PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'perlebcdic.1'
$ man perlebcdic.1
PERLEBCDIC(1) Perl Programmers Reference Guide PERLEBCDIC(1)
NAME
perlebcdic - Considerations for running Perl on EBCDIC platforms
DESCRIPTION
An exploration of some of the issues facing Perl programmers on EBCDIC based computers.
Portions of this document that are still incomplete are marked with XXX.
Early Perl versions worked on some EBCDIC machines, but the last known version that ran on
EBCDIC was v5.8.7, until v5.22, when the Perl core again works on z/OS. Theoretically, it
could work on OS/400 or Siemens' BS2000 (or their successors), but this is untested. In
v5.22 and 5.24, not all the modules found on CPAN but shipped with core Perl work on z/OS.
If you want to use Perl on a non-z/OS EBCDIC machine, please let us know at
<https://github.com/Perl/perl5/issues>.
Writing Perl on an EBCDIC platform is really no different than writing on an "ASCII" one,
but with different underlying numbers, as we'll see shortly. You'll have to know
something about those "ASCII" platforms because the documentation is biased and will
frequently use example numbers that don't apply to EBCDIC. There are also very few CPAN
modules that are written for EBCDIC and which don't work on ASCII; instead the vast
majority of CPAN modules are written for ASCII, and some may happen to work on EBCDIC,
while a few have been designed to portably work on both.
If your code just uses the 52 letters A-Z and a-z, plus SPACE, the digits 0-9, and the
punctuation characters that Perl uses, plus a few controls that are denoted by escape
sequences like "\n" and "\t", then there's nothing special about using Perl, and your code

may very well work on an ASCII machine without change. Page 1/44

But if you write code that uses "\005" to mean a TAB or "\xC1" to mean an "A", or "\xDF"
to mean a "?" (small "y" with a diaeresis), then your code may well work on your EBCDIC
platform, but not on an ASCII one. That's fine to do if no one will ever want to run your
code on an ASCII platform; but the bias in this document will be towards writing code
portable between EBCDIC and ASCII systems. Again, if every character you care about is
easily enterable from your keyboard, you don't have to know anything about ASCII, but many
keyboards don't easily allow you to directly enter, say, the character "\xDF", so you have
to specify it indirectly, such as by using the "\xDF" escape sequence. In those cases
it's easiest to know something about the ASCIl/Unicode character sets. If you know that
the small "?" is "U+00FF", then you can instead specify it as "\N{U+FF}", and have the
computer automatically translate it to "\xDF" on your platform, and leave it as "\xFF" on
ASCII ones. Or you could specify it by name, "\N{LATIN SMALL LETTER Y WITH DIAERESIS" and
not have to know the numbers. Either way works, but both require familiarity with
Unicode.
COMMON CHARACTER CODE SETS

ASCII
The American Standard Code for Information Interchange (ASCII or US-ASCII) is a set of
integers running from 0 to 127 (decimal) that have standardized interpretations by the
computers which use ASCII. For example, 65 means the letter "A". The range 0..127 can be
covered by setting various bits in a 7-bit binary digit, hence the set is sometimes
referred to as "7-bit ASCII". ASCII was described by the American National Standards
Institute document ANSI X3.4-1986. It was also described by ISO 646:1991 (with
localization for currency symbols). The full ASCII set is given in the table below as the
first 128 elements. Languages that can be written adequately with the characters in ASCII
include English, Hawaiian, Indonesian, Swabhili and some Native American languages.
Most non-EBCDIC character sets are supersets of ASCII. That is the integers 0-127 mean
what ASCII says they mean. But integers 128 and above are specific to the character set.
Many of these fit entirely into 8 bits, using ASCII as 0-127, while specifying what
128-255 mean, and not using anything above 255. Thus, these are single-byte (or octet if
you prefer) character sets. One important one (since Unicode is a superset of it) is the
ISO 8859-1 character set.

ISO 8859

The ISO 8859-%$n are a collection of character code sets from the International Page 2/44

Organization for Standardization (ISO), each of which adds characters to the ASCII set
that are typically found in various languages, many of which are based on the Roman, or
Latin, alphabet. Most are for European languages, but there are also ones for Arabic,
Greek, Hebrew, and Thai. There are good references on the web about all these.

Latin 1 (ISO 8859-1)
A particular 8-bit extension to ASCII that includes grave and acute accented Latin
characters. Languages that can employ ISO 8859-1 include all the languages covered by
ASCII as well as Afrikaans, Albanian, Basque, Catalan, Danish, Faroese, Finnish,
Norwegian, Portuguese, Spanish, and Swedish. Dutch is covered albeit without the ij
ligature. French is covered too but without the oe ligature. German can use ISO 8859-1
but must do so without German-style quotation marks. This set is based on Western
European extensions to ASCII and is commonly encountered in world wide web work. In IBM
character code set identification terminology, ISO 8859-1 is also known as CCSID 819 (or
sometimes 0819 or even 00819).

EBCDIC
The Extended Binary Coded Decimal Interchange Code refers to a large collection of single-
and multi-byte coded character sets that are quite different from ASCII and 1ISO 8859-1,
and are all slightly different from each other; they typically run on host computers. The
EBCDIC encodings derive from 8-hit byte extensions of Hollerith punched card encodings,
which long predate ASCII. The layout on the cards was such that high bits were set for
the upper and lower case alphabetic characters "[a-z]" and "[A-Z]", but there were gaps
within each Latin alphabet range, visible in the table below. These gaps can cause
complications.
Some IBM EBCDIC character sets may be known by character code set identification numbers
(CCSID numbers) or code page numbers.
Perl can be compiled on platforms that run any of three commonly used EBCDIC character
sets, listed below.
The 13 variant characters
Among IBM EBCDIC character code sets there are 13 characters that are often mapped to
different integer values. Those characters are known as the 13 "variant" characters and
are:

\[I{3r~1#s@

When Perl is compiled for a platform, it looks at all of these characters to guess which Page 3/44

EBCDIC character set the platform uses, and adapts itself accordingly to that platform.
If the platform uses a character set that is not one of the three Perl knows about, Perl
will either fail to compile, or mistakenly and silently choose one of the three.
The Line Feed (LF) character is actually a 14th variant character, and Perl checks for
that as well.
EBCDIC code sets recognized by Perl
0037
Character code set ID 0037 is a mapping of the ASCII plus Latin-1 characters (i.e. ISO
8859-1) to an EBCDIC set. 0037 is used in North American English locales on the
0OS/400 operating system that runs on AS/400 computers. CCSID 0037 differs from ISO
8859-1 in 236 places; in other words they agree on only 20 code point values.
1047
Character code set ID 1047 is also a mapping of the ASCII plus Latin-1 characters
(i.e. 1ISO 8859-1) to an EBCDIC set. 1047 is used under Unix System Services for
0OS/390 or z/OS, and OpenEdition for VM/ESA. CCSID 1047 differs from CCSID 0037 in
eight places, and from ISO 8859-1 in 236.
POSIX-BC
The EBCDIC code page in use on Siemens' BS2000 system is distinct from 1047 and 0037.
It is identified below as the POSIX-BC set. Like 0037 and 1047, it is the same as ISO
8859-1 in 20 code point values.
Unicode code points versus EBCDIC code points
In Unicode terminology a code point is the number assigned to a character: for example, in
EBCDIC the character "A" is usually assigned the number 193. In Unicode, the character
"A" is assigned the number 65. All the code points in ASCII and Latin-1 (ISO 8859-1) have
the same meaning in Unicode. All three of the recognized EBCDIC code sets have 256 code
points, and in each code set, all 256 code points are mapped to equivalent Latinl code
points. Obviously, "A" will map to "A", "B" => "B", "%" => "%", etc., for all printable
characters in Latinl and these code pages.
It also turns out that EBCDIC has nearly precise equivalents for the ASCIll/Latinl CO
controls and the DELETE control. (The CO controls are those whose ASCII code points are
0..0x1F; things like TAB, ACK, BEL, etc.) A mapping is set up between these ASCII/EBCDIC
controls. There isn't such a precise mapping between the C1 controls on ASCII platforms

