %u

           (P) The savestack probably got out of sync.  At least, there was an invalid enum on

           the top of it.

       panic: magic_killbackrefs

           (P) Failed an internal consistency check while trying to reset all weak references to

           an object.

       panic: malloc, %s

           (P) Something requested a negative number of bytes of malloc. Page 88/146



       panic: memory wrap

           (P) Something tried to allocate either more memory than possible or a negative amount.

       panic: pad_alloc, %p!=%p

           (P) The compiler got confused about which scratch pad it was allocating and freeing

           temporaries and lexicals from.

       panic: pad_free curpad, %p!=%p

           (P) The compiler got confused about which scratch pad it was allocating and freeing

           temporaries and lexicals from.

       panic: pad_free po

           (P) A zero scratch pad offset was detected internally.  An attempt was made to free a

           target that had not been allocated to begin with.

       panic: pad_reset curpad, %p!=%p

           (P) The compiler got confused about which scratch pad it was allocating and freeing

           temporaries and lexicals from.

       panic: pad_sv po

           (P) A zero scratch pad offset was detected internally.  Most likely an operator needed

           a target but that target had not been allocated for whatever reason.

       panic: pad_swipe curpad, %p!=%p

           (P) The compiler got confused about which scratch pad it was allocating and freeing

           temporaries and lexicals from.

       panic: pad_swipe po

           (P) An invalid scratch pad offset was detected internally.

       panic: pp_iter, type=%u

           (P) The foreach iterator got called in a non-loop context frame.

       panic: pp_match%s

           (P) The internal pp_match() routine was called with invalid operational data.

       panic: realloc, %s

           (P) Something requested a negative number of bytes of realloc.

       panic: reference miscount on nsv in sv_replace() (%d != 1)

           (P) The internal sv_replace() function was handed a new SV with a reference count

           other than 1.

       panic: restartop in %s

           (P) Some internal routine requested a goto (or something like it), and didn't supply Page 89/146



           the destination.

       panic: return, type=%u

           (P) We popped the context stack to a subroutine or eval context, and then discovered

           it wasn't a subroutine or eval context.

       panic: scan_num, %s

           (P) scan_num() got called on something that wasn't a number.

       panic: Sequence (?{...}): no code block found in regex m/%s/

           (P) While compiling a pattern that has embedded (?{}) or (??{}) code blocks, perl

           couldn't locate the code block that should have already been seen and compiled by perl

           before control passed to the regex compiler.

       panic: strxfrm() gets absurd - a => %u, ab => %u

           (P) The interpreter's sanity check of the C function strxfrm() failed.  In your

           current locale the returned transformation of the string "ab" is shorter than that of

           the string "a", which makes no sense.

       panic: sv_chop %s

           (P) The sv_chop() routine was passed a position that is not within the scalar's string

           buffer.

       panic: sv_insert, midend=%p, bigend=%p

           (P) The sv_insert() routine was told to remove more string than there was string.

       panic: top_env

           (P) The compiler attempted to do a goto, or something weird like that.

       panic: unimplemented op %s (#%d) called

           (P) The compiler is screwed up and attempted to use an op that isn't permitted at run

           time.

       panic: unknown OA_*: %x

           (P) The internal routine that handles arguments to "&CORE::foo()" subroutine calls was

           unable to determine what type of arguments were expected.

       panic: utf16_to_utf8: odd bytelen

           (P) Something tried to call utf16_to_utf8 with an odd (as opposed to even) byte

           length.

       panic: utf16_to_utf8_reversed: odd bytelen

           (P) Something tried to call utf16_to_utf8_reversed with an odd (as opposed to even)

           byte length. Page 90/146



       panic: yylex, %s

           (P) The lexer got into a bad state while processing a case modifier.

       Parentheses missing around "%s" list

           (W parenthesis) You said something like

               my $foo, $bar = @_;

           when you meant

               my ($foo, $bar) = @_;

           Remember that "my", "our", "local" and "state" bind tighter than comma.

       Parsing code internal error (%s)

           (F) Parsing code supplied by an extension violated the parser's API in a detectable

           way.

       Pattern subroutine nesting without pos change exceeded limit in regex

           (F) You used a pattern that uses too many nested subpattern calls without consuming

           any text.  Restructure the pattern so text is consumed before the nesting limit is

           exceeded.

       "-p" destination: %s

           (F) An error occurred during the implicit output invoked by the "-p" command-line

           switch.  (This output goes to STDOUT unless you've redirected it with select().)

       Perl API version %s of %s does not match %s

           (F) The XS module in question was compiled against a different incompatible version of

           Perl than the one that has loaded the XS module.

       Perl folding rules are not up-to-date for 0x%X; please use the perlbug utility to report;

       in regex; marked by <--?HERE in m/%s/

           (S regexp) You used a regular expression with case-insensitive matching, and there is

           a bug in Perl in which the built-in regular expression folding rules are not accurate.

           This may lead to incorrect results.  Please report this as a bug to

           <https://github.com/Perl/perl5/issues>.

       PerlIO layer ':win32' is experimental

           (S experimental::win32_perlio) The ":win32" PerlIO layer is experimental.  If you want

           to take the risk of using this layer, simply disable this warning:

               no warnings "experimental::win32_perlio";

       Perl_my_%s() not available

           (F) Your platform has very uncommon byte-order and integer size, so it was not Page 91/146



           possible to set up some or all fixed-width byte-order conversion functions.  This is

           only a problem when you're using the '<' or '>' modifiers in (un)pack templates.  See

           "pack" in perlfunc.

       Perl %s required (did you mean %s?)--this is only %s, stopped

           (F) The code you are trying to run has asked for a newer version of Perl than you are

           running.  Perhaps "use 5.10" was written instead of "use 5.010" or "use v5.10".

           Without the leading "v", the number is interpreted as a decimal, with every three

           digits after the decimal point representing a part of the version number.  So 5.10 is

           equivalent to v5.100.

       Perl %s required--this is only %s, stopped

           (F) The module in question uses features of a version of Perl more recent than the

           currently running version.  How long has it been since you upgraded, anyway?  See

           "require" in perlfunc.

       PERL_SH_DIR too long

           (F) An error peculiar to OS/2.  PERL_SH_DIR is the directory to find the "sh"-shell

           in.  See "PERL_SH_DIR" in perlos2.

       PERL_SIGNALS illegal: "%s"

           (X) See "PERL_SIGNALS" in perlrun for legal values.

       Perls since %s too modern--this is %s, stopped

           (F) The code you are trying to run claims it will not run on the version of Perl you

           are using because it is too new.  Maybe the code needs to be updated, or maybe it is

           simply wrong and the version check should just be removed.

       perl: warning: Non hex character in '$ENV{PERL_HASH_SEED}', seed only partially set

           (S) PERL_HASH_SEED should match /^\s*(?:0x)?[0-9a-fA-F]+\s*\z/ but it contained a non

           hex character.  This could mean you are not using the hash seed you think you are.

       perl: warning: Setting locale failed.

           (S) The whole warning message will look something like:

                   perl: warning: Setting locale failed.

                   perl: warning: Please check that your locale settings:

                           LC_ALL = "En_US",

                           LANG = (unset)

                       are supported and installed on your system.

                   perl: warning: Falling back to the standard locale ("C"). Page 92/146



           Exactly what were the failed locale settings varies.  In the above the settings were

           that the LC_ALL was "En_US" and the LANG had no value.  This error means that Perl

           detected that you and/or your operating system supplier and/or system administrator

           have set up the so-called locale system but Perl could not use those settings.  This

           was not dead serious, fortunately: there is a "default locale" called "C" that Perl

           can and will use, and the script will be run.  Before you really fix the problem,

           however, you will get the same error message each time you run Perl.  How to really

           fix the problem can be found in perllocale section LOCALE PROBLEMS.

       perl: warning: strange setting in '$ENV{PERL_PERTURB_KEYS}': '%s'

           (S) Perl was run with the environment variable PERL_PERTURB_KEYS defined but

           containing an unexpected value.  The legal values of this setting are as follows.

             Numeric | String        | Result

             --------+---------------+-----------------------------------------

             0       | NO            | Disables key traversal randomization

             1       | RANDOM        | Enables full key traversal randomization

             2       | DETERMINISTIC | Enables repeatable key traversal

                     |               | randomization

           Both numeric and string values are accepted, but note that string values are case

           sensitive.  The default for this setting is "RANDOM" or 1.

       pid %x not a child

           (W exec) A warning peculiar to VMS.  Waitpid() was asked to wait for a process which

           isn't a subprocess of the current process.  While this is fine from VMS' perspective,

           it's probably not what you intended.

       'P' must have an explicit size in unpack

           (F) The unpack format P must have an explicit size, not "*".

       POSIX class [:%s:] unknown in regex; marked by <--?HERE in m/%s/

           (F) The class in the character class [: :] syntax is unknown.  The <--?HERE shows

           whereabouts in the regular expression the problem was discovered.  Note that the POSIX

           character classes do not have the "is" prefix the corresponding C interfaces have: in

           other words, it's "[[:print:]]", not "isprint".  See perlre.

       POSIX getpgrp can't take an argument

           (F) Your system has POSIX getpgrp(), which takes no argument, unlike the BSD version,

           which takes a pid. Page 93/146



       POSIX syntax [%c %c] belongs inside character classes%s in regex; marked by <--?HERE in

       m/%s/

           (W regexp) Perl thinks that you intended to write a POSIX character class, but didn't

           use enough brackets.  These POSIX class constructs [: :], [= =], and [. .]  go inside

           character classes, the [] are part of the construct, for example:

           "qr/[012[:alpha:]345]/".  What the regular expression pattern compiled to is probably

           not what you were intending.  For example, "qr/[:alpha:]/" compiles to a regular

           bracketed character class consisting of the four characters ":",  "a",  "l", "h", and

           "p".  To specify the POSIX class, it should have been written "qr/[[:alpha:]]/".

           Note that [= =] and [. .] are not currently implemented; they are simply placeholders

           for future extensions and will cause fatal errors.  The <--?HERE shows whereabouts in

           the regular expression the problem was discovered.  See perlre.

           If the specification of the class was not completely valid, the message indicates

           that.

       POSIX syntax [. .] is reserved for future extensions in regex; marked by <--?HERE in m/%s/

           (F) Within regular expression character classes ([]) the syntax beginning with "[."

           and ending with ".]" is reserved for future extensions.  If you need to represent

           those character sequences inside a regular expression character class, just quote the

           square brackets with the backslash: "\[."  and ".\]".  The <--?HERE shows whereabouts

           in the regular expression the problem was discovered.  See perlre.

       POSIX syntax [= =] is reserved for future extensions in regex; marked by <--?HERE in m/%s/

           (F) Within regular expression character classes ([]) the syntax beginning with "[="

           and ending with "=]" is reserved for future extensions.  If you need to represent

           those character sequences inside a regular expression character class, just quote the

           square brackets with the backslash: "\[=" and "=\]".  The <--?HERE shows whereabouts

           in the regular expression the problem was discovered.  See perlre.

       Possible attempt to put comments in qw() list

           (W qw) qw() lists contain items separated by whitespace; as with literal strings,

           comment characters are not ignored, but are instead treated as literal data.  (You may

           have used different delimiters than the parentheses shown here; braces are also

           frequently used.)

           You probably wrote something like this:

               @list = qw( Page 94/146



                   a # a comment

                   b # another comment

               );

           when you should have written this:

               @list = qw(

                   a

                   b

               );

           If you really want comments, build your list the old-fashioned way, with quotes and

           commas:

               @list = (

                   'a',    # a comment

                   'b',    # another comment

               );

       Possible attempt to separate words with commas

           (W qw) qw() lists contain items separated by whitespace; therefore commas aren't

           needed to separate the items.  (You may have used different delimiters than the

           parentheses shown here; braces are also frequently used.)

           You probably wrote something like this:

               qw! a, b, c !;

           which puts literal commas into some of the list items.  Write it without commas if you

           don't want them to appear in your data:

               qw! a b c !;

       Possible memory corruption: %s overflowed 3rd argument

           (F) An ioctl() or fcntl() returned more than Perl was bargaining for.  Perl guesses a

           reasonable buffer size, but puts a sentinel byte at the end of the buffer just in

           case.  This sentinel byte got clobbered, and Perl assumes that memory is now

           corrupted.  See "ioctl" in perlfunc.

       Possible precedence issue with control flow operator

           (W syntax) There is a possible problem with the mixing of a control flow operator

           (e.g. "return") and a low-precedence operator like "or".  Consider:

               sub { return $a or $b; }

           This is parsed as: Page 95/146



               sub { (return $a) or $b; }

           Which is effectively just:

               sub { return $a; }

           Either use parentheses or the high-precedence variant of the operator.

           Note this may be also triggered for constructs like:

               sub { 1 if die; }

       Possible precedence problem on bitwise %s operator

           (W precedence) Your program uses a bitwise logical operator in conjunction with a

           numeric comparison operator, like this :

               if ($x & $y == 0) { ... }

           This expression is actually equivalent to "$x & ($y == 0)", due to the higher

           precedence of "==".  This is probably not what you want.  (If you really meant to

           write this, disable the warning, or, better, put the parentheses explicitly and write

           "$x & ($y == 0)").