and the remaining EBCDIC controls. What has been done is to map these controls, mostly Page 4/44

arbitrarily, to some otherwise unmatched character in the other character set. Most of

these are very very rarely used nowadays in EBCDIC anyway, and their names have been

dropped, without much complaint. For example the EO (Eight Ones) EBCDIC control

(consisting of eight one bits = OxFF) is mapped to the C1 APC control (0x9F), and you

can't use the name "EQ".

The EBCDIC controls provide three possible line terminator characters, CR (0x0D), LF

(0x25), and NL (0x15). On ASCII platforms, the symbols "NL" and "LF" refer to the same

character, but in strict EBCDIC terminology they are different ones. The EBCDIC NL is

mapped to the C1 control called "NEL" ("Next Line"; here's a case where the mapping makes

quite a bit of sense, and hence isn't just arbitrary). On some EBCDIC platforms, this NL

or NEL is the typical line terminator. This is true of z/OS and BS2000. In these

platforms, the C compilers will swap the LF and NEL code points, so that "\n" is 0x15, and

refers to NL. Perl does that too; you can see it in the code chart below. This makes

things generally "just work" without you even having to be aware that there is a swap.
Unicode and UTF

UTF stands for "Unicode Transformation Format". UTF-8 is an encoding of Unicode into a

sequence of 8-bit byte chunks, based on ASCII and Latin-1. The length of a sequence

required to represent a Unicode code point depends on the ordinal number of that code

point, with larger numbers requiring more bytes. UTF-EBCDIC is like UTF-8, but based on

EBCDIC. They are enough alike that often, casual usage will conflate the two terms, and

use "UTF-8" to mean both the UTF-8 found on ASCII platforms, and the UTF-EBCDIC found on

EBCDIC ones.

You may see the term "invariant" character or code point. This simply means that the

character has the same numeric value and representation when encoded in UTF-8 (or UTF-

EBCDIC) as when not. (Note that this is a very different concept from "The 13 variant

characters" mentioned above. Careful prose will use the term "UTF-8 invariant” instead of

just "invariant", but most often you'll see just "invariant".) For example, the ordinal

value of "A" is 193 in most EBCDIC code pages, and also is 193 when encoded in UTF-EBCDIC.

All UTF-8 (or UTF-EBCDIC) variant code points occupy at least two bytes when encoded in

UTF-8 (or UTF-EBCDIC); by definition, the UTF-8 (or UTF-EBCDIC) invariant code points are

exactly one byte whether encoded in UTF-8 (or UTF-EBCDIC), or not. (By now you see why

people typically just say "UTF-8" when they also mean "UTF-EBCDIC". For the rest of this

document, we'll mostly be casual about it too.) In ASCII UTF-8, the code points Page 5/44

corresponding to the lowest 128 ordinal numbers (0 - 127: the ASCII characters) are
invariant. In UTF-EBCDIC, there are 160 invariant characters. (If you care, the EBCDIC
invariants are those characters which have ASCII equivalents, plus those that correspond
to the C1 controls (128 - 159 on ASCII platforms).)
A string encoded in UTF-EBCDIC may be longer (very rarely shorter) than one encoded in
UTF-8. Perl extends both UTF-8 and UTF-EBCDIC so that they can encode code points above
the Unicode maximum of U+10FFFF. Both extensions are constructed to allow encoding of any
code point that fits in a 64-bit word.
UTF-EBCDIC is defined by Unicode Technical Report #16
<https://www.unicode.org/reports/tr16> (often referred to as just TR16). Itis defined
based on CCSID 1047, not allowing for the differences for other code pages. This allows
for easy interchange of text between computers running different code pages, but makes it
unusable, without adaptation, for Perl on those other code pages.
The reason for this unusability is that a fundamental assumption of Perl is that the
characters it cares about for parsing and lexical analysis are the same whether or not the
textis in UTF-8. For example, Perl expects the character "[" to have the same
representation, no matter if the string containing it (or program text) is UTF-8 encoded
or not. To ensure this, Perl adapts UTF-EBCDIC to the particular code page so that all
characters it expects to be UTF-8 invariant are in fact UTF-8 invariant. This means that
text generated on a computer running one version of Perl's UTF-EBCDIC has to be translated
to be intelligible to a computer running another.
TR16 implies a method to extend UTF-EBCDIC to encode points up through "2?**?31?-?1".
Perl uses this method for code points up through "2?**?307?-?1", but uses an incompatible
method for larger ones, to enable it to handle much larger code points than otherwise.
Using Encode

Starting from Perl 5.8 you can use the standard module Encode to translate from EBCDIC to
Latin-1 code points. Encode knows about more EBCDIC character sets than Perl can
currently be compiled to run on.

use Encode 'from_to’;

my %ebcdic = (176 => 'cp37', 95 => 'cpl047', 106 => 'posix-bc");

$a is in EBCDIC code points

from_to($a, $ebcdic{ord "M}, 'latinl");

$a is ISO 8859-1 code points Page 6/44

and from Latin-1 code points to EBCDIC code points

use Encode 'from_to’;

my %ebcdic = (176 =>'cp37', 95 => 'cpl047', 106 => 'posix-bc");

$a is 1SO 8859-1 code points

from_to($a, 'latin1', $ebcdic{ord "*'});

$a is in EBCDIC code points
For doing /0 it is suggested that you use the autotranslating features of PerllO, see
perluniintro.
Since version 5.8 Perl uses the PerllO 1/O library. This enables you to use different
encodings per 10 channel. For example you may use

use Encode;

open($f, ">:encoding(ascii)", "test.ascii");

print $f "Hello World"\n";

open($f, ">:encoding(cp37)", "test.ebcdic");

print $f "Hello World\n";

open($f, ">:encoding(latinl)", "test.latin1");

print $f "Hello World\n";

open($f, ">:encoding(utf8)", "test.utf8");

print $f "Hello World\n";
to get four files containing "Hello World!\n" in ASCII, CP 0037 EBCDIC, ISO 8859-1
(Latin-1) (in this example identical to ASCII since only ASCII characters were printed),
and UTF-EBCDIC (in this example identical to normal EBCDIC since only characters that
don't differ between EBCDIC and UTF-EBCDIC were printed). See the documentation of
Encode::PerllO for details.
As the PerllO layer uses raw |0 (bytes) internally, all this totally ignores things like
the type of your filesystem (ASCII or EBCDIC).