       Possible unintended interpolation of $\ in regex

           (W ambiguous) You said something like "m/$\/" in a regex.  The regex "m/foo$\s+bar/m"

           translates to: match the word 'foo', the output record separator (see "$\" in perlvar)

           and the letter 's' (one time or more) followed by the word 'bar'.

           If this is what you intended then you can silence the warning by using "m/${\}/" (for

           example: "m/foo${\}s+bar/").

           If instead you intended to match the word 'foo' at the end of the line followed by

           whitespace and the word 'bar' on the next line then you can use "m/$(?)\/" (for

           example: "m/foo$(?)\s+bar/").

       Possible unintended interpolation of %s in string

           (W ambiguous) You said something like '@foo' in a double-quoted string but there was

           no array @foo in scope at the time.  If you wanted a literal @foo, then write it as

           \@foo; otherwise find out what happened to the array you apparently lost track of.

       Precedence problem: open %s should be open(%s)

           (S precedence) The old irregular construct

               open FOO || die;

           is now misinterpreted as

               open(FOO || die);

           because of the strict regularization of Perl 5's grammar into unary and list Page 96/146



           operators.  (The old open was a little of both.)  You must put parentheses around the

           filehandle, or use the new "or" operator instead of "||".

       Premature end of script headers

           See "500 Server error".

       printf() on closed filehandle %s

           (W closed) The filehandle you're writing to got itself closed sometime before now.

           Check your control flow.

       print() on closed filehandle %s

           (W closed) The filehandle you're printing on got itself closed sometime before now.

           Check your control flow.

       Process terminated by SIG%s

           (W) This is a standard message issued by OS/2 applications, while *nix applications

           die in silence.  It is considered a feature of the OS/2 port.  One can easily disable

           this by appropriate sighandlers, see "Signals" in perlipc.  See also "Process

           terminated by SIGTERM/SIGINT" in perlos2.

       Prototype after '%c' for %s : %s

           (W illegalproto) A character follows % or @ in a prototype.  This is useless, since %

           and @ gobble the rest of the subroutine arguments.

       Prototype mismatch: %s vs %s

           (S prototype) The subroutine being declared or defined had previously been declared or

           defined with a different function prototype.

       Prototype not terminated

           (F) You've omitted the closing parenthesis in a function prototype definition.

       Prototype '%s' overridden by attribute 'prototype(%s)' in %s

           (W prototype) A prototype was declared in both the parentheses after the sub name and

           via the prototype attribute.  The prototype in parentheses is useless, since it will

           be replaced by the prototype from the attribute before it's ever used.

       Quantifier follows nothing in regex; marked by <--?HERE in m/%s/

           (F) You started a regular expression with a quantifier.  Backslash it if you meant it

           literally.  The <--?HERE shows whereabouts in the regular expression the problem was

           discovered.  See perlre.

       Quantifier in {,} bigger than %d in regex; marked by <--?HERE in m/%s/

           (F) There is currently a limit to the size of the min and max values of the {min,max} Page 97/146



           construct.  The <--?HERE shows whereabouts in the regular expression the problem was

           discovered.  See perlre.

       Quantifier {n,m} with n > m can't match in regex

       Quantifier {n,m} with n > m can't match in regex; marked by <--?HERE in m/%s/

           (W regexp) Minima should be less than or equal to maxima.  If you really want your

           regexp to match something 0 times, just put {0}.

       Quantifier unexpected on zero-length expression in regex m/%s/

           (W regexp) You applied a regular expression quantifier in a place where it makes no

           sense, such as on a zero-width assertion.  Try putting the quantifier inside the

           assertion instead.  For example, the way to match "abc" provided that it is followed

           by three repetitions of "xyz" is "/abc(?=(?:xyz){3})/", not "/abc(?=xyz){3}/".

       Range iterator outside integer range

           (F) One (or both) of the numeric arguments to the range operator ".."  are outside the

           range which can be represented by integers internally.  One possible workaround is to

           force Perl to use magical string increment by prepending "0" to your numbers.

       Ranges of ASCII printables should be some subset of "0-9", "A-Z", or "a-z" in regex;

       marked by <--?HERE in m/%s/

           (W regexp) (only under "use?re?'strict'" or within "(?[...])")

           Stricter rules help to find typos and other errors.  Perhaps you didn't even intend a

           range here, if the "-" was meant to be some other character, or should have been

           escaped (like "\-").  If you did intend a range, the one that was used is not portable

           between ASCII and EBCDIC platforms, and doesn't have an obvious meaning to a casual

           reader.

            [3-7]    # OK; Obvious and portable

            [d-g]    # OK; Obvious and portable

            [A-Y]    # OK; Obvious and portable

            [A-z]    # WRONG; Not portable; not clear what is meant

            [a-Z]    # WRONG; Not portable; not clear what is meant

            [%-.]    # WRONG; Not portable; not clear what is meant

            [\x41-Z] # WRONG; Not portable; not obvious to non-geek

           (You can force portability by specifying a Unicode range, which means that the

           endpoints are specified by "\N{...}", but the meaning may still not be obvious.)  The

           stricter rules require that ranges that start or stop with an ASCII character that is Page 98/146



           not a control have all their endpoints be the literal character, and not some escape

           sequence (like "\x41"), and the ranges must be all digits, or all uppercase letters,

           or all lowercase letters.

       Ranges of digits should be from the same group in regex; marked by <--?HERE in m/%s/

           (W regexp) (only under "use?re?'strict'" or within "(?[...])")

           Stricter rules help to find typos and other errors.  You included a range, and at

           least one of the end points is a decimal digit.  Under the stricter rules, when this

           happens, both end points should be digits in the same group of 10 consecutive digits.

       readdir() attempted on invalid dirhandle %s

           (W io) The dirhandle you're reading from is either closed or not really a dirhandle.

           Check your control flow.

       readline() on closed filehandle %s

           (W closed) The filehandle you're reading from got itself closed sometime before now.

           Check your control flow.

       readline() on unopened filehandle %s

           (W unopened) The filehandle you're reading from was never opened.  Check your control

           flow.

       read() on closed filehandle %s

           (W closed) You tried to read from a closed filehandle.

       read() on unopened filehandle %s

           (W unopened) You tried to read from a filehandle that was never opened.

       Reallocation too large: %x

           (F) You can't allocate more than 64K on an MS-DOS machine.

       realloc() of freed memory ignored

           (S malloc) An internal routine called realloc() on something that had already been

           freed.

       Recompile perl with -DDEBUGGING to use -D switch

           (S debugging) You can't use the -D option unless the code to produce the desired

           output is compiled into Perl, which entails some overhead, which is why it's currently

           left out of your copy.

       Recursive call to Perl_load_module in PerlIO_find_layer

           (P) It is currently not permitted to load modules when creating a filehandle inside an

           %INC hook.  This can happen with "open my $fh, '<', \$scalar", which implicitly loads Page 99/146



           PerlIO::scalar.  Try loading PerlIO::scalar explicitly first.

       Recursive inheritance detected in package '%s'

           (F) While calculating the method resolution order (MRO) of a package, Perl believes it

           found an infinite loop in the @ISA hierarchy.  This is a crude check that bails out

           after 100 levels of @ISA depth.

       Redundant argument in %s

           (W redundant) You called a function with more arguments than other arguments you

           supplied indicated would be needed.  Currently only emitted when a printf-type format

           required fewer arguments than were supplied, but might be used in the future for e.g.

           "pack" in perlfunc.

       refcnt_dec: fd %d%s

       refcnt: fd %d%s

       refcnt_inc: fd %d%s

           (P) Perl's I/O implementation failed an internal consistency check.  If you see this

           message, something is very wrong.

       Reference found where even-sized list expected

           (W misc) You gave a single reference where Perl was expecting a list with an even

           number of elements (for assignment to a hash).  This usually means that you used the

           anon hash constructor when you meant to use parens.  In any case, a hash requires

           key/value pairs.

               %hash = { one => 1, two => 2, };    # WRONG

               %hash = [ qw/ an anon array / ];    # WRONG

               %hash = ( one => 1, two => 2, );    # right

               %hash = qw( one 1 two 2 );                  # also fine

       Reference is already weak

           (W misc) You have attempted to weaken a reference that is already weak.  Doing so has

           no effect.

       Reference is not weak

           (W misc) You have attempted to unweaken a reference that is not weak.  Doing so has no

           effect.

       Reference to invalid group 0 in regex; marked by <--?HERE in m/%s/

           (F) You used "\g0" or similar in a regular expression.  You may refer to capturing

           parentheses only with strictly positive integers (normal backreferences) or with Page 100/146



           strictly negative integers (relative backreferences).  Using 0 does not make sense.

       Reference to nonexistent group in regex; marked by <--?HERE in m/%s/

           (F) You used something like "\7" in your regular expression, but there are not at

           least seven sets of capturing parentheses in the expression.  If you wanted to have

           the character with ordinal 7 inserted into the regular expression, prepend zeroes to

           make it three digits long: "\007"

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

       Reference to nonexistent named group in regex; marked by <--?HERE in m/%s/

           (F) You used something like "\k'NAME'" or "\k<NAME>" in your regular expression, but

           there is no corresponding named capturing parentheses such as "(?'NAME'...)" or

           "(?<NAME>...)".  Check if the name has been spelled correctly both in the

           backreference and the declaration.

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

       Reference to nonexistent or unclosed group in regex; marked by <--?HERE in m/%s/

           (F) You used something like "\g{-7}" in your regular expression, but there are not at

           least seven sets of closed capturing parentheses in the expression before where the

           "\g{-7}" was located.

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

       regexp memory corruption

           (P) The regular expression engine got confused by what the regular expression compiler

           gave it.

       Regexp modifier "/%c" may appear a maximum of twice

       Regexp modifier "%c" may appear a maximum of twice in regex; marked by <--?HERE in m/%s/

           (F) The regular expression pattern had too many occurrences of the specified modifier.

           Remove the extraneous ones.

       Regexp modifier "%c" may not appear after the "-" in regex; marked by <-- HERE in m/%s/

           (F) Turning off the given modifier has the side effect of turning on another one.

           Perl currently doesn't allow this.  Reword the regular expression to use the modifier

           you want to turn on (and place it before the minus), instead of the one you want to

           turn off.

       Regexp modifier "/%c" may not appear twice

       Regexp modifier "%c" may not appear twice in regex; marked by <-- HERE in m/%s/

           (F) The regular expression pattern had too many occurrences of the specified modifier. Page 101/146



           Remove the extraneous ones.

       Regexp modifiers "/%c" and "/%c" are mutually exclusive

       Regexp modifiers "%c" and "%c" are mutually exclusive in regex; marked by <--?HERE in

       m/%s/

           (F) The regular expression pattern had more than one of these mutually exclusive

           modifiers.  Retain only the modifier that is supposed to be there.

       Regexp out of space in regex m/%s/

           (P) A "can't happen" error, because safemalloc() should have caught it earlier.

       Repeated format line will never terminate (~~ and @#)

           (F) Your format contains the ~~ repeat-until-blank sequence and a numeric field that

           will never go blank so that the repetition never terminates.  You might use ^#

           instead.  See perlform.

       Replacement list is longer than search list

           (W misc) You have used a replacement list that is longer than the search list.  So the

           additional elements in the replacement list are meaningless.

       '(*%s' requires a terminating ':' in regex; marked by <-- HERE in m/%s/

           (F) You used a construct that needs a colon and pattern argument.  Supply these or

           check that you are using the right construct.

       '%s' resolved to '\o{%s}%d'

           As of Perl 5.32, this message is no longer generated.  Instead, see "Non-octal

           character '%c' terminates \o early.  Resolved as "%s"".  (W misc, regexp)  You wrote

           something like "\08", or "\179" in a double-quotish string.  All but the last digit is

           treated as a single character, specified in octal.  The last digit is the next

           character in the string.  To tell Perl that this is indeed what you want, you can use

           the "\o{ }" syntax, or use exactly three digits to specify the octal for the

           character.

       Reversed %s= operator

           (W syntax) You wrote your assignment operator backwards.  The = must always come last,

           to avoid ambiguity with subsequent unary operators.

       rewinddir() attempted on invalid dirhandle %s

           (W io) The dirhandle you tried to do a rewinddir() on is either closed or not really a

           dirhandle.  Check your control flow.

       Scalars leaked: %d Page 102/146



           (S internal) Something went wrong in Perl's internal bookkeeping of scalars: not all

           scalar variables were deallocated by the time Perl exited.  What this usually

           indicates is a memory leak, which is of course bad, especially if the Perl program is

           intended to be long-running.

       Scalar value @%s[%s] better written as $%s[%s]

           (W syntax) You've used an array slice (indicated by @) to select a single element of

           an array.  Generally it's better to ask for a scalar value (indicated by $).  The

           difference is that $foo[&bar] always behaves like a scalar, both when assigning to it

           and when evaluating its argument, while @foo[&bar] behaves like a list when you assign

           to it, and provides a list context to its subscript, which can do weird things if

           you're expecting only one subscript.