SINGLE OCTET TABLES

The following tables list the ASCII and Latin 1 ordered sets including the subsets: CO
controls (0..31), ASCII graphics (32..7e), delete (7f), C1 controls (80..9f), and Latin-1
(a.k.a. ISO 8859-1) (a0..ff). In the table names of the Latin 1 extensions to ASCII have
been labelled with character names roughly corresponding to The Unicode Standard, Version
6.1 albeit with substitutions such as "s/LATIN//" and "s/VULGAR//" in all cases;

"s/ICAPITAL?LETTER//" in some cases; and "s/SMALL?LETTER?([A-Z])AI$1/" in some other Page 7/44

cases. Controls are listed using their Unicode 6.2 abbreviations. The differences

between the 0037 and 1047 sets are flagged with "**". The differences between the 1047

and POSIX-BC sets are flagged with "##." All "ord()" numbers listed are decimal. If you
would rather see this table listing octal values, then run the table (that is, the pod
source text of this document, since this recipe may not work with a pod2_other_format
translation) through:
recipe 0

perl -ne "if(/(.{29}) (\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)" \

-e {printf("%s%-5.030%-5.030%-5.030%.030\n",$1,$2,$3,$4,$5)}' \

perlebcdic.pod
If you want to retain the UTF-x code points then in script form you might want to write:
recipe 1
open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
while (<FH>) {

if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)

\s+(\d+)\.2(\d*)/x)

if ($7 ne " && $9 ne ") {
printf(
"%5%-5.030%-5.030%-5.030%-5.030%-30.%-50%-30.%.030\n",
$1,$2,$3,$4,$5,$6,$7,$8,%9);
}
elsif ($7 ne ") {
printf("%s%-5.030%-5.030%-5.030%-5.030%-30.%-50%.030\n",
$1,$2,$3,%4,$5,$6,%$7,$8);
}
else {
printf("%s%-5.030%-5.030%-5.030%-5.030%-5.030%.030\n",

$1,$2,$3,%4,$5,$6,$8);

}

If you would rather see this table listing hexadecimal values then run the table through:

Page 8/44

recipe 2
perl -ne "if(/(.{29}) (\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)" \
-e {printf("%s%-5.02X%-5.02X%-5.02X%.02X\n",$1,$2,$3,$4,$5)}' \
perlebcdic.pod
Or, in order to retain the UTF-x code points in hexadecimal:
recipe 3
open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
while (<FH>) {
if (/(.{29})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)

\s+(\d-\.2(\d¥)/x)

if ($7 ne " && $9 ne ") {

printf(
"%5%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X.%02X\n",
$1,$2,$3,$4,$5,$6,$7,$8,%9);

}

elsif ($7 ne ") {
printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-2X.%-6.02X%02X\n",

$1,$2,$3,$4,$5,$6,$7,$8);
}
else {

printf("%s%-5.02X%-5.02X%-5.02X%-5.02X%-5.02X%02X\n",

$1,$2,$3,%$4,$5,$6,$8),
}
}
}
ISO
8859-1 POS- CCsID
CCSID CCSID CCSID IX- 1047
chr 0819 0037 1047 BC UTF-8 UTF-EBCDIC
<NUL> 0O 0 0 0O 0
<SOH> 1 11 11 1

Page 9/44

<STX> 2 2 2 2 2 2

<ETX> 3 33 33 3
<EOT> 4 55 55 55 4 55
<ENQ> 5 45 45 45 5 45
<ACK> 6 46 46 46 6 46
<BEL> 7 47 47 47 7 47
<BS> 8 22 22 22 8 22
<HT> 9 5559 5
<LF> 10 37 21 21 10 21 **
<VT> 11 11 11 11 11 11
<FF> 12 12 12 12 12 12
<CR> 13 13 13 13 13 13
<SO> 14 14 14 14 14 14
<S> 15 15 15 15 15 15
<DLE> 16 16 16 16 16 16
<DC1> 17 17 17 17 17 17
<DC2> 18 18 18 18 18 18
<DC3> 19 19 19 19 19 19
<DC4> 20 60 60 60 20 60
<NAK> 21 61 61 61 21 61
<SYN> 22 50 50 50 22 50
<ETB> 23 38 38 38 23 38
<CAN> 24 24 24 24 24 24
<EOM> 25 25 25 25 25 25
<SUB> 26 63 63 63 26 63
<ESC> 27 39 39 39 27 39
<FS> 28 28 28 28 28 28
<GS> 20 29 29 29 29 29
<RS> 30 30 30 30 30 30
<US> 31 31 31 31 31 31
<SPACE> 32 64 64 64 32 64

! 33 90 90 90 33 90

" 34 127 127 127 34 127 Page 10/44

> @) 1

(o8]

35 123 123 123 35

36 91 91 91 36

37 108 108 108 37

38 80 80 80 38

39 125 125 125 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

77T 77

93 93 93

92 92 92

78 78 78

40

41

42

43

107 107 107 44

96 96 96 45

75 75 75 46

97 97 97 47

240

241

242

243

244

245

246

247

248

249

240

241

242

243

244

245

246

247

248

249

240

241

242

243

244

245

246

247

248

249

48

49

50

51

52

53

54

55

56

57

58 122 122 122 58

59 94 94 94 59

60 76 76 76 60

61 126 126 126 61

62 110 110 110 62

63 111 111 111 63

64 124 124 124 64

65 193 193 193 65

66 194 194 194 66

67 195 195 195 67

123
91
108
80
125
77
93
92
78
107
96
75
97
240
241
242
243
244
245
246
247
248
249
122
94
76
126
110
111
124
193
194

195 Page 11/44

< X £ < c 4 »n =3 O

N

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100 132 132 132 100

196 196 196 68

197 197 197 69

198 198 198 70

199 199 199 71

200 200 200 72

201 201 201 73

209 209 209 74

210 210 210 75

211 211 211 76

212 212 212 77

213 213 213 78

214 214 214 79

215 215 215 80

216 216 216 81

217 217 217 82

226 226 226 83

227 227 227 84

228 228 228 85

229 229 229 86

230 230 230 87

231 231 231 88

232 232 232 89

233 233 233 90

186 173 187 91

224 224 188 92

187 189 189 93

176 95 106 94

109 109 109 95

121 121 74 96

129 129 129 97

130 130 130 98

131 131 131 99

196

197

198

199

200

201

209

210

211

212

213

214

215

216

217

226

227

228

229

230

231

232

233

173 ** ##

224 ##

189 **

95 **##

109

121 ##

129

130

131

132

Page 12/44

<PAD>

<HOP>

<BPH>

<NBH>

<IND>

<NEL>

101 133 133 133 101 133
102 134 134 134 102 134
103 135 135 135 103 135
104 136 136 136 104 136
105 137 137 137 105 137
106 145 145 145 106 145
107 146 146 146 107 146
108 147 147 147 108 147
109 148 148 148 109 148
110 149 149 149 110 149
111 150 150 150 111 150
112 151 151 151 112 151
113 152 152 152 113 152
114 153 153 153 114 153
115 162 162 162 115 162
116 163 163 163 116 163
117 164 164 164 117 164
118 165 165 165 118 165
119 166 166 166 119 166
120 167 167 167 120 167
121 168 168 168 121 168
122 169 169 169 122 169
123 192 192 251 123 192 ##
124 79 79 79 124 79
125 208 208 253 125 208 ##
126 161 161 255 126 161 ##
12277 7 7 127 7
128 32 32 32 194.128 32
129 33 33 33 194.129 33
130 34 34 34 194.130 34
131 35 35 35 194.131 35
132 36 36 36 194.132 36