           On the other hand, if you were actually hoping to treat the array element as a list,

           you need to look into how references work, because Perl will not magically convert

           between scalars and lists for you.  See perlref.

       Scalar value @%s{%s} better written as $%s{%s}

           (W syntax) You've used a hash slice (indicated by @) to select a single element of a

           hash.  Generally it's better to ask for a scalar value (indicated by $).  The

           difference is that $foo{&bar} always behaves like a scalar, both when assigning to it

           and when evaluating its argument, while @foo{&bar} behaves like a list when you assign

           to it, and provides a list context to its subscript, which can do weird things if

           you're expecting only one subscript.

           On the other hand, if you were actually hoping to treat the hash element as a list,

           you need to look into how references work, because Perl will not magically convert

           between scalars and lists for you.  See perlref.

       Search pattern not terminated

           (F) The lexer couldn't find the final delimiter of a // or m{} construct.  Remember

           that bracketing delimiters count nesting level.  Missing the leading "$" from a

           variable $m may cause this error.

           Note that since Perl 5.10.0 a // can also be the defined-or construct, not just the

           empty search pattern.  Therefore code written in Perl 5.10.0 or later that uses the //

           as the defined-or can be misparsed by pre-5.10.0 Perls as a non-terminated search

           pattern.

       seekdir() attempted on invalid dirhandle %s Page 103/146



           (W io) The dirhandle you are doing a seekdir() on is either closed or not really a

           dirhandle.  Check your control flow.

       %sseek() on unopened filehandle

           (W unopened) You tried to use the seek() or sysseek() function on a filehandle that

           was either never opened or has since been closed.

       select not implemented

           (F) This machine doesn't implement the select() system call.

       Self-ties of arrays and hashes are not supported

           (F) Self-ties are of arrays and hashes are not supported in the current

           implementation.

       Semicolon seems to be missing

           (W semicolon) A nearby syntax error was probably caused by a missing semicolon, or

           possibly some other missing operator, such as a comma.

       semi-panic: attempt to dup freed string

           (S internal) The internal newSVsv() routine was called to duplicate a scalar that had

           previously been marked as free.

       sem%s not implemented

           (F) You don't have System V semaphore IPC on your system.

       send() on closed socket %s

           (W closed) The socket you're sending to got itself closed sometime before now.  Check

           your control flow.

       Sequence "\c{" invalid

           (F) These three characters may not appear in sequence in a double-quotish context.

           This message is raised only on non-ASCII platforms (a different error message is

           output on ASCII ones).  If you were intending to specify a control character with this

           sequence, you'll have to use a different way to specify it.

       Sequence (? incomplete in regex; marked by <--?HERE in m/%s/

           (F) A regular expression ended with an incomplete extension (?.  The <--?HERE shows

           whereabouts in the regular expression the problem was discovered.  See perlre.

       Sequence (?%c...) not implemented in regex; marked by <--?HERE in m/%s/

           (F) A proposed regular expression extension has the character reserved but has not yet

           been written.  The <--?HERE shows whereabouts in the regular expression the problem

           was discovered.  See perlre. Page 104/146



       Sequence (?%s...) not recognized in regex; marked by <--?HERE in m/%s/

           (F) You used a regular expression extension that doesn't make sense.  The <--?HERE

           shows whereabouts in the regular expression the problem was discovered.  This may

           happen when using the "(?^...)" construct to tell Perl to use the default regular

           expression modifiers, and you redundantly specify a default modifier.  For other

           causes, see perlre.

       Sequence (?#... not terminated in regex m/%s/

           (F) A regular expression comment must be terminated by a closing parenthesis.

           Embedded parentheses aren't allowed.  See perlre.

       Sequence (?&... not terminated in regex; marked by <--?HERE in m/%s/

           (F) A named reference of the form "(?&...)" was missing the final closing parenthesis

           after the name.  The <--?HERE shows whereabouts in the regular expression the problem

           was discovered.

       Sequence (?%c... not terminated in regex; marked by <--?HERE in m/%s/

           (F) A named group of the form "(?'...')" or "(?<...>)" was missing the final closing

           quote or angle bracket.  The <--?HERE shows whereabouts in the regular expression the

           problem was discovered.

       Sequence (?(%c... not terminated in regex; marked by <--?HERE in m/%s/

           (F) A named reference of the form "(?('...')...)" or "(?(<...>)...)" was missing the

           final closing quote or angle bracket after the name.  The <--?HERE shows whereabouts

           in the regular expression the problem was discovered.

       Sequence (?... not terminated in regex; marked by <--?HERE in m/%s/

           (F) There was no matching closing parenthesis for the '('.  The <--?HERE shows

           whereabouts in the regular expression the problem was discovered.

       Sequence \%s... not terminated in regex; marked by <--?HERE in m/%s/

           (F) The regular expression expects a mandatory argument following the escape sequence

           and this has been omitted or incorrectly written.

       Sequence (?{...}) not terminated with ')'

           (F) The end of the perl code contained within the {...} must be followed immediately

           by a ')'.

       Sequence (?P>... not terminated in regex; marked by <--?HERE in m/%s/

           (F) A named reference of the form "(?P>...)" was missing the final closing parenthesis

           after the name.  The <--?HERE shows whereabouts in the regular expression the problem Page 105/146



           was discovered.

       Sequence (?P<... not terminated in regex; marked by <--?HERE in m/%s/

           (F) A named group of the form "(?P<...>')" was missing the final closing angle

           bracket.  The <--?HERE shows whereabouts in the regular expression the problem was

           discovered.

       Sequence ?P=... not terminated in regex; marked by <--?HERE in m/%s/

           (F) A named reference of the form "(?P=...)" was missing the final closing parenthesis

           after the name.  The <--?HERE shows whereabouts in the regular expression the problem

           was discovered.

       Sequence (?R) not terminated in regex m/%s/

           (F) An "(?R)" or "(?0)" sequence in a regular expression was missing the final

           parenthesis.

       500 Server error

           (A) This is the error message generally seen in a browser window when trying to run a

           CGI program (including SSI) over the web.  The actual error text varies widely from

           server to server.  The most frequently-seen variants are "500 Server error", "Method

           (something) not permitted", "Document contains no data", "Premature end of script

           headers", and "Did not produce a valid header".

           This is a CGI error, not a Perl error.

           You need to make sure your script is executable, is accessible by the user CGI is

           running the script under (which is probably not the user account you tested it under),

           does not rely on any environment variables (like PATH) from the user it isn't running

           under, and isn't in a location where the CGI server can't find it, basically, more or

           less.  Please see the following for more information:

                   https://www.perl.org/CGI_MetaFAQ.html

                   http://www.htmlhelp.org/faq/cgifaq.html

                   http://www.w3.org/Security/Faq/

           You should also look at perlfaq9.

       setegid() not implemented

           (F) You tried to assign to $), and your operating system doesn't support the setegid()

           system call (or equivalent), or at least Configure didn't think so.

       seteuid() not implemented

           (F) You tried to assign to $>, and your operating system doesn't support the seteuid() Page 106/146



           system call (or equivalent), or at least Configure didn't think so.

       setpgrp can't take arguments

           (F) Your system has the setpgrp() from BSD 4.2, which takes no arguments, unlike POSIX

           setpgid(), which takes a process ID and process group ID.

       setrgid() not implemented

           (F) You tried to assign to $(, and your operating system doesn't support the setrgid()

           system call (or equivalent), or at least Configure didn't think so.

       setruid() not implemented

           (F) You tried to assign to $<, and your operating system doesn't support the setruid()

           system call (or equivalent), or at least Configure didn't think so.

       setsockopt() on closed socket %s

           (W closed) You tried to set a socket option on a closed socket.  Did you forget to

           check the return value of your socket() call?  See "setsockopt" in perlfunc.

       Setting $/ to a reference to %s is forbidden

           (F) You assigned a reference to a scalar to $/ where the referenced item is not a

           positive integer.  In older perls this appeared to work the same as setting it to

           "undef" but was in fact internally different, less efficient and with very bad luck

           could have resulted in your file being split by a stringified form of the reference.

           In Perl 5.20.0 this was changed so that it would be exactly the same as setting $/ to

           undef, with the exception that this warning would be thrown.

           You are recommended to change your code to set $/ to "undef" explicitly if you wish to

           slurp the file.  As of Perl 5.28 assigning $/ to a reference to an integer which isn't

           positive is a fatal error.

       Setting $/ to %s reference is forbidden

           (F) You tried to assign a reference to a non integer to $/.  In older Perls this would

           have behaved similarly to setting it to a reference to a positive integer, where the

           integer was the address of the reference.  As of Perl 5.20.0 this is a fatal error, to

           allow future versions of Perl to use non-integer refs for more interesting purposes.

       shm%s not implemented

           (F) You don't have System V shared memory IPC on your system.

       !=~ should be !~

           (W syntax) The non-matching operator is !~, not !=~.  !=~ will be interpreted as the

           != (numeric not equal) and ~ (1's complement) operators: probably not what you Page 107/146



           intended.

       /%s/ should probably be written as "%s"

           (W syntax) You have used a pattern where Perl expected to find a string, as in the

           first argument to "join".  Perl will treat the true or false result of matching the

           pattern against $_ as the string, which is probably not what you had in mind.

       shutdown() on closed socket %s

           (W closed) You tried to do a shutdown on a closed socket.  Seems a bit superfluous.

       SIG%s handler "%s" not defined

           (W signal) The signal handler named in %SIG doesn't, in fact, exist.  Perhaps you put

           it into the wrong package?

       Slab leaked from cv %p

           (S) If you see this message, then something is seriously wrong with the internal

           bookkeeping of op trees.  An op tree needed to be freed after a compilation error, but

           could not be found, so it was leaked instead.

       sleep(%u) too large

           (W overflow) You called "sleep" with a number that was larger than it can reliably

           handle and "sleep" probably slept for less time than requested.

       Slurpy parameter not last

           (F) In a subroutine signature, you put something after a slurpy (array or hash)

           parameter.  The slurpy parameter takes all the available arguments, so there can't be

           any left to fill later parameters.

       Smart matching a non-overloaded object breaks encapsulation

           (F) You should not use the "~~" operator on an object that does not overload it: Perl

           refuses to use the object's underlying structure for the smart match.

       Smartmatch is experimental

           (S experimental::smartmatch) This warning is emitted if you use the smartmatch ("~~")

           operator.  This is currently an experimental feature, and its details are subject to

           change in future releases of Perl.  Particularly, its current behavior is noticed for

           being unnecessarily complex and unintuitive, and is very likely to be overhauled.

       Sorry, hash keys must be smaller than 2**31 bytes

           (F) You tried to create a hash containing a very large key, where "very large" means

           that it needs at least 2 gigabytes to store. Unfortunately, Perl doesn't yet handle

           such large hash keys. You should reconsider your design to avoid hashing such a long Page 108/146



           string directly.

       sort is now a reserved word

           (F) An ancient error message that almost nobody ever runs into anymore.  But before

           sort was a keyword, people sometimes used it as a filehandle.

       Source filters apply only to byte streams

           (F) You tried to activate a source filter (usually by loading a source filter module)

           within a string passed to "eval".  This is not permitted under the "unicode_eval"

           feature.  Consider using "evalbytes" instead.  See feature.

       splice() offset past end of array

           (W misc) You attempted to specify an offset that was past the end of the array passed

           to splice().  Splicing will instead commence at the end of the array, rather than past

           it.  If this isn't what you want, try explicitly pre-extending the array by assigning

           $#array = $offset.  See "splice" in perlfunc.

       Split loop

           (P) The split was looping infinitely.  (Obviously, a split shouldn't iterate more

           times than there are characters of input, which is what happened.)  See "split" in

           perlfunc.

       Statement unlikely to be reached

           (W exec) You did an exec() with some statement after it other than a die().  This is

           almost always an error, because exec() never returns unless there was a failure.  You

           probably wanted to use system() instead, which does return.  To suppress this warning,

           put the exec() in a block by itself.

       "state" subroutine %s can't be in a package

           (F) Lexically scoped subroutines aren't in a package, so it doesn't make sense to try

           to declare one with a package qualifier on the front.

       "state %s" used in sort comparison

           (W syntax) The package variables $a and $b are used for sort comparisons.  You used $a

           or $b in as an operand to the "<=>" or "cmp" operator inside a sort comparison block,

           and the variable had earlier been declared as a lexical variable.  Either qualify the

           sort variable with the package name, or rename the lexical variable.

       "state" variable %s can't be in a package

           (F) Lexically scoped variables aren't in a package, so it doesn't make sense to try to

           declare one with a package qualifier on the front.  Use local() if you want to Page 109/146



           localize a package variable.

       stat() on unopened filehandle %s

           (W unopened) You tried to use the stat() function on a filehandle that was either

           never opened or has since been closed.

       Strings with code points over 0xFF may not be mapped into in-memory file handles

           (W utf8) You tried to open a reference to a scalar for read or append where the scalar

           contained code points over 0xFF.  In-memory files model on-disk files and can only

           contain bytes.

       Stub found while resolving method "%s" overloading "%s" in package "%s"

           (P) Overloading resolution over @ISA tree may be broken by importation stubs.  Stubs

           should never be implicitly created, but explicit calls to "can" may break this.