133 21 37 37 194.133 37 **

Page 13/44

<SSA> 134 6 6 6 194.134 6

<ESA> 135 23 23 23 194.135 23
<HTS> 136 40 40 40 194.136 40
<HTJ> 137 41 41 41 194.137 41
<VTS> 138 42 42 42 194.138 42
<PLD> 139 43 43 43 194.139 43
<PLU> 140 44 44 44 194.140 44
<RI> 1419 9 9 194141 9
<§S2> 142 10 10 10 194.142 10
<S§S3> 143 27 27 27 194.143 27
<DCS> 144 48 48 48 194.144 48
<PU1> 145 49 49 49 194.145 49
<PU2> 146 26 26 26 194.146 26
<STS> 147 51 51 51 194.147 51
<CCH> 148 52 52 52 194.148 52
<MW> 149 53 53 53 194.149 53
<SPA> 150 54 54 54 194.150 54
<EPA> 1518 8 8 194.151 8
<S0S> 152 56 56 56 194.152 56
<SGC> 153 57 57 57 194.153 57
<SCI> 154 58 58 58 194.154 58
<CSI> 155 59 59 59 194.155 59
<ST> 156 4 4 4 194.156 4
<0SC> 157 20 20 20 194.157 20
<PM> 158 62 62 62 194.158 62
<APC> 159 255 255 95 194.159 255 ##

<NON-BREAKING SPACE> 160 65 65 65 194.160 128.65

<INVERTED "I" > 161 170 170 170 194.161 128.66
<CENT SIGN> 162 74 74 176 194.162 128.67 ##
<POUND SIGN> 163 177 177 177 194.163 128.68
<CURRENCY SIGN> 164 159 159 159 194.164 128.69
<YEN SIGN> 165 178 178 178 194.165 128.70

<BROKEN BAR> 166 106 106 208 194.166 128.71 ## Page 14/44

<SECTION SIGN> 167 181 181 181 194.167 128.72

<DIAERESIS> 168 189 187 121 194.168 128.73 ** ##
<COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
<FEMININE ORDINAL> 170 154 154 154 194.170 128.81

<LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82

<NOT SIGN> 172 95 176 186 194.172 128.83 ** ##

<SOFT HYPHEN> 173 202 202 202 194.173 128.84

<REGISTERED TRADE MARK> 174 175 175 175 194.174 128.85

<MACRON> 175 188 188 161 194.175 128.86 ##

<DEGREE SIGN> 176 144 144 144 194.176 128.87

<PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88

<SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89

<SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98

<ACUTE ACCENT> 180 190 190 190 194.180 128.99
<MICRO SIGN> 181 160 160 160 194.181 128.100
<PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
<MIDDLE DOT> 183 179 179 179 194.183 128.102
<CEDILLA> 184 157 157 157 194.184 128.103
<SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104

<MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
<RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
<FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
<FRACTION ONE HALF> 189 184 184 184 194.189 128.113
<FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
<INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
<A WITH GRAVE> 192 100 100 100 195.128 138.65

<A WITH ACUTE> 193 101 101 101 195.129 138.66

<A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67

<A WITH TILDE> 195 102 102 102 195.131 138.68

<A WITH DIAERESIS> 196 99 99 99 195.132 138.69

<A WITH RING ABOVE> 197 103 103 103 195.133 138.70
<CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71

<C WITH CEDILLA> 199 104 104 104 195.135 138.72

Page 15/44

<E WITH GRAVE>

<E WITH ACUTE>

<E WITH CIRCUMFLEX>

<E WITH DIAERESIS>

<| WITH GRAVE>

<| WITH ACUTE>

<I WITH CIRCUMFLEX>

<| WITH DIAERESIS>

<CAPITAL LETTER ETH>

<N WITH TILDE>

<O WITH GRAVE>

<O WITH ACUTE>

<O WITH CIRCUMFLEX>

<O WITH TILDE>

<O WITH DIAERESIS>

<MULTIPLICATION SIGN>

<O WITH STROKE>

<U WITH GRAVE>

<U WITH ACUTE>

<U WITH CIRCUMFLEX>

<U WITH DIAERESIS>

<Y WITH ACUTE>

<CAPITAL LETTER THORN>

<SMALL LETTER SHARP S>

<a WITH GRAVE>

<a WITH ACUTE>

<a WITH CIRCUMFLEX>

<a WITH TILDE>

<a WITH DIAERESIS>

<a WITH RING ABOVE>

<SMALL LIGATURE ae>

<c WITH CEDILLA>

<e WITH GRAVE>

200 116 116 116 195.136 138.73

201 113 113 113 195.137 138.74

202 114 114 114 195.138 138.81

203 115 115 115 195.139 138.82

204 120 120 120 195.140 138.83

205 117 117 117 195.141 138.84

206 118 118 118 195.142 138.85

207 119 119 119 195.143 138.86

208 172 172 172 195.144 138.87

209 105 105 105 195.145 138.88

210 237 237 237 195.146 138.89

211 238 238 238 195.147 138.98

212 235 235 235 195.148 138.99

213 239 239 239 195.149 138.100

214 236 236 236 195.150 138.101

215 191 191 191 195.151 138.102

216 128 128 128 195.152 138.103

217 253 253 224 195.153 138.104 ##

218 254 254 254 195.154 138.105

219 251 251 221 195.155 138.106 ##

220 252 252 252 195.156 138.112

221 173 186 173 195.157 138.113 ** ##

224 68 68 68 195.160 139.65

225 69 69 69 195.161 139.66

226 66 66 66 195.162 139.67

227 70 70 70 195.163 139.68

228 67 67 67 195.164 139.69

229 71 71 71 195.165 139.70

230 156 156 156 195.166 139.71

231 72 72 72 195.167 139.72

232 84 84 84 195.168 139.73

222 174 174 174 195.158 138.114

223 89 89 89 195.159 138.115

Page 16/44

<e WITH ACUTE> 233 81 81 81 195.169 139.74

<e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81

<e WITH DIAERESIS> 235 83 83 83 195.171 139.82
<i WITH GRAVE> 236 88 88 88 195.172 139.83
<i WITH ACUTE> 237 85 85 85 195.173 139.84

<i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85

<i WITH DIAERESIS> 239 87 87 87 195.175 139.86
<SMALL LETTER eth> 240 140 140 140 195.176 139.87
<n WITH TILDE> 241 73 73 73 195.177 139.88

<o WITH GRAVE> 242 205 205 205 195.178 139.89
<o WITH ACUTE> 243 206 206 206 195.179 139.98

<o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99

<o WITH TILDE> 245 207 207 207 195.181 139.100

<o WITH DIAERESIS> 246 204 204 204 195.182 139.101

<DIVISION SIGN> 247 225 225 225 195.183 139.102

<o WITH STROKE> 248 112 112 112 195.184 139.103
<u WITH GRAVE> 249 221 221 192 195.185 139.104 ##
<u WITH ACUTE> 250 222 222 222 195.186 139.105

<u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
<u WITH DIAERESIS> 252 220 220 220 195.188 139.112
<y WITH ACUTE> 253 141 141 141 195.189 139.113
<SMALL LETTER thorn> 254 142 142 142 195.190 139.114
<y WITH DIAERESIS> 255 223 223 223 195.191 139.115
If you would rather see the above table in CCSID 0037 order rather than ASCII + Latin-1
order then run the table through:
recipe 4
perl\

-ne 'if(/.{290\d{1,3N\s{2,4\d{1,3\s{2,4\d{1,3}\s{2,4\d{1,3}/)"\

-e {push(@!,$_)}'\

-e 'END{print map{$_->[0]}' \

-e' sort{$a->[1] <=> $b->[1]}'\

e’ map{[$_,substr($_,34,3)]}@!;} perlebcdic.pod

If you would rather see it in CCSID 1047 order then change the number 34 in the last line

Page 17/44

to 39, like this:
recipe 5
perl\
-ne if(/.{290\d{1,3N\s{2,41\d{1,3N\s{2,4}\d{1,3}\s{2,4}\d{1,3}/)"\
-e {push(@1,$_)}'\
-e 'END{print map{$_->[0]}'\
e’ sort{$a->[1] <=> $b->[1]}'\
-e' map{[$_,substr($_,39,3)]}@I;}' perlebcdic.pod
If you would rather see it in POSIX-BC order then change the number 34 in the last line to
44, like this:
recipe 6
perl\
-ne "if(/.{290\d{1,3N\s{2,41\d{1,3\s{2,4}\d{1,3\s{2,4\d{1,3}/)"\
-e {push(@!1,$)}'\
-e 'END{print map{$_->[0]}' \
-e' sort{$a->[1] <=> $hb->[1]}'\
-e' map{[$_,substr($_,44,3)]}@I;}' perlebcdic.pod
Table in hex, sorted in 1047 order
Since this document was first written, the convention has become more and more to use
hexadecimal notation for code points. To do this with the recipes and to also sort is a

multi-step process, so here, for convenience, is the table from above, re-sorted to be in

Code Page 1047 order, and using hex notation.

ISO
8859-1 POS- CCsID
CCSID CCSID CCSID IX- 1047
chr 0819 0037 1047 BC UTF-8 UTF-EBCDIC
<NUL> 00 00 00 00 00 00
<SOH> 01 01 01 01 01 01
<STX> 02 02 02 02 02 02
<ETX> 03 03 03 03 03 03
<ST> 9C 04 04 04 C29C 04

<HT> 09 05 05 05 09 05 Page 18/44

<SSA>

<EPA>

<RI>

<§S2>

<VT>

<FF>

<CR>

<S0O>

<S>

<DLE>

<DC1>

<DC2>

<DC3>

<0OSC>

<LF>

<BS>

<ESA>

<CAN>

<EOM>

<PU2>

<8S83>

<FS>

<GS>

<RS>

<USs>

<PAD>

<HOP>

<BPH>

<NBH>

<IND>

<NEL>

<ETB>

86 06 06 06 C2.86 06

7F 07 07 07 7F 07

97 08 08 08 C2.97 08

8D 09 09 09 C2.8D 09

8E OA OA OA C28E OA

0B OB 0B OB 0B 0B

0C 0C 0C oC oC 0oC

0D 0D OD OD 0D 0D

OE OE OE OE OE OE

OF OF OF OF OF OF

10 10 10 10 10 10

11 11 11 11 11 11

12 12 12 12 12 12

13 13 13 13 13 13

9D 14 14 14 C29D 14

0OA 25 15 15 OA 15 **

08 16 16 16 08 16

87 17 17 17 C2.87 17

18 18 18 18 18 18

19 19 19 19 19 19

92 1A 1A 1A C292 1A

8F 1B 1B 1B C2.8F 1B

1C 1C 1C 1C 1C 1C

1D 1D 1D 1D 1D 1D

1E 1E 1E 1E 1E 1E

1F 1F 1F 1F 1F 1F

80 20 20 20 C2.80 20

81 21 21 21 C281 21

82 22 22 22 C2.82 22

83 23 23 23 C2.83 23

84 24 24 24 C2.84 24

85 15 25 25 C2.85 25 **

17 26 26 26 17 26

Page 19/44

<ESC>
<HTS>
<HTJ>
<VTS>
<PLD>
<PLU>
<ENQ>
<ACK>
<BEL>
<DCS>
<pPU1>
<SYN>
<STS>
<CCH>
<MW>
<SPA>
<EOT>
<SOS>
<SGC>
<SCI>
<CslI>
<DC4>
<NAK>
<PM>
<SuB>