       Subroutine attributes must come before the signature

           (F) When subroutine signatures are enabled, any subroutine attributes must come before

           the signature. Note that this order was the opposite in versions 5.22..5.26. So:

               sub foo :lvalue ($a, $b) { ... }  # 5.20 and 5.28 +

               sub foo ($a, $b) :lvalue { ... }  # 5.22 .. 5.26

       Subroutine "&%s" is not available

           (W closure) During compilation, an inner named subroutine or eval is attempting to

           capture an outer lexical subroutine that is not currently available.  This can happen

           for one of two reasons.  First, the lexical subroutine may be declared in an outer

           anonymous subroutine that has not yet been created.  (Remember that named subs are

           created at compile time, while anonymous subs are created at run-time.)  For example,

               sub { my sub a {...} sub f { \&a } }

           At the time that f is created, it can't capture the current "a" sub, since the

           anonymous subroutine hasn't been created yet.  Conversely, the following won't give a

           warning since the anonymous subroutine has by now been created and is live:

               sub { my sub a {...} eval 'sub f { \&a }' }->();

           The second situation is caused by an eval accessing a lexical subroutine that has gone

           out of scope, for example,

               sub f {

                   my sub a {...}

                   sub { eval '\&a' }

               } Page 110/146



               f()->();

           Here, when the '\&a' in the eval is being compiled, f() is not currently being

           executed, so its &a is not available for capture.

       "%s" subroutine &%s masks earlier declaration in same %s

           (W shadow) A "my" or "state" subroutine has been redeclared in the current scope or

           statement, effectively eliminating all access to the previous instance.  This is

           almost always a typographical error.  Note that the earlier subroutine will still

           exist until the end of the scope or until all closure references to it are destroyed.

       Subroutine %s redefined

           (W redefine) You redefined a subroutine.  To suppress this warning, say

               {

                   no warnings 'redefine';

                   eval "sub name { ... }";

               }

       Subroutine "%s" will not stay shared

           (W closure) An inner (nested) named subroutine is referencing a "my" subroutine

           defined in an outer named subroutine.

           When the inner subroutine is called, it will see the value of the outer subroutine's

           lexical subroutine as it was before and during the *first* call to the outer

           subroutine; in this case, after the first call to the outer subroutine is complete,

           the inner and outer subroutines will no longer share a common value for the lexical

           subroutine.  In other words, it will no longer be shared.  This will especially make a

           difference if the lexical subroutines accesses lexical variables declared in its

           surrounding scope.

           This problem can usually be solved by making the inner subroutine anonymous, using the

           "sub {}" syntax.  When inner anonymous subs that reference lexical subroutines in

           outer subroutines are created, they are automatically rebound to the current values of

           such lexical subs.

       Substitution loop

           (P) The substitution was looping infinitely.  (Obviously, a substitution shouldn't

           iterate more times than there are characters of input, which is what happened.)  See

           the discussion of substitution in "Regexp Quote-Like Operators" in perlop.

       Substitution pattern not terminated Page 111/146



           (F) The lexer couldn't find the interior delimiter of an s/// or s{}{} construct.

           Remember that bracketing delimiters count nesting level.  Missing the leading "$" from

           variable $s may cause this error.

       Substitution replacement not terminated

           (F) The lexer couldn't find the final delimiter of an s/// or s{}{} construct.

           Remember that bracketing delimiters count nesting level.  Missing the leading "$" from

           variable $s may cause this error.

       substr outside of string

           (W substr)(F) You tried to reference a substr() that pointed outside of a string.

           That is, the absolute value of the offset was larger than the length of the string.

           See "substr" in perlfunc.  This warning is fatal if substr is used in an lvalue

           context (as the left hand side of an assignment or as a subroutine argument for

           example).

       sv_upgrade from type %d down to type %d

           (P) Perl tried to force the upgrade of an SV to a type which was actually inferior to

           its current type.

       Switch (?(condition)... contains too many branches in regex; marked by <--?HERE in m/%s/

           (F) A (?(condition)if-clause|else-clause) construct can have at most two branches (the

           if-clause and the else-clause).  If you want one or both to contain alternation, such

           as using "this|that|other", enclose it in clustering parentheses:

               (?(condition)(?:this|that|other)|else-clause)

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

           See perlre.

       Switch condition not recognized in regex; marked by <--?HERE in m/%s/

           (F) The condition part of a (?(condition)if-clause|else-clause) construct is not

           known.  The condition must be one of the following:

            (1) (2) ...        true if 1st, 2nd, etc., capture matched

            (<NAME>) ('NAME')  true if named capture matched

            (?=...) (?<=...)   true if subpattern matches

            (?!...) (?<!...)   true if subpattern fails to match

            (?{ CODE })        true if code returns a true value

            (R)                true if evaluating inside recursion

            (R1) (R2) ...      true if directly inside capture group 1, 2, etc. Page 112/146



            (R&NAME)           true if directly inside named capture

            (DEFINE)           always false; for defining named subpatterns

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

           See perlre.

       Switch (?(condition)... not terminated in regex; marked by <--?HERE in m/%s/

           (F) You omitted to close a (?(condition)...) block somewhere in the pattern.  Add a

           closing parenthesis in the appropriate position.  See perlre.

       switching effective %s is not implemented

           (F) While under the "use filetest" pragma, we cannot switch the real and effective

           uids or gids.

       syntax error

           (F) Probably means you had a syntax error.  Common reasons include:

               A keyword is misspelled.

               A semicolon is missing.

               A comma is missing.

               An opening or closing parenthesis is missing.

               An opening or closing brace is missing.

               A closing quote is missing.

           Often there will be another error message associated with the syntax error giving more

           information.  (Sometimes it helps to turn on -w.)  The error message itself often

           tells you where it was in the line when it decided to give up.  Sometimes the actual

           error is several tokens before this, because Perl is good at understanding random

           input.  Occasionally the line number may be misleading, and once in a blue moon the

           only way to figure out what's triggering the error is to call "perl -c" repeatedly,

           chopping away half the program each time to see if the error went away.  Sort of the

           cybernetic version of 20?questions.

       syntax error at line %d: '%s' unexpected

           (A) You've accidentally run your script through the Bourne shell instead of Perl.

           Check the #! line, or manually feed your script into Perl yourself.

       syntax error in file %s at line %d, next 2 tokens "%s"

           (F) This error is likely to occur if you run a perl5 script through a perl4

           interpreter, especially if the next 2 tokens are "use strict" or "my $var" or "our

           $var". Page 113/146



       Syntax error in (?[...]) in regex; marked by <-- HERE in m/%s/

           (F) Perl could not figure out what you meant inside this construct; this notifies you

           that it is giving up trying.

       %s syntax OK

           (F) The final summary message when a "perl -c" succeeds.

       sysread() on closed filehandle %s

           (W closed) You tried to read from a closed filehandle.

       sysread() on unopened filehandle %s

           (W unopened) You tried to read from a filehandle that was never opened.

       System V %s is not implemented on this machine

           (F) You tried to do something with a function beginning with "sem", "shm", or "msg"

           but that System V IPC is not implemented in your machine.  In some machines the

           functionality can exist but be unconfigured.  Consult your system support.

       syswrite() on closed filehandle %s

           (W closed) The filehandle you're writing to got itself closed sometime before now.

           Check your control flow.

       "-T" and "-B" not implemented on filehandles

           (F) Perl can't peek at the stdio buffer of filehandles when it doesn't know about your

           kind of stdio.  You'll have to use a filename instead.

       Target of goto is too deeply nested

           (F) You tried to use "goto" to reach a label that was too deeply nested for Perl to

           reach.  Perl is doing you a favor by refusing.

       telldir() attempted on invalid dirhandle %s

           (W io) The dirhandle you tried to telldir() is either closed or not really a

           dirhandle.  Check your control flow.

       tell() on unopened filehandle

           (W unopened) You tried to use the tell() function on a filehandle that was either

           never opened or has since been closed.

       The crypt() function is unimplemented due to excessive paranoia.

           (F) Configure couldn't find the crypt() function on your machine, probably because

           your vendor didn't supply it, probably because they think the U.S. Government thinks

           it's a secret, or at least that they will continue to pretend that it is.  And if you

           quote me on that, I will deny it. Page 114/146



       The experimental declared_refs feature is not enabled

           (F) To declare references to variables, as in "my \%x", you must first enable the

           feature:

               no warnings "experimental::declared_refs";

               use feature "declared_refs";

       The %s function is unimplemented

           (F) The function indicated isn't implemented on this architecture, according to the

           probings of Configure.

       The private_use feature is experimental

           (S experimental::private_use) This feature is actually a hook for future use.

       The regex_sets feature is experimental

           (S experimental::regex_sets) This warning is emitted if you use the syntax "(?[???])"

           in a regular expression.  The details of this feature are subject to change.  If you

           want to use it, but know that in doing so you are taking the risk of using an

           experimental feature which may change in a future Perl version, you can do this to

           silence the warning:

               no warnings "experimental::regex_sets";

       The signatures feature is experimental

           (S experimental::signatures) This warning is emitted if you unwrap a subroutine's

           arguments using a signature.  Simply suppress the warning if you want to use the

           feature, but know that in doing so you are taking the risk of using an experimental

           feature which may change or be removed in a future Perl version:

               no warnings "experimental::signatures";

               use feature "signatures";

               sub foo ($left, $right) { ... }

       The stat preceding %s wasn't an lstat

           (F) It makes no sense to test the current stat buffer for symbolic linkhood if the

           last stat that wrote to the stat buffer already went past the symlink to get to the

           real file.  Use an actual filename instead.

       The Unicode property wildcards feature is experimental

           (S experimental::uniprop_wildcards) This feature is experimental and its behavior may

           in any future release of perl.  See "Wildcards in Property Values" in perlunicode.

       The 'unique' attribute may only be applied to 'our' variables Page 115/146



           (F) This attribute was never supported on "my" or "sub" declarations.

       This Perl can't reset CRTL environ elements (%s)

       This Perl can't set CRTL environ elements (%s=%s)

           (W internal) Warnings peculiar to VMS.  You tried to change or delete an element of

           the CRTL's internal environ array, but your copy of Perl wasn't built with a CRTL that

           contained the setenv() function.  You'll need to rebuild Perl with a CRTL that does,

           or redefine PERL_ENV_TABLES (see perlvms) so that the environ array isn't the target

           of the change to %ENV which produced the warning.

       This Perl has not been built with support for randomized hash key traversal but something

       called Perl_hv_rand_set().

           (F) Something has attempted to use an internal API call which depends on Perl being

           compiled with the default support for randomized hash key traversal, but this Perl has

           been compiled without it.  You should report this warning to the relevant upstream

           party, or recompile perl with default options.

       This use of my() in false conditional is no longer allowed

           (F) You used a declaration similar to "my $x if 0".  There has been a long-standing

           bug in Perl that causes a lexical variable not to be cleared at scope exit when its

           declaration includes a false conditional.  Some people have exploited this bug to

           achieve a kind of static variable.  Since we intend to fix this bug, we don't want

           people relying on this behavior.  You can achieve a similar static effect by declaring

           the variable in a separate block outside the function, eg

               sub f { my $x if 0; return $x++ }

           becomes

               { my $x; sub f { return $x++ } }

           Beginning with perl 5.10.0, you can also use "state" variables to have lexicals that

           are initialized only once (see feature):

               sub f { state $x; return $x++ }

           This use of "my()" in a false conditional was deprecated beginning in Perl 5.10 and

           became a fatal error in Perl 5.30.

       Timeout waiting for another thread to define \p{%s}

           (F) The first time a user-defined property ("User-Defined Character Properties" in

           perlunicode) is used, its definition is looked up and converted into an internal form

           for more efficient handling in subsequent uses.  There could be a race if two or more Page 116/146



           threads tried to do this processing nearly simultaneously.  Instead, a critical

           section is created around this task, locking out all but one thread from doing it.

           This message indicates that the thread that is doing the conversion is taking an

           unexpectedly long time.  The timeout exists solely to prevent deadlock; it's long

           enough that the system was likely thrashing and about to crash.  There is no real

           remedy but rebooting.

       times not implemented

           (F) Your version of the C library apparently doesn't do times().  I suspect you're not

           running on Unix.

       "-T" is on the #! line, it must also be used on the command line

           (X) The #! line (or local equivalent) in a Perl script contains the -T option (or the

           -t option), but Perl was not invoked with -T in its command line.  This is an error

           because, by the time Perl discovers a -T in a script, it's too late to properly taint

           everything from the environment.  So Perl gives up.

           If the Perl script is being executed as a command using the #!  mechanism (or its

           local equivalent), this error can usually be fixed by editing the #! line so that the

           -%c option is a part of Perl's first argument: e.g. change "perl -n -%c" to "perl -%c

           -n".

           If the Perl script is being executed as "perl scriptname", then the -%c option must

           appear on the command line: "perl -%c scriptname".

       To%s: illegal mapping '%s'

           (F) You tried to define a customized To-mapping for lc(), lcfirst, uc(), or ucfirst()

           (or their string-inlined versions), but you specified an illegal mapping.  See "User-

           Defined Character Properties" in perlunicode.

       Too deeply nested ()-groups

           (F) Your template contains ()-groups with a ridiculously deep nesting level.

       Too few args to syscall

           (F) There has to be at least one argument to syscall() to specify the system call to

           call, silly dilly.

       Too few arguments for subroutine '%s' (got %d; expected %d)

           (F) A subroutine using a signature fewer arguments than required by the signature.

           The caller of the subroutine is presumably at fault.

           The message attempts to include the name of the called subroutine.  If the subroutine Page 117/146



           has been aliased, the subroutine's original name will be shown, regardless of what

           name the caller used. It will also indicate the number of arguments given and the

           number expected.

       Too few arguments for subroutine '%s' (got %d; expected at least %d)

           Similar to the previous message but for subroutines that accept a variable number of

           arguments.

       Too late for "-%s" option

           (X) The #! line (or local equivalent) in a Perl script contains the -M, -m or -C

           option.

           In the case of -M and -m, this is an error because those options are not intended for

           use inside scripts.  Use the "use" pragma instead.

           The -C option only works if it is specified on the command line as well (with the same

           sequence of letters or numbers following).  Either specify this option on the command

           line, or, if your system supports it, make your script executable and run it directly

           instead of passing it to perl.

       Too late to run %s block

           (W void) A CHECK or INIT block is being defined during run time proper, when the

           opportunity to run them has already passed.  Perhaps you are loading a file with

           "require" or "do" when you should be using "use" instead.  Or perhaps you should put

           the "require" or "do" inside a BEGIN block.

       Too many args to syscall

           (F) Perl supports a maximum of only 14 args to syscall().

       Too many arguments for %s

           (F) The function requires fewer arguments than you specified.

       Too many arguments for subroutine '%s' (got %d; expected %d)

           (F) A subroutine using a signature received more arguments than permitted by the

           signature.  The caller of the subroutine is presumably at fault.

           The message attempts to include the name of the called subroutine. If the subroutine

           has been aliased, the subroutine's original name will be shown, regardless of what

           name the caller used. It will also indicate the number of arguments given and the

           number expected.

       Too many arguments for subroutine '%s' (got %d; expected at most %d)

           Similar to the previous message but for subroutines that accept a variable number of Page 118/146



           arguments.

       Too many nested open parens in regex; marked by <-- HERE in m/%s/

           (F) You have exceeded the number of open "(" parentheses that haven't been matched by

           corresponding closing ones.  This limit prevents eating up too much memory.  It is

           initially set to 1000, but may be changed by setting "${^RE_COMPILE_RECURSION_LIMIT}"

           to some other value.  This may need to be done in a BEGIN block before the regular

           expression pattern is compiled.

       Too many )'s

           (A) You've accidentally run your script through csh instead of Perl.  Check the #!

           line, or manually feed your script into Perl yourself.

       Too many ('s

           (A) You've accidentally run your script through csh instead of Perl.  Check the #!

           line, or manually feed your script into Perl yourself.

       Trailing \ in regex m/%s/

           (F) The regular expression ends with an unbackslashed backslash.  Backslash it.   See

           perlre.

       Transliteration pattern not terminated

           (F) The lexer couldn't find the interior delimiter of a tr/// or tr[][] or y/// or

           y[][] construct.  Missing the leading "$" from variables $tr or $y may cause this

           error.

       Transliteration replacement not terminated

           (F) The lexer couldn't find the final delimiter of a tr///, tr[][], y/// or y[][]

           construct.

       '%s' trapped by operation mask

           (F) You tried to use an operator from a Safe compartment in which it's disallowed.

           See Safe.

       truncate not implemented

           (F) Your machine doesn't implement a file truncation mechanism that Configure knows

           about.

       try/catch is experimental

           (S experimental::try) This warning is emitted if you use the "try" and "catch" syntax.

           This syntax is currently experimental and its behaviour may change in future releases

           of Perl. Page 119/146



       Type of arg %d to &CORE::%s must be %s

           (F) The subroutine in question in the CORE package requires its argument to be a hard

           reference to data of the specified type.  Overloading is ignored, so a reference to an

           object that is not the specified type, but nonetheless has overloading to handle it,

           will still not be accepted.

       Type of arg %d to %s must be %s (not %s)

           (F) This function requires the argument in that position to be of a certain type.

           Arrays must be @NAME or "@{EXPR}".  Hashes must be %NAME or "%{EXPR}".  No implicit

           dereferencing is allowed--use the {EXPR} forms as an explicit dereference.  See

           perlref.

       umask not implemented

           (F) Your machine doesn't implement the umask function and you tried to use it to

           restrict permissions for yourself (EXPR & 0700).

       Unbalanced context: %d more PUSHes than POPs

           (S internal) The exit code detected an internal inconsistency in how many execution

           contexts were entered and left.

       Unbalanced saves: %d more saves than restores

           (S internal) The exit code detected an internal inconsistency in how many values were

           temporarily localized.

       Unbalanced scopes: %d more ENTERs than LEAVEs

           (S internal) The exit code detected an internal inconsistency in how many blocks were

           entered and left.

       Unbalanced string table refcount: (%d) for "%s"

           (S internal) On exit, Perl found some strings remaining in the shared string table

           used for copy on write and for hash keys.  The entries should have been freed, so this

           indicates a bug somewhere.

       Unbalanced tmps: %d more allocs than frees

           (S internal) The exit code detected an internal inconsistency in how many mortal

           scalars were allocated and freed.

       Undefined format "%s" called

           (F) The format indicated doesn't seem to exist.  Perhaps it's really in another

           package?  See perlform.

       Undefined sort subroutine "%s" called Page 120/146



           (F) The sort comparison routine specified doesn't seem to exist.  Perhaps it's in a

           different package?  See "sort" in perlfunc.

       Undefined subroutine &%s called

           (F) The subroutine indicated hasn't been defined, or if it was, it has since been

           undefined.

       Undefined subroutine called

           (F) The anonymous subroutine you're trying to call hasn't been defined, or if it was,

           it has since been undefined.

       Undefined subroutine in sort

           (F) The sort comparison routine specified is declared but doesn't seem to have been

           defined yet.  See "sort" in perlfunc.

       Undefined top format "%s" called

           (F) The format indicated doesn't seem to exist.  Perhaps it's really in another

           package?  See perlform.

       Undefined value assigned to typeglob

           (W misc) An undefined value was assigned to a typeglob, a la "*foo = undef".  This

           does nothing.  It's possible that you really mean "undef *foo".

       %s: Undefined variable

           (A) You've accidentally run your script through csh instead of Perl.  Check the #!

           line, or manually feed your script into Perl yourself.

       Unescaped left brace in regex is illegal here in regex; marked by <--?HERE in m/%s/

           (F) The simple rule to remember, if you want to match a literal "{" character (U+007B

           "LEFT CURLY BRACKET") in a regular expression pattern, is to escape each literal

           instance of it in some way.  Generally easiest is to precede it with a backslash, like

           "\{" or enclose it in square brackets ("[{]").  If the pattern delimiters are also

           braces, any matching right brace ("}") should also be escaped to avoid confusing the

           parser, for example,

            qr{abc\{def\}ghi}

           Forcing literal "{" characters to be escaped enables the Perl language to be extended

           in various ways in future releases.  To avoid needlessly breaking existing code, the

           restriction is not enforced in contexts where there are unlikely to ever be extensions

           that could conflict with the use there of "{" as a literal.  Those that are not

           potentially ambiguous do not warn; those that are do raise a non-deprecation warning. Page 121/146



           The contexts where no warnings or errors are raised are:

           ?   as the first character in a pattern, or following "^" indicating to anchor the

               match to the beginning of a line.

           ?   as the first character following a "|" indicating alternation.

           ?   as the first character in a parenthesized grouping like

                /foo({bar)/

                /foo(?:{bar)/

           ?   as the first character following a quantifier

                /\s*{/

       Unescaped left brace in regex is passed through in regex; marked by <--?HERE in m/%s/

           (W regexp)  The simple rule to remember, if you want to match a literal "{" character

           (U+007B "LEFT CURLY BRACKET") in a regular expression pattern, is to escape each

           literal instance of it in some way.  Generally easiest is to precede it with a

           backslash, like "\{" or enclose it in square brackets ("[{]").  If the pattern

           delimiters are also braces, any matching right brace ("}") should also be escaped to

           avoid confusing the parser, for example,

            qr{abc\{def\}ghi}

           Forcing literal "{" characters to be escaped enables the Perl language to be extended

           in various ways in future releases.  To avoid needlessly breaking existing code, the

           restriction is not enforced in contexts where there are unlikely to ever be extensions

           that could conflict with the use there of "{" as a literal.  Those that are not

           potentially ambiguous do not warn; those that are raise this warning.  This makes sure

           that an inadvertent typo doesn't silently cause the pattern to compile to something

           unintended.

           The contexts where no warnings or errors are raised are:

           ?   as the first character in a pattern, or following "^" indicating to anchor the

               match to the beginning of a line.

           ?   as the first character following a "|" indicating alternation.

           ?   as the first character in a parenthesized grouping like

                /foo({bar)/

                /foo(?:{bar)/

           ?   as the first character following a quantifier

                /\s*{/ Page 122/146



       Unescaped literal '%c' in regex; marked by <-- HERE in m/%s/

           (W regexp) (only under "use?re?'strict'")

           Within the scope of "use?re?'strict'" in a regular expression pattern, you included an

           unescaped "}" or "]" which was interpreted literally.  These two characters are

           sometimes metacharacters, and sometimes literals, depending on what precedes them in

           the pattern.  This is unlike the similar ")" which is always a metacharacter unless

           escaped.

           This action at a distance, perhaps a large distance, can lead to Perl silently

           misinterpreting what you meant, so when you specify that you want extra checking by

           "use?re?'strict'", this warning is generated.  If you meant the character as a

           literal, simply confirm that to Perl by preceding the character with a backslash, or

           make it into a bracketed character class (like "[}]").  If you meant it as closing a

           corresponding "[" or "{", you'll need to look back through the pattern to find out why

           that isn't happening.

       unexec of %s into %s failed!

           (F) The unexec() routine failed for some reason.  See your local FSF representative,

           who probably put it there in the first place.

       Unexpected binary operator '%c' with no preceding operand in regex; marked by <--?HERE in

       m/%s/

           (F) You had something like this:

            (?[ | \p{Digit} ])

           where the "|" is a binary operator with an operand on the right, but no operand on the

           left.

       Unexpected character in regex; marked by <--?HERE in m/%s/

           (F) You had something like this:

            (?[ z ])

           Within "(?[ ])", no literal characters are allowed unless they are within an inner

           pair of square brackets, like

            (?[ [ z ] ])

           Another possibility is that you forgot a backslash.  Perl isn't smart enough to figure

           out what you really meant.

       Unexpected constant lvalue entersub entry via type/targ %d:%d

           (P) When compiling a subroutine call in lvalue context, Perl failed an internal Page 123/146



           consistency check.  It encountered a malformed op tree.

       Unexpected exit %u

           (S) exit() was called or the script otherwise finished gracefully when

           "PERL_EXIT_WARN" was set in "PL_exit_flags".

       Unexpected exit failure %d

           (S) An uncaught die() was called when "PERL_EXIT_WARN" was set in "PL_exit_flags".

       Unexpected ')' in regex; marked by <--?HERE in m/%s/

           (F) You had something like this:

            (?[ ( \p{Digit} + ) ])

           The ")" is out-of-place.  Something apparently was supposed to be combined with the

           digits, or the "+" shouldn't be there, or something like that.  Perl can't figure out

           what was intended.

       Unexpected ']' with no following ')' in (?[... in regex; marked by <-- HERE in m/%s/

           (F) While parsing an extended character class a ']' character was encountered at a

           point in the definition where the only legal use of ']' is to close the character

           class definition as part of a '])', you may have forgotten the close paren, or

           otherwise confused the parser.

       Unexpected '(' with no preceding operator in regex; marked by <--?HERE in m/%s/

           (F) You had something like this:

            (?[ \p{Digit} ( \p{Lao} + \p{Thai} ) ])

           There should be an operator before the "(", as there's no indication as to how the

           digits are to be combined with the characters in the Lao and Thai scripts.

       Unicode non-character U+%X is not recommended for open interchange

           (S nonchar) Certain codepoints, such as U+FFFE and U+FFFF, are defined by the Unicode

           standard to be non-characters.  Those are legal codepoints, but are reserved for

           internal use; so, applications shouldn't attempt to exchange them.  An application may

           not be expecting any of these characters at all, and receiving them may lead to bugs.

           If you know what you are doing you can turn off this warning by "no warnings

           'nonchar';".

           This is not really a "severe" error, but it is supposed to be raised by default even

           if warnings are not enabled, and currently the only way to do that in Perl is to mark

           it as serious.

       Unicode property wildcard not terminated Page 124/146



           (F) A Unicode property wildcard looks like a delimited regular expression pattern (all

           within the braces of the enclosing "\p{...}".  The closing delimtter to match the

           opening one was not found.  If the opening one is escaped by preceding it with a

           backslash, the closing one must also be so escaped.