<SPACE>

1B

88

89

8A

8B

8C

05

06

07

90

91

16

93

94

95

96

04

98

99

9A

9B

14

15

9E

27 27 27 1B 27

28 28 28 C2.88 28

29 29 29 C2.89 29

2A 2A 2A C28A 2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

1A 3F

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

2B C2.8B 2B

2C C28C 2C

2D 05 2D

2E 06 2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

07 2F

C2.90 30

C291 31

16 32

C2.93 33

C2.94 34

C2.95 35

C2.96 36

04 37

C2.98 38

C2.99 39

C2.9A 3A

C29B 3B

3C 14 3C

3D 15 3D

3E C29E 3E

3F 1A 3F

20 40 40 40 20 40

<NON-BREAKING SPACE>

<a WITH CIRCUMFLEX>

<a WITH DIAERESIS>

<a WITH GRAVE>

<a WITH ACUTE>

<a WITH TILDE>

<a WITH RING ABOVE>

EO 44 44 44 C3.A0 8B.41

E1 45 45 45 C3.A1 8B.42

E3 46 46 46 C3.A3 8B.44

A0 41 41 41 C2.A0 80.41

E2 42 42 42 C3.A2 8B.43

E5 47 47 47 C3.A5 8B.46

E4 43 43 43 C3.A4 8B.45

Page 20/44

<c WITH CEDILLA> E7 48 48 48 C3.A7 8B.48
<n WITH TILDE> F1 49 49 49 C3.B1 8B.58
<CENT SIGN> A2 4A 4A BO C2.A2 80.43 ##

2E 4B 4B 4B 2E 4B

< 3C 4C 4C 4C 3C 4C
(28 4D 4D 4D 28 4D
+ 2B 4E 4E 4E 2B 4E

| 7C 4F 4F 4F 7C 4F
& 26 50 50 50 26 50
<e WITH ACUTE> E9 51 51 51 C3.A9 8B.4A

<e WITH CIRCUMFLEX> EA 52 52 52 C3.AA 8B.51

<e WITH DIAERESIS> EB 53 53 53 C3.AB 8B.52
<e WITH GRAVE> E8 54 54 54 C3.A8 8B.49
<i WITH ACUTE> ED 55 55 55 C3.AD 8B.54

<i WITH CIRCUMFLEX> EE 56 56 56 C3.AE 8B.55
<i WITH DIAERESIS> EF 57 57 57 C3.AF 8B.56

<i WITH GRAVE> EC 58 58 58 C3.AC 8B.53

<SMALL LETTER SHARP S> DF 59 59 59 C3.9F 8A.73

! 21 5A 5A 5A 21 5A

$ 24 5B 5B 5B 24 5B
* 2A 5C 5C 5C 2A 5C
) 29 5D 5D 5D 29 sD

; 3B 5E 5E 5E 3B S5E

A SE BO 5F 6A 5E 5F *##

- 2D 60 60 60 2D 60

/ 2F 61 61 61 2F 61

<A WITH CIRCUMFLEX> C2 62 62 62 C3.82 8A43

<A WITH DIAERESIS> C4 63 63 63 C3.84 8A.45

<A WITH GRAVE> CO 64 64 64 C3.80 8A4l1
<A WITH ACUTE> Cl 65 65 65 C3.81 8A.42
<A WITH TILDE> C3 66 66 66 C3.83 8A.44

<A WITH RING ABOVE> C5 67 67 67 C3.85 B8A.46

<C WITH CEDILLA> C7 68 68 68 C3.87 8A.48

Page 21/44

<N WITH TILDE> D1 69 69 69 C3.91 B8A.58

<BROKEN BAR> A6 6A 6A DO C2.A6 80.47 ##
, 2C 6B 6B 6B 2C 6B

% 25 6C 6C 6C 25 6C

_ 5F 6D 6D 6D 5F 6D

> 3E 6E 6E 6E 3E 6E

? 3F 6F 6F 6F 3F 6F

<o WITH STROKE> F8 70 70 70 C3.B8 8B.67

<E WITH ACUTE>

<E WITH CIRCUMFLEX> CA 72 72 72 C3.8A 8AS51

<E WITH DIAERESIS> CB 73 73 73 C3.8B 8A.52

<E WITH GRAVE>

<| WITH ACUTE>

<I WITH CIRCUMFLEX> CE 76 76 76 C3.8E 8A.55

CoO 71 71 71 C3.89 B8AJ4A

C8 74 74 74 C3.88 8A.49

CD 75 75 75 C3.8D 8A54

<| WITH DIAERESIS> CF 77 77 77 C3.8F 8A.56

<| WITH GRAVE>

CC 78 78 78 C3.8C 8A.53

60 79 79 4A 60 79 ##
3A 7A 7TA TA 3A T7A

23 7B 7B 7B 23 7B

@ 40 7C 7C 7C 40 7C

' 27 7D 7D 7D 27 7D

= 3D 7E 7E 7E 3D 7E

" 22 7F 7F 7F 22 7F

<O WITH STROKE> D8 80 80 80 C3.98 B8A.67

a 61 81 81 81 61 81

b 62 82 82 82 62 82

c 63 83 83 83 63 83

d 64 84 84 84 64 84

e 65 85 85 85 65 85

f 66 86 86 86 66 86

g 67 87 87 87 67 87

h 68 88 88 88 68 88

i 69 89 89 89 69 89

Page 22/44

<LEFT POINTING GUILLEMET> AB 8A 8A 8A C2.AB 80.52
<RIGHT POINTING GUILLEMET> BB 8B 8B 8B C2.BB 80.6A
<SMALL LETTER eth> FO 8C 8C 8C C3.B0 8B.57

<y WITH ACUTE> FD 8D 8D 8D C3.BD 8B.71
<SMALL LETTER thorn> FE 8E 8E 8E C3.BE 8B.72
<PLUS-OR-MINUS SIGN> B1 8F 8F 8F C2.B1 80.58
<DEGREE SIGN> BO 90 90 90 C2.B0 80.57

j 6A 91 91 91 6A 01

k 6B 92 92 92 6B 92

I 6C 93 93 93 6C 93

m 6D 94 94 94 6D 94
n 6E 95 95 95 6E 95
0 6F 96 96 96 6F 96
P 70 97 97 97 70 97
q 71 98 98 98 71 98
r 72 99 99 99 72 99
<FEMININE ORDINAL> AA 9A 9A 9A C2.AA 80.51

<MASC. ORDINAL INDICATOR> BA 9B 9B 9B C2.BA 80.69
<SMALL LIGATURE ae> E6 9C 9C 9C C3.A6 8B.47
<CEDILLA> B8 9D 9D 9D C2.B8 80.67

<CAPITAL LIGATURE AE> C6 9E 9E 9E C3.86 8A.47
<CURRENCY SIGN> A4 OF 9F 9F C2.A4 80.45
<MICRO SIGN> B5 A0 A0 A0 C2.B5 80.64

~ 7E Al Al FF T7E Al ##

s 73 A2 A2 A2 73 A2
t 74 A3 A3 A3 74 A3
u 75 AA A4 Ad 75 A4
v 76 A5 A5 A5 76 A5
w 77 A6 A6 A6 77 A6
X 78 A7 A7 A7 78 A7
y 79 A8 A8 A8 79 A8
z 7A A9 A9 A9 7A A9

<INVERTED "I" > Al AA AA AA C2.A1 80.42 Page 23/44

<INVERTED QUESTION MARK> BF AB AB AB C2.BF 80.73
<CAPITAL LETTER ETH> DO AC AC AC C3.90 8AS57

[58 BA AD BB 5B AD ** ##

<CAPITAL LETTER THORN> DE AE AE AE C3.9E 8A.72

<REGISTERED TRADE MARK> AE AF AF AF C2.AE 80.55

<NOT SIGN> AC 5F BO BA C2.AC 80.53 **##
<POUND SIGN> A3 Bl Bl B1 C2.A3 80.44
<YEN SIGN> A5 B2 B2 B2 C2.A5 80.46
<MIDDLE DOT> B7 B3 B3 B3 C2.B7 80.66
<COPYRIGHT SIGN> A9 B4 B4 B4 C2.A9 B80.4A
<SECTION SIGN> A7 B5 B5 B5 C2.A7 80.48
<PARAGRAPH SIGN> B6 B6 B6 B6 C2.B6 80.65

<FRACTION ONE QUARTER> BC B7 B7 B7 C2.BC 80.70
<FRACTION ONE HALF> BD B8 B8 B8 C2.BD 80.71

<FRACTION THREE QUARTERS> BE B9 B9 B9 C2.BE 80.72

<Y WITH ACUTE> DD AD BA AD C3.9D B8A.71 ** ##
<DIAERESIS> A8 BD BB 79 C2.A8 80.49 **##
<MACRON> AF BC BC Al C2.AF 80.56 ##