       Unicode string properties are not implemented in (?[...]) in regex; marked by <-- HERE in

       m/%s/

           (F) A Unicode string property is one which expands to a sequence of multiple

           characters.  An example is "\p{name=KATAKANA LETTER AINU P}", which is comprised of

           the sequence "\N{KATAKANA LETTER SMALL H}" followed by "\N{COMBINING KATAKANA-HIRAGANA

           SEMI-VOICED SOUND MARK}".  Extended character classes, "(?[...])" currently cannot

           handle these.

       Unicode surrogate U+%X is illegal in UTF-8

           (S surrogate) You had a UTF-16 surrogate in a context where they are not considered

           acceptable.  These code points, between U+D800 and U+DFFF (inclusive), are used by

           Unicode only for UTF-16.  However, Perl internally allows all unsigned integer code

           points (up to the size limit available on your platform), including surrogates.  But

           these can cause problems when being input or output, which is likely where this

           message came from.  If you really really know what you are doing you can turn off this

           warning by "no warnings 'surrogate';".

       Unknown charname '%s'

           (F) The name you used inside "\N{}" is unknown to Perl.  Check the spelling.  You can

           say "use charnames ":loose"" to not have to be so precise about spaces, hyphens, and

           capitalization on standard Unicode names.  (Any custom aliases that have been created

           must be specified exactly, regardless of whether ":loose" is used or not.)  This error

           may also happen if the "\N{}" is not in the scope of the corresponding

           "use?charnames".

       Unknown '(*...)' construct '%s' in regex; marked by <-- HERE in m/%s/

           (F) The "(*" was followed by something that the regular expression compiler does not

           recognize.  Check your spelling.

       Unknown error

           (P) Perl was about to print an error message in $@, but the $@ variable did not exist,

           even after an attempt to create it.

       Unknown locale category %d; can't set it to %s Page 125/146



           (W locale) You used a locale category that perl doesn't recognize, so it cannot carry

           out your request.  Check that you are using a valid category.  If so, see "Multi-

           threaded" in perllocale for advice on reporting this as a bug, and for modifying perl

           locally to accommodate your needs.

       Unknown open() mode '%s'

           (F) The second argument of 3-argument open() is not among the list of valid modes:

           "<", ">", ">>", "+<", "+>", "+>>", "-|", "|-", "<&", ">&".

       Unknown PerlIO layer "%s"

           (W layer) An attempt was made to push an unknown layer onto the Perl I/O system.

           (Layers take care of transforming data between external and internal representations.)

           Note that some layers, such as "mmap", are not supported in all environments.  If your

           program didn't explicitly request the failing operation, it may be the result of the

           value of the environment variable PERLIO.

       Unknown process %x sent message to prime_env_iter: %s

           (P) An error peculiar to VMS.  Perl was reading values for %ENV before iterating over

           it, and someone else stuck a message in the stream of data Perl expected.  Someone's

           very confused, or perhaps trying to subvert Perl's population of %ENV for nefarious

           purposes.

       Unknown regexp modifier "/%s"

           (F) Alphanumerics immediately following the closing delimiter of a regular expression

           pattern are interpreted by Perl as modifier flags for the regex.  One of the ones you

           specified is invalid.  One way this can happen is if you didn't put in white space

           between the end of the regex and a following alphanumeric operator:

            if ($a =~ /foo/and $bar == 3) { ... }

           The "a" is a valid modifier flag, but the "n" is not, and raises this error.  Likely

           what was meant instead was:

            if ($a =~ /foo/ and $bar == 3) { ... }

       Unknown "re" subpragma '%s' (known ones are: %s)

           (W) You tried to use an unknown subpragma of the "re" pragma.

       Unknown switch condition (?(...)) in regex; marked by <--?HERE in m/%s/

           (F) The condition part of a (?(condition)if-clause|else-clause) construct is not

           known.  The condition must be one of the following:

            (1) (2) ...            true if 1st, 2nd, etc., capture matched Page 126/146



            (<NAME>) ('NAME')      true if named capture matched

            (?=...) (?<=...)       true if subpattern matches

            (*pla:...) (*plb:...)  true if subpattern matches; also

                                        (*positive_lookahead:...)

                                        (*positive_lookbehind:...)

            (*nla:...) (*nlb:...)  true if subpattern fails to match; also

                                        (*negative_lookahead:...)

                                        (*negative_lookbehind:...)

            (?{ CODE })            true if code returns a true value

            (R)                    true if evaluating inside recursion

            (R1) (R2) ...          true if directly inside capture group 1, 2,

                                        etc.

            (R&NAME)               true if directly inside named capture

            (DEFINE)               always false; for defining named subpatterns

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

           See perlre.

       Unknown Unicode option letter '%c'

           (F) You specified an unknown Unicode option.  See perlrun documentation of the "-C"

           switch for the list of known options.

       Unknown Unicode option value %d

           (F) You specified an unknown Unicode option.  See perlrun documentation of the "-C"

           switch for the list of known options.

       Unknown user-defined property name \p{%s}

           (F) You specified to use a property within the "\p{...}" which was a syntactically

           valid user-defined property, but no definition was found for it by the time one was

           required to proceed.  Check your spelling.  See "User-Defined Character Properties" in

           perlunicode.

       Unknown verb pattern '%s' in regex; marked by <--?HERE in m/%s/

           (F) You either made a typo or have incorrectly put a "*" quantifier after an open

           brace in your pattern.  Check the pattern and review perlre for details on legal verb

           patterns.

       Unknown warnings category '%s'

           (F) An error issued by the "warnings" pragma.  You specified a warnings category that Page 127/146



           is unknown to perl at this point.

           Note that if you want to enable a warnings category registered by a module (e.g. "use

           warnings 'File::Find'"), you must have loaded this module first.

       Unmatched [ in regex; marked by <--?HERE in m/%s/

           (F) The brackets around a character class must match.  If you wish to include a

           closing bracket in a character class, backslash it or put it first.  The <--?HERE

           shows whereabouts in the regular expression the problem was discovered.  See perlre.

       Unmatched ( in regex; marked by <--?HERE in m/%s/

       Unmatched ) in regex; marked by <--?HERE in m/%s/

           (F) Unbackslashed parentheses must always be balanced in regular expressions.  If

           you're a vi user, the % key is valuable for finding the matching parenthesis.  The

           <--?HERE shows whereabouts in the regular expression the problem was discovered.  See

           perlre.

       Unmatched right %s bracket

           (F) The lexer counted more closing curly or square brackets than opening ones, so

           you're probably missing a matching opening bracket.  As a general rule, you'll find

           the missing one (so to speak) near the place you were last editing.

       Unquoted string "%s" may clash with future reserved word

           (W reserved) You used a bareword that might someday be claimed as a reserved word.

           It's best to put such a word in quotes, or capitalize it somehow, or insert an

           underbar into it.  You might also declare it as a subroutine.

       Unrecognized character %s; marked by <--?HERE after %s near column %d

           (F) The Perl parser has no idea what to do with the specified character in your Perl

           script (or eval) near the specified column.  Perhaps you tried  to run a compressed

           script, a binary program, or a directory as a Perl program.

       Unrecognized escape \%c in character class in regex; marked by <--?HERE in m/%s/

           (F) You used a backslash-character combination which is not recognized by Perl inside

           character classes.  This is a fatal error when the character class is used within "(?[

           ])".

       Unrecognized escape \%c in character class passed through in regex; marked by <--?HERE in

       m/%s/

           (W regexp) You used a backslash-character combination which is not recognized by Perl

           inside character classes.  The character was understood literally, but this may change Page 128/146



           in a future version of Perl.  The <--?HERE shows whereabouts in the regular expression

           the escape was discovered.

       Unrecognized escape \%c passed through

           (W misc) You used a backslash-character combination which is not recognized by Perl.

           The character was understood literally, but this may change in a future version of

           Perl.

       Unrecognized escape \%s passed through in regex; marked by <--?HERE in m/%s/

           (W regexp) You used a backslash-character combination which is not recognized by Perl.

           The character(s) were understood literally, but this may change in a future version of

           Perl.  The <--?HERE shows whereabouts in the regular expression the escape was

           discovered.

       Unrecognized signal name "%s"

           (F) You specified a signal name to the kill() function that was not recognized.  Say

           "kill -l" in your shell to see the valid signal names on your system.

       Unrecognized switch: -%s  (-h will show valid options)

           (F) You specified an illegal option to Perl.  Don't do that.  (If you think you didn't

           do that, check the #! line to see if it's supplying the bad switch on your behalf.)

       Unsuccessful %s on filename containing newline

           (W newline) A file operation was attempted on a filename, and that operation failed,

           PROBABLY because the filename contained a newline, PROBABLY because you forgot to

           chomp() it off.  See "chomp" in perlfunc.

       Unsupported directory function "%s" called

           (F) Your machine doesn't support opendir() and readdir().

       Unsupported function %s

           (F) This machine doesn't implement the indicated function, apparently.  At least,

           Configure doesn't think so.

       Unsupported function fork

           (F) Your version of executable does not support forking.

           Note that under some systems, like OS/2, there may be different flavors of Perl

           executables, some of which may support fork, some not.  Try changing the name you call

           Perl by to "perl_", "perl__", and so on.

       Unsupported script encoding %s

           (F) Your program file begins with a Unicode Byte Order Mark (BOM) which declares it to Page 129/146



           be in a Unicode encoding that Perl cannot read.

       Unsupported socket function "%s" called

           (F) Your machine doesn't support the Berkeley socket mechanism, or at least that's

           what Configure thought.

       Unterminated '(*...' argument in regex; marked by <-- HERE in m/%s/

           (F) You used a pattern of the form "(*...:...)" but did not terminate the pattern with

           a ")".  Fix the pattern and retry.

       Unterminated attribute list

           (F) The lexer found something other than a simple identifier at the start of an

           attribute, and it wasn't a semicolon or the start of a block.  Perhaps you terminated

           the parameter list of the previous attribute too soon.  See attributes.

       Unterminated attribute parameter in attribute list

           (F) The lexer saw an opening (left) parenthesis character while parsing an attribute

           list, but the matching closing (right) parenthesis character was not found.  You may

           need to add (or remove) a backslash character to get your parentheses to balance.  See

           attributes.

       Unterminated compressed integer

           (F) An argument to unpack("w",...) was incompatible with the BER compressed integer

           format and could not be converted to an integer.  See "pack" in perlfunc.

       Unterminated '(*...' construct in regex; marked by <-- HERE in m/%s/

           (F) You used a pattern of the form "(*...)" but did not terminate the pattern with a

           ")".  Fix the pattern and retry.

       Unterminated delimiter for here document

           (F) This message occurs when a here document label has an initial quotation mark but

           the final quotation mark is missing.  Perhaps you wrote:

               <<"foo

           instead of:

               <<"foo"

       Unterminated \g... pattern in regex; marked by <--?HERE in m/%s/

       Unterminated \g{...} pattern in regex; marked by <--?HERE in m/%s/

           (F) In a regular expression, you had a "\g" that wasn't followed by a proper group

           reference.  In the case of "\g{", the closing brace is missing; otherwise the "\g"

           must be followed by an integer.  Fix the pattern and retry. Page 130/146



       Unterminated <> operator

           (F) The lexer saw a left angle bracket in a place where it was expecting a term, so

           it's looking for the corresponding right angle bracket, and not finding it.  Chances

           are you left some needed parentheses out earlier in the line, and you really meant a

           "less than".

       Unterminated verb pattern argument in regex; marked by <--?HERE in m/%s/

           (F) You used a pattern of the form "(*VERB:ARG)" but did not terminate the pattern

           with a ")".  Fix the pattern and retry.

       Unterminated verb pattern in regex; marked by <--?HERE in m/%s/

           (F) You used a pattern of the form "(*VERB)" but did not terminate the pattern with a

           ")".  Fix the pattern and retry.

       untie attempted while %d inner references still exist

           (W untie) A copy of the object returned from "tie" (or "tied") was still valid when

           "untie" was called.

       Usage: POSIX::%s(%s)

           (F) You called a POSIX function with incorrect arguments.  See "FUNCTIONS" in POSIX

           for more information.

       Usage: Win32::%s(%s)

           (F) You called a Win32 function with incorrect arguments.  See Win32 for more

           information.

       $[ used in %s (did you mean $] ?)

           (W syntax) You used $[ in a comparison, such as:

               if ($[ > 5.006) {

                   ...

               }

           You probably meant to use $] instead.  $[ is the base for indexing arrays.  $] is the

           Perl version number in decimal.

       Use "%s" instead of "%s"

           (F) The second listed construct is no longer legal.  Use the first one instead.

       Useless assignment to a temporary

           (W misc) You assigned to an lvalue subroutine, but what the subroutine returned was a

           temporary scalar about to be discarded, so the assignment had no effect.

       Useless (?-%s) - don't use /%s modifier in regex; marked by <--?HERE in m/%s/ Page 131/146



           (W regexp) You have used an internal modifier such as (?-o) that has no meaning unless

           removed from the entire regexp:

               if ($string =~ /(?-o)$pattern/o) { ... }

           must be written as

               if ($string =~ /$pattern/) { ... }

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

           See perlre.

       Useless localization of %s

           (W syntax) The localization of lvalues such as "local($x=10)" is legal, but in fact

           the local() currently has no effect.  This may change at some point in the future, but

           in the meantime such code is discouraged.

       Useless (?%s) - use /%s modifier in regex; marked by <--?HERE in m/%s/

           (W regexp) You have used an internal modifier such as (?o) that has no meaning unless

           applied to the entire regexp:

               if ($string =~ /(?o)$pattern/) { ... }

           must be written as

               if ($string =~ /$pattern/o) { ... }

           The <--?HERE shows whereabouts in the regular expression the problem was discovered.

           See perlre.

       Useless use of attribute "const"

           (W misc) The "const" attribute has no effect except on anonymous closure prototypes.

           You applied it to a subroutine via attributes.pm.  This is only useful inside an

           attribute handler for an anonymous subroutine.

       Useless use of /d modifier in transliteration operator

           (W misc) You have used the /d modifier where the searchlist has the same length as the

           replacelist.  See perlop for more information about the /d modifier.

       Useless use of \E

           (W misc) You have a \E in a double-quotish string without a "\U", "\L" or "\Q"

           preceding it.

       Useless use of greediness modifier '%c' in regex; marked by <--?HERE in m/%s/

           (W regexp) You specified something like these:

            qr/a{3}?/

            qr/b{1,1}+/ Page 132/146



           The "?" and "+" don't have any effect, as they modify whether to match more or fewer

           when there is a choice, and by specifying to match exactly a given numer, there is no

           room left for a choice.

       Useless use of %s in void context

           (W void) You did something without a side effect in a context that does nothing with

           the return value, such as a statement that doesn't return a value from a block, or the

           left side of a scalar comma operator.  Very often this points not to stupidity on your

           part, but a failure of Perl to parse your program the way you thought it would.  For

           example, you'd get this if you mixed up your C precedence with Python precedence and

           said

               $one, $two = 1, 2;

           when you meant to say

               ($one, $two) = (1, 2);

           Another common error is to use ordinary parentheses to construct a list reference when

           you should be using square or curly brackets, for example, if you say

               $array = (1,2);

           when you should have said

               $array = [1,2];

           The square brackets explicitly turn a list value into a scalar value, while

           parentheses do not.  So when a parenthesized list is evaluated in a scalar context,

           the comma is treated like C's comma operator, which throws away the left argument,

           which is not what you want.  See perlref for more on this.

           This warning will not be issued for numerical constants equal to 0 or 1 since they are

           often used in statements like

               1 while sub_with_side_effects();

           String constants that would normally evaluate to 0 or 1 are warned about.

       Useless use of (?-p) in regex; marked by <--?HERE in m/%s/

           (W regexp) The "p" modifier cannot be turned off once set.  Trying to do so is futile.

       Useless use of "re" pragma

           (W) You did "use re;" without any arguments.  That isn't very useful.

       Useless use of sort in scalar context

           (W void) You used sort in scalar context, as in :

               my $x = sort @y; Page 133/146



           This is not very useful, and perl currently optimizes this away.

       Useless use of %s with no values

           (W syntax) You used the push() or unshift() function with no arguments apart from the

           array, like "push(@x)" or "unshift(@foo)".  That won't usually have any effect on the

           array, so is completely useless.  It's possible in principle that push(@tied_array)

           could have some effect if the array is tied to a class which implements a PUSH method.

           If so, you can write it as "push(@tied_array,())" to avoid this warning.

       "use" not allowed in expression

           (F) The "use" keyword is recognized and executed at compile time, and returns no

           useful value.  See perlmod.

       Use of bare << to mean <<"" is forbidden

           (F) You are now required to use the explicitly quoted form if you wish to use an empty

           line as the terminator of the here-document.

           Use of a bare terminator was deprecated in Perl 5.000, and is a fatal error as of Perl

           5.28.

       Use of /c modifier is meaningless in s///

           (W regexp) You used the /c modifier in a substitution.  The /c modifier is not

           presently meaningful in substitutions.

       Use of /c modifier is meaningless without /g

           (W regexp) You used the /c modifier with a regex operand, but didn't use the /g

           modifier.  Currently, /c is meaningful only when /g is used.  (This may change in the

           future.)

       Use of code point 0x%s is not allowed; the permissible max is 0x%X

       Use of code point 0x%s is not allowed; the permissible max is 0x%X in regex; marked by <--

       HERE in m/%s/

           (F) You used a code point that is not allowed, because it is too large.  Unicode only

           allows code points up to 0x10FFFF, but Perl allows much larger ones. Earlier versions

           of Perl allowed code points above IV_MAX (0x7FFFFFF on 32-bit platforms,

           0x7FFFFFFFFFFFFFFF on 64-bit platforms), however, this could possibly break the perl

           interpreter in some constructs, including causing it to hang in a few cases.

           If your code is to run on various platforms, keep in mind that the upper limit depends

           on the platform.  It is much larger on 64-bit word sizes than 32-bit ones.

           The use of out of range code points was deprecated in Perl 5.24, and became a fatal Page 134/146



           error in Perl 5.28.

       Use of each() on hash after insertion without resetting hash iterator results in undefined

       behavior

           (S internal) The behavior of "each()" after insertion is undefined; it may skip items,

           or visit items more than once.  Consider using "keys()" instead of "each()".

       Use of := for an empty attribute list is not allowed

           (F) The construction "my $x := 42" used to parse as equivalent to "my $x : = 42"

           (applying an empty attribute list to $x).  This construct was deprecated in 5.12.0,

           and has now been made a syntax error, so ":=" can be reclaimed as a new operator in

           the future.

           If you need an empty attribute list, for example in a code generator, add a space

           before the "=".

       Use of %s for non-UTF-8 locale is wrong.  Assuming a UTF-8 locale

           (W locale)  You are matching a regular expression using locale rules, and the

           specified construct was encountered.  This construct is only valid for UTF-8 locales,

           which the current locale isn't.  This doesn't make sense.  Perl will continue,

           assuming a Unicode (UTF-8) locale, but the results are likely to be wrong.

       Use of freed value in iteration

           (F) Perhaps you modified the iterated array within the loop?  This error is typically

           caused by code like the following:

               @a = (3,4);

               @a = () for (1,2,@a);

           You are not supposed to modify arrays while they are being iterated over.  For speed

           and efficiency reasons, Perl internally does not do full reference-counting of

           iterated items, hence deleting such an item in the middle of an iteration causes Perl

           to see a freed value.

       Use of /g modifier is meaningless in split

           (W regexp) You used the /g modifier on the pattern for a "split" operator.  Since

           "split" always tries to match the pattern repeatedly, the "/g" has no effect.

       Use of "goto" to jump into a construct is deprecated

           (D deprecated) Using "goto" to jump from an outer scope into an inner scope is

           deprecated and should be avoided.

           This was deprecated in Perl 5.12. Page 135/146



       Use of '%s' in \p{} or \P{} is deprecated because: %s

           (D deprecated) Certain properties are deprecated by Unicode, and may eventually be

           removed from the Standard, at which time Perl will follow along.  In the meantime,

           this message is raised to notify you.

       Use of inherited AUTOLOAD for non-method %s::%s() is no longer allowed

           (F) As an accidental feature, "AUTOLOAD" subroutines were looked up as methods (using

           the @ISA hierarchy), even when the subroutines to be autoloaded were called as plain

           functions (e.g. "Foo::bar()"), not as methods (e.g. "Foo->bar()" or "$obj->bar()").

           This was deprecated in Perl 5.004, and was made fatal in Perl 5.28.

       Use of %s in printf format not supported

           (F) You attempted to use a feature of printf that is accessible from only C.  This

           usually means there's a better way to do it in Perl.

       Use of %s is not allowed in Unicode property wildcard subpatterns in regex; marked by

       <--?HERE in m/%s/

           (F) You were using a wildcard subpattern a Unicode property value, and the subpattern

           contained something that is illegal.  Not all regular expression capabilities are

           legal in such subpatterns, and this is one.  Rewrite your subppattern to not use the

           offending construct.  See "Wildcards in Property Values" in perlunicode.

       Use of -l on filehandle%s

           (W io) A filehandle represents an opened file, and when you opened the file it already

           went past any symlink you are presumably trying to look for.  The operation returned

           "undef".  Use a filename instead.

       Use of reference "%s" as array index

           (W misc) You tried to use a reference as an array index; this probably isn't what you

           mean, because references in numerical context tend to be huge numbers, and so usually

           indicates programmer error.

           If you really do mean it, explicitly numify your reference, like so: $array[0+$ref].

           This warning is not given for overloaded objects, however, because you can overload

           the numification and stringification operators and then you presumably know what you

           are doing.

       Use of strings with code points over 0xFF as arguments to %s operator is not allowed

           (F) You tried to use one of the string bitwise operators ("&" or "|" or "^" or "~") on

           a string containing a code point over 0xFF.  The string bitwise operators treat their Page 136/146



           operands as strings of bytes, and values beyond 0xFF are nonsensical in this context.

           Certain instances became fatal in Perl 5.28; others in perl 5.32.

       Use of strings with code points over 0xFF as arguments to vec is forbidden

           (F) You tried to use "vec" on a string containing a code point over 0xFF, which is

           nonsensical here.

           This became fatal in Perl 5.32.

       Use of tainted arguments in %s is deprecated

           (W taint, deprecated) You have supplied "system()" or "exec()" with multiple arguments

           and at least one of them is tainted.  This used to be allowed but will become a fatal

           error in a future version of perl.  Untaint your arguments.  See perlsec.

       Use of unassigned code point or non-standalone grapheme for a delimiter is not allowed

           (F) A grapheme is what appears to a native-speaker of a language to be a character.

           In Unicode (and hence Perl) a grapheme may actually be several adjacent characters

           that together form a complete grapheme.  For example, there can be a base character,

           like "R" and an accent, like a circumflex "^", that appear when displayed to be a

           single character with the circumflex hovering over the "R".  Perl currently allows

           things like that circumflex to be delimiters of strings, patterns, etc.  When

           displayed, the circumflex would look like it belongs to the character just to the left

           of it.  In order to move the language to be able to accept graphemes as delimiters, we

           cannot allow the use of delimiters which aren't graphemes by themselves.  Also, a

           delimiter must already be assigned (or known to be never going to be assigned) to try

           to future-proof code, for otherwise code that works today would fail to compile if the

           currently unassigned delimiter ends up being something that isn't a stand-alone

           grapheme.  Because Unicode is never going to assign non-character code points, nor

           code points that are above the legal Unicode maximum, those can be delimiters, and

           their use is legal.

       Use of uninitialized value%s

           (W uninitialized) An undefined value was used as if it were already defined.  It was

           interpreted as a "" or a 0, but maybe it was a mistake.  To suppress this warning

           assign a defined value to your variables.

           To help you figure out what was undefined, perl will try to tell you the name of the

           variable (if any) that was undefined.  In some cases it cannot do this, so it also

           tells you what operation you used the undefined value in.  Note, however, that perl Page 137/146



           optimizes your program and the operation displayed in the warning may not necessarily

           appear literally in your program.  For example, "that $foo" is usually optimized into

           ""that " . $foo", and the warning will refer to the "concatenation (.)" operator, even

           though there is no "." in your program.

       "use re 'strict'" is experimental

           (S experimental::re_strict) The things that are different when a regular expression

           pattern is compiled under 'strict' are subject to change in future Perl releases in

           incompatible ways.  This means that a pattern that compiles today may not in a future

           Perl release.  This warning is to alert you to that risk.

       Use \x{...} for more than two hex characters in regex; marked by <--?HERE in m/%s/

           (F) In a regular expression, you said something like

            (?[ [ \xBEEF ] ])

           Perl isn't sure if you meant this

            (?[ [ \x{BEEF} ] ])

           or if you meant this

            (?[ [ \x{BE} E F ] ])

           You need to add either braces or blanks to disambiguate.

       Using just the first character returned by \N{} in character class in regex; marked by

       <--?HERE in m/%s/

           (W regexp) Named Unicode character escapes "(\N{...})" may return a multi-character

           sequence.  Even though a character class is supposed to match just one character of

           input, perl will match the whole thing correctly, except when the class is inverted

           ("[^...]"), or the escape is the beginning or final end point of a range.  For these,

           what should happen isn't clear at all.  In these circumstances, Perl discards all but

           the first character of the returned sequence, which is not likely what you want.

       Using just the single character results returned by \p{} in (?[...]) in regex; marked by

       <--?HERE in m/%s/

           (W regexp) Extended character classes currently cannot handle operands that evaluate

           to more than one character.  These are removed from the results of the expansion of

           the "\p{}".

           This situation can happen, for example, in

            (?[ \p{name=/KATAKANA/} ])

           "KATAKANA LETTER AINU P" is a legal Unicode name (technically a "named sequence"), but Page 138/146



           it is actually two characters.  The above expression with match only the Unicode names

           containing KATAKANA that represent single characters.

       Using /u for '%s' instead of /%s in regex; marked by <--?HERE in m/%s/

           (W regexp) You used a Unicode boundary ("\b{...}" or "\B{...}") in a portion of a

           regular expression where the character set modifiers "/a" or "/aa" are in effect.