] 5D BB BD BD 5D BD **
<ACUTE ACCENT> B4 BE BE BE C2.B4 80.63

<MULTIPLICATION SIGN> D7 BF BF BF C3.97 B8A.66

{ 7B CO CO FB 7B CO ##
A 41 C1 C1 C1 41 C1

B 42 C2 C2 C2 42 c2

C 43 C3 C3 C3 43 C3

D 44 C4 C4 C4 44 C4

E 45 C5 C5 C5 45 C5

F 46 C6 C6 C6 46 C6

G 47 C7 C7 C7 47 c7

H 48 C8 C8 C8 48 C8

| 49 C9 C9 C9 49 C9
<SOFT HYPHEN> AD CA CA CA C2.AD 80.54

<o WITH CIRCUMFLEX> F4 CB CB CB C3.B4 8B.63

Page 24/44

<o WITH DIAERESIS>

<o WITH GRAVE>

<o WITH ACUTE>

<o WITH TILDE>

}

F6 CC CC CC C3.B6 8B.65

F2 CD CD CD C3.B2 8B.59

F3 CE CE CE C3.B3 8B.62

F5 CF CF CF C3.B5 8B.64

7D DO

4A D1

4B D2

4C D3

4D D4

4E D5

4F D6

50 D7

51 D8

52 D9

<SUPERSCRIPT ONE>

<u WITH CIRCUMFLEX>

<u WITH DIAERESIS>

<u WITH GRAVE>

<u WITH ACUTE>

<y WITH DIAERESIS>

\

5C EO

<DIVISION SIGN>

S

< %X =5 < —

N

53 E2

54 E3

55 E4

56 E5

57 EG6

58 E7

59 E8

5A E9

<SUPERSCRIPT TWO>

<O WITH CIRCUMFLEX>

<O WITH DIAERESIS>

DO FD 7D DO ##

D1 D1 4A D1

D2 D2 4B D2

D3 D3 4C D3

D4 D4 4D D4

D5 D5 4E D5

D6 D6 4F D6

D7 D7 50 D7

D8 D8 51 D8

D9 D9 52 D9

B9 DA DA DA C2.B9 80.68

FB DB DB DB C3.BB 8B.6A

FC DC DC DC C3.BC 8B.70

FO DD DD CO C3.B9 8B.68 ##

FA DE DE DE C3.BA 8B.69

FF DF DF DF C3.BF 8B.73

EO BC 5C EO ##

F7 E1 E1 E1 C3.B7 8B.66

E2 E2 53 E2

E3 E3 54 E3

E4 E4 55 E4

E5 E5 56 ES

E6 E6 57 E6

E7 E7 58 E7

E8 E8 59 E8

E9 E9 5A E9

B2 EA EA EA C2.B2 80.59

D4 EB EB EB C3.94 8A.63

D6 EC EC EC C3.96 8A.65

Page 25/44

<O WITH GRAVE> D2 ED ED ED C3.92 8A59

<O WITH ACUTE> D3 EE EE EE C3.93 B8A.62
<O WITH TILDE> D5 EF EF EF C3.95 8A.64
0 30 FO FO FO 30 FO

1 31 F1 F1 F1 31 F1

2 32 F2 F2 F2 32 F2

3 33 F3 F3 F3 33 F3

4 34 F4 F4 F4 34 F4

5 35 F5 F5 F5 35 F5

6 36 F6 F6 F6 36 F6

7 37 F7 F7 F7 37 F7

8 38 F8 F8 F8 38 F8

9 39 F9 F9 F9 39 F9

<SUPERSCRIPT THREE> B3 FA FA FA C2.B3 80.62

<U WITH CIRCUMFLEX> DB FB FB DD C3.9B B8A.GA ##

<U WITH DIAERESIS> DC FC FC FC C3.9C 8A.70
<U WITH GRAVE> D9 FD FD EO C3.99 8A.68 ##
<U WITH ACUTE> DA FE FE FE C3.9A 8A.69
<APC> 9F FF FF 5F C29F FF ##

IDENTIFYING CHARACTER CODE SETS
It is possible to determine which character set you are operating under. But first you
need to be really really sure you need to do this. Your code will be simpler and probably
just as portable if you don't have to test the character set and do different things,
depending. There are actually only very few circumstances where it's not easy to write
straight-line code portable to all character sets. See "Unicode and EBCDIC" in
perluniintro for how to portably specify characters.
But there are some cases where you may want to know which character set you are running
under. One possible example is doing sorting in inner loops where performance is
critical.
To determine if you are running under ASCII or EBCDIC, you can use the return value of
"ord()" or "chr()" to test one or more character values. For example:

$is_ascii ="A" eq chr(65);

$is_ebcdic = "A" eq chr(193); Page 26/44

$is_ascii = ord("A") == 65;

$is_ebcdic = ord("A") == 193;
There's even less need to distinguish between EBCDIC code pages, but to do so try looking
at one or more of the characters that differ between them.

$is_ascii = ord([") == 91;

$is_ebcdic_37 = ord([") == 186;

$is_ebcdic_1047 = ord() == 173;

$is_ebcdic_POSIX_BC = ord([) == 187,
However, it would be unwise to write tests such as:

$is_ascii = "\r" ne chr(13); # WRONG

$is_ascii ="\n" ne chr(10); # ILL ADVISED
Obviously the first of these will fail to distinguish most ASCII platforms from either a
CCSID 0037, a 1047, or a POSIX-BC EBCDIC platform since ""\r"?eq?chr(13)" under all of
those coded character sets. But note too that because "\n" is "chr(13)" and "\r" is
"chr(10)" on old Macintosh (which is an ASCII platform) the second $is_ascii test will
lead to trouble there.
To determine whether or not perl was built under an EBCDIC code page you can use the
Config module like so:

use Config;

$is_ebcdic = $Config{'ebcdic'} eq 'define’;

CONVERSIONS
"utf8::unicode_to_native()" and "utf8::native_to_unicode()"
These functions take an input numeric code point in one encoding and return what its
equivalent value is in the other.
See utf8.
tr//l

In order to convert a string of characters from one character set to another a simple list
of numbers, such as in the right columns in the above table, along with Perl's "tr///"
operator is all that is needed. The data in the table are in ASCIl/Latinl order, hence
the EBCDIC columns provide easy-to-use ASCIl/Latinl to EBCDIC operations that are also
easily reversed.
For example, to convert ASCII/Latin1 to code page 037 take the output of the second

numbers column from the output of recipe 2 (modified to add "\" characters), and use it in Page 27/44