           These two modifiers indicate an ASCII interpretation, and this doesn't make sense for

           a Unicode definition.  The generated regular expression will compile so that the

           boundary uses all of Unicode.  No other portion of the regular expression is affected.

       Using !~ with %s doesn't make sense

           (F) Using the "!~" operator with "s///r", "tr///r" or "y///r" is currently reserved

           for future use, as the exact behavior has not been decided.  (Simply returning the

           boolean opposite of the modified string is usually not particularly useful.)

       UTF-16 surrogate U+%X

           (S surrogate) You had a UTF-16 surrogate in a context where they are not considered

           acceptable.  These code points, between U+D800 and U+DFFF (inclusive), are used by

           Unicode only for UTF-16.  However, Perl internally allows all unsigned integer code

           points (up to the size limit available on your platform), including surrogates.  But

           these can cause problems when being input or output, which is likely where this

           message came from.  If you really really know what you are doing you can turn off this

           warning by "no warnings 'surrogate';".

       Value of %s can be "0"; test with defined()

           (W misc) In a conditional expression, you used <HANDLE>, <*> (glob), "each()", or

           "readdir()" as a boolean value.  Each of these constructs can return a value of "0";

           that would make the conditional expression false, which is probably not what you

           intended.  When using these constructs in conditional expressions, test their values

           with the "defined" operator.

       Value of CLI symbol "%s" too long

           (W misc) A warning peculiar to VMS.  Perl tried to read the value of an %ENV element

           from a CLI symbol table, and found a resultant string longer than 1024 characters.

           The return value has been truncated to 1024 characters.

       Variable "%s" is not available

           (W closure) During compilation, an inner named subroutine or eval is attempting to

           capture an outer lexical that is not currently available.  This can happen for one of Page 139/146



           two reasons.  First, the outer lexical may be declared in an outer anonymous

           subroutine that has not yet been created.  (Remember that named subs are created at

           compile time, while anonymous subs are created at run-time.)  For example,

               sub { my $a; sub f { $a } }

           At the time that f is created, it can't capture the current value of $a, since the

           anonymous subroutine hasn't been created yet.  Conversely, the following won't give a

           warning since the anonymous subroutine has by now been created and is live:

               sub { my $a; eval 'sub f { $a }' }->();

           The second situation is caused by an eval accessing a variable that has gone out of

           scope, for example,

               sub f {

                   my $a;

                   sub { eval '$a' }

               }

               f()->();

           Here, when the '$a' in the eval is being compiled, f() is not currently being

           executed, so its $a is not available for capture.

       Variable "%s" is not imported%s

           (S misc) With "use strict" in effect, you referred to a global variable that you

           apparently thought was imported from another module, because something else of the

           same name (usually a subroutine) is exported by that module.  It usually means you put

           the wrong funny character on the front of your variable. It is also possible you used

           an "our" variable whose scope has ended.

       Variable length lookbehind not implemented in regex m/%s/

           (F) This message no longer should be raised as of Perl 5.30.  It is retained in this

           document as a convenience for people using an earlier Perl version.

           In Perl 5.30 and earlier, lookbehind is allowed only for subexpressions whose length

           is fixed and known at compile time.  For positive lookbehind, you can use the "\K"

           regex construct as a way to get the equivalent functionality.  See (?<=pattern) and \K

           in perlre.

           Starting in Perl 5.18, there are non-obvious Unicode rules under "/i" that can match

           variably, but which you might not think could.  For example, the substring "ss" can

           match the single character LATIN SMALL LETTER SHARP S.  Here's a complete list of the Page 140/146



           current ones affecting ASCII characters:

              ASCII

             sequence      Matches single letter under /i

               FF          U+FB00 LATIN SMALL LIGATURE FF

               FFI         U+FB03 LATIN SMALL LIGATURE FFI

               FFL         U+FB04 LATIN SMALL LIGATURE FFL

               FI          U+FB01 LATIN SMALL LIGATURE FI

               FL          U+FB02 LATIN SMALL LIGATURE FL

               SS          U+00DF LATIN SMALL LETTER SHARP S

                           U+1E9E LATIN CAPITAL LETTER SHARP S

               ST          U+FB06 LATIN SMALL LIGATURE ST

                           U+FB05 LATIN SMALL LIGATURE LONG S T

           This list is subject to change, but is quite unlikely to.  Each ASCII sequence can be

           any combination of upper- and lowercase.

           You can avoid this by using a bracketed character class in the lookbehind assertion,

           like

            (?<![sS]t)

            (?<![fF]f[iI])

           This fools Perl into not matching the ligatures.

           Another option for Perls starting with 5.16, if you only care about ASCII matches, is

           to add the "/aa" modifier to the regex.  This will exclude all these non-obvious

           matches, thus getting rid of this message.  You can also say

            use if $] ge 5.016, re => '/aa';

           to apply "/aa" to all regular expressions compiled within its scope.  See re.

       "%s" variable %s masks earlier declaration in same %s

           (W shadow) A "my", "our" or "state" variable has been redeclared in the current scope

           or statement, effectively eliminating all access to the previous instance.  This is

           almost always a typographical error.  Note that the earlier variable will still exist

           until the end of the scope or until all closure references to it are destroyed.

       Variable syntax

           (A) You've accidentally run your script through csh instead of Perl.  Check the #!

           line, or manually feed your script into Perl yourself.

       Variable "%s" will not stay shared Page 141/146



           (W closure) An inner (nested) named subroutine is referencing a lexical variable

           defined in an outer named subroutine.

           When the inner subroutine is called, it will see the value of the outer subroutine's

           variable as it was before and during the *first* call to the outer subroutine; in this

           case, after the first call to the outer subroutine is complete, the inner and outer

           subroutines will no longer share a common value for the variable.  In other words, the

           variable will no longer be shared.

           This problem can usually be solved by making the inner subroutine anonymous, using the

           "sub {}" syntax.  When inner anonymous subs that reference variables in outer

           subroutines are created, they are automatically rebound to the current values of such

           variables.

       vector argument not supported with alpha versions

           (S printf) The %vd (s)printf format does not support version objects with alpha parts.

       Verb pattern '%s' has a mandatory argument in regex; marked by <--?HERE in m/%s/

           (F) You used a verb pattern that requires an argument.  Supply an argument or check

           that you are using the right verb.

       Verb pattern '%s' may not have an argument in regex; marked by <--?HERE in m/%s/

           (F) You used a verb pattern that is not allowed an argument.  Remove the argument or

           check that you are using the right verb.

       Version control conflict marker

           (F) The parser found a line starting with "<<<<<<<", ">>>>>>>", or "=======".  These

           may be left by a version control system to mark conflicts after a failed merge

           operation.

       Version number must be a constant number

           (P) The attempt to translate a "use Module n.n LIST" statement into its equivalent

           "BEGIN" block found an internal inconsistency with the version number.

       Version string '%s' contains invalid data; ignoring: '%s'

           (W misc) The version string contains invalid characters at the end, which are being

           ignored.

       Warning: something's wrong

           (W) You passed warn() an empty string (the equivalent of "warn """) or you called it

           with no args and $@ was empty.

       Warning: unable to close filehandle %s properly Page 142/146



           (S) The implicit close() done by an open() got an error indication on the close().

           This usually indicates your file system ran out of disk space.

       Warning: unable to close filehandle properly: %s

       Warning: unable to close filehandle %s properly: %s

           (S io) There were errors during the implicit close() done on a filehandle when its

           reference count reached zero while it was still open, e.g.:

               {

                   open my $fh, '>', $file  or die "open: '$file': $!\n";

                   print $fh $data or die "print: $!";

               } # implicit close here

           Because various errors may only be detected by close() (e.g. buffering could allow the

           "print" in this example to return true even when the disk is full), it is dangerous to

           ignore its result.  So when it happens implicitly, perl will signal errors by warning.

           Prior to version 5.22.0, perl ignored such errors, so the common idiom shown above was

           liable to cause silent data loss.

       Warning: Use of "%s" without parentheses is ambiguous

           (S ambiguous) You wrote a unary operator followed by something that looks like a

           binary operator that could also have been interpreted as a term or unary operator.

           For instance, if you know that the rand function has a default argument of 1.0, and

           you write

               rand + 5;

           you may THINK you wrote the same thing as

               rand() + 5;

           but in actual fact, you got

               rand(+5);

           So put in parentheses to say what you really mean.

       when is experimental

           (S experimental::smartmatch) "when" depends on smartmatch, which is experimental.

           Additionally, it has several special cases that may not be immediately obvious, and

           their behavior may change or even be removed in any future release of perl.  See the

           explanation under "Experimental Details on given and when" in perlsyn.

       Wide character in %s

           (S utf8) Perl met a wide character (ordinal >255) when it wasn't expecting one.  This Page 143/146



           warning is by default on for I/O (like print).

           If this warning does come from I/O, the easiest way to quiet it is simply to add the

           ":utf8" layer, e.g., "binmode?STDOUT,?':utf8'".  Another way to turn off the warning

           is to add "no?warnings?'utf8';" but that is often closer to cheating.  In general, you

           are supposed to explicitly mark the filehandle with an encoding, see open and

           "binmode" in perlfunc.

           If the warning comes from other than I/O, this diagnostic probably indicates that

           incorrect results are being obtained.  You should examine your code to determine how a

           wide character is getting to an operation that doesn't handle them.

       Wide character (U+%X) in %s

           (W locale) While in a single-byte locale (i.e., a non-UTF-8 one), a multi-byte

           character was encountered.   Perl considers this character to be the specified Unicode

           code point.  Combining non-UTF-8 locales and Unicode is dangerous.  Almost certainly

           some characters will have two different representations.  For example, in the ISO

           8859-7 (Greek) locale, the code point 0xC3 represents a Capital Gamma.  But so also

           does 0x393.  This will make string comparisons unreliable.

           You likely need to figure out how this multi-byte character got mixed up with your

           single-byte locale (or perhaps you thought you had a UTF-8 locale, but Perl

           disagrees).

       Within []-length '%c' not allowed

           (F) The count in the (un)pack template may be replaced by "[TEMPLATE]" only if

           "TEMPLATE" always matches the same amount of packed bytes that can be determined from

           the template alone.  This is not possible if it contains any of the codes @, /, U, u,

           w or a *-length.  Redesign the template.

       While trying to resolve method call %s->%s() can not locate package "%s" yet it is

       mentioned in @%s::ISA (perhaps you forgot to load "%s"?)

           (W syntax) It is possible that the @ISA contains a misspelled or never loaded package

           name, which can result in perl choosing an unexpected parent class's method to resolve

           the method call. If this is deliberate you can do something like

             @Missing::Package::ISA = ();

           to silence the warnings, otherwise you should correct the package name, or ensure that

           the package is loaded prior to the method call.

       %s() with negative argument Page 144/146



           (S misc) Certain operations make no sense with negative arguments.  Warning is given

           and the operation is not done.

       write() on closed filehandle %s

           (W closed) The filehandle you're writing to got itself closed sometime before now.

           Check your control flow.

       %s "\x%X" does not map to Unicode

           (S utf8) When reading in different encodings, Perl tries to map everything into

           Unicode characters.  The bytes you read in are not legal in this encoding.  For

           example

               utf8 "\xE4" does not map to Unicode

           if you try to read in the a-diaereses Latin-1 as UTF-8.

       'X' outside of string

           (F) You had a (un)pack template that specified a relative position before the

           beginning of the string being (un)packed.  See "pack" in perlfunc.

       'x' outside of string in unpack

           (F) You had a pack template that specified a relative position after the end of the

           string being unpacked.  See "pack" in perlfunc.

       YOU HAVEN'T DISABLED SET-ID SCRIPTS IN THE KERNEL YET!

           (F) And you probably never will, because you probably don't have the sources to your

           kernel, and your vendor probably doesn't give a rip about what you want.  There is a

           vulnerability anywhere that you have a set-id script, and to close it you need to

           remove the set-id bit from the script that you're attempting to run.  To actually run

           the script set-id, your best bet is to put a set-id C wrapper around your script.

       You need to quote "%s"

           (W syntax) You assigned a bareword as a signal handler name.  Unfortunately, you

           already have a subroutine of that name declared, which means that Perl 5 will try to

           call the subroutine when the assignment is executed, which is probably not what you

           want.  (If it IS what you want, put an & in front.)

       Your random numbers are not that random

           (F) When trying to initialize the random seed for hashes, Perl could not get any

           randomness out of your system.  This usually indicates Something Very Wrong.

       Zero length \N{} in regex; marked by <--?HERE in m/%s/

           (F) Named Unicode character escapes ("\N{...}") may return a zero-length sequence. Page 145/146



           Such an escape was used in an extended character class, i.e.  "(?[...])", or under

           "use re 'strict'", which is not permitted.  Check that the correct escape has been

           used, and the correct charnames handler is in scope.  The <--?HERE shows whereabouts

           in the regular expression the problem was discovered.

SEE ALSO

       warnings, diagnostics.

perl v5.34.0                                2023-11-23                                PERLDIAG(1)

Page 146/146