"tr/ll" like so:
$cp_037 =
"\x00\x01\x02\x03\x37\x2D\x2E\x2F\x16\x05\x25\x0B\XxOC\XOD\XOE\XOF" .
X10\X11\x12\x13\x3C\x3D\x32\x26\x18\Xx19\x3F\x27\x1C\X 1 D\Xx1E\X1F" .
"\x40\x5A\X7F\x7B\x5B\Xx6C\x50\x7D\x4 D\Xx5D\X5C\x4E\x6B\x60\x4B\Xx61" .
\XFO\XF1\XF2\XF3\XFA\XF5\XFB6\XF 7\XF8\XFO\x 7 A\X5E\Xx4C\X 7E\X6E\X6F" .
"\X7C\XC1\XC2\XxC3\XC4\xC5\XCB\XC7\XxC8\XCI\XxD1\XxD2\xD3\xD4\xD5\xD6" .
\XD7\XD8\XDI\XE2\XE 3\XE4\XE5\XEB\XE7\XE8\XE9\XxBA\XEO\XxBB\XxBO\X6D" .
"\X79\x81\x82\x83\x84\x85\x86\x87\x88\x89\x91\x92\x93\x94\x95\x96" .
"\X97\X98\X99XA2\XAS\XAA\XAS\XAB\XA7\XAB\XANXCO\X4F\XDO\XAL\X07" .
"\X20\x21\x22\x23\x24\x15\x06\x17\x28\x29\x2A\x2B\x2 C\X09\X0OA\X1B" .
"\x30\x31\x1AX33\x34\x35\x36\x08\x38\x39\x3A\x3B\X04\x 14\x3E\XFF" .
X4 1\XxAAX4AXB1\X9F\XB2\x6 A\XxB5\XBD\XB4\Xx9A\X8AX5F\XCAXXAF\XBC' .
"\X90\X8F\XEA\XFA\XBE\XAO\XB6\xB3\x9D\XDA\X9B\Xx8B\XB7\xB8\XxBO\XAB' .
"\X64\X65\X62\X66\X63\X6 7\XIE\X68\X74\X7 1\X72\X73\X78\X75\X76\X 77" .
\XAC\X69\XED\XE E\XXE B\XEF\XEC\XxBF\x80\xFD\xFE\XFB\XFC\XAD\XAE\X59' .
"\X44\x45\x42\x46\x43\x4 7\x9C\x48\x54\x51\x52\x53\x58\x55\X56\x57" .
\X8C\x49\xCD\XCE\XCB\XCF\xCC\xE1\x70\xDD\xDE\xDB\xDC\x8D\X8E\XDF";
my $ebcdic_string = $ascii_string;
eval '$ebcdic_string =~ trAO00-\377/' . $cp_037 . 'I;

To convert from EBCDIC 037 to ASCII just reverse the order of the tr/// arguments like so:
my $ascii_string = $ebcdic_string;
eval '$ascii_string =~ tr/' . $cp_037 . 'NO00-\377/";

Similarly one could take the output of the third numbers column from recipe 2 to obtain a

$cp_1047 table. The fourth numbers column of the output from recipe 2 could provide a

$cp_posix_bc table suitable for transcoding as well.

If you wanted to see the inverse tables, you would first have to sort on the desired

numbers column as in recipes 4, 5 or 6, then take the output of the first numbers column.

iconv

XPG operability often implies the presence of an iconv utility available from the shell or

from the C library. Consult your system's documentation for information on iconv.

On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the "iconv" shell utility

from within perl would be to: Page 28/44

OS/390 or z/OS example

$ascii_data = "echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1"
or the inverse map:

OS/390 or z/OS example

$ebcdic_data = “echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047"
For other Perl-based conversion options see the "Convert::*" modules on CPAN.

C RTL
The OS/390 and z/OS C run-time libraries provide " _atoe()" and "_etoa()" functions.
OPERATOR DIFFERENCES

The ".." range operator treats certain character ranges with care on EBCDIC platforms.
For example the following array will have twenty six elements on either an EBCDIC platform
or an ASCII platform:

@alphabet = ('A'..'Z"); # S$#alphabet == 25
The bitwise operators such as & ” | may return different results when operating on string
or character data in a Perl program running on an EBCDIC platform than when run on an
ASCII platform. Here is an example adapted from the one in perlop:

EBCDIC-based examples

print"jp\n"~"ah"; # prints "JAPH\n"

print "JA" | " ph\n"; # prints "japh\n”

print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";

print'p N$' ~ " E<H\n"; # prints "Perl\n";
An interesting property of the 32 CO control characters in the ASCII table is that they
can "literally" be constructed as control characters in Perl, e.g. "(chr(0)" eq "\c@")>
"(chr(1)" eq "\cA")>, and so on. Perl on EBCDIC platforms has been ported to take "\c@"
to chr(0) and "\cA" to chr(1), etc. as well, but the characters that result depend on
which code page you are using. The table below uses the standard acronyms for the
controls. The POSIX-BC and 1047 sets are identical throughout this range and differ from
the 0037 set at only one spot (21 decimal). Note that the line terminator character may
be generated by "\cJ" on ASCII platforms but by "\cU" on 1047 or POSIX-BC platforms and
cannot be generated as a "\c.letter." control character on 0037 platforms. Note also that
"\c\" cannot be the final element in a string or regex, as it will absorb the terminator.
But "\c\X" is a "FILE SEPARATOR" concatenated with X for all X. The outlier "\c?" on

ASCII, which yields a non-CO0 control "DEL", yields the outlier control "APC" on EBCDIC, Page 29/44

the one that isn't in the block of contiguous controls. Note that a subtlety of this is

that "\c?" on ASCII platforms is an ASCII character, while it isn't equivalent to any

ASCII character in EBCDIC platforms.

chr ord 8859-1 0037 1047 && POSIX-BC

\c@

\cA
\cB
\cC
\cD
\cE
\cF
\cG
\cH
\cl

\cJ

\cK
\cL
\cM
\cN
\cO
\cP
\cQ
\cR
\cS
\cT
\cU

\cV

\cW 23 <ETB>

0 <NUL>

1

2

8

<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<BEL>

<BS>

9 <HT>

10

11

12

13

14

15

16

17

18

19

20

21

22

<LF>

<VT>

<FF>

<CR>

<SO>

<Sl|>

<DLE>

<DC1>

<DC2>

<DC3>

<DC4>

<NAK>

<SYN>

\cX 24 <CAN>

\cY 25 <EOM>

\cZ 26 <SUB>

\c[

27 <ESC>

<NUL>

<SOH>

<STX>

<ETX>

<ST>

<HT>

<SSA>

<EPA>

<RI>

<§S2>

<VT>

<FF>

<CR>

<SO>

<S|>

<DLE>

<DC1>

<DC2>

<DC3>

<0SC>

<NEL>

<BS>

<ESA>

<CAN>

<EOM>

<PU2>

<S8S3>

<NUL>

<SOH>

<STX>

<ETX>

<ST>

<HT>

<SSA>

<EPA>

<RI>

<§S2>

<VT>

<FF>

<CR>

<SO>

<Sl|>

<DLE>

<DC1>

<DC2>

<DC3>

<0SC>

<LF>

<BS>

<ESA>

<CAN>

<EOM>

<PU2>

<SS3>

*%

Page 30/44

\c\X 28 <FS>X <FS>X <FS>X
\c] 29 <GS> <GS> <GS>
\c# 30 <RS> <RS> <RS>
\c_ 31 <US> <US> <uUs>
\c? * <APC> <APC>
"*" Note: "\c?" maps to ordinal 127 ("DEL") on ASCII platforms, but since ordinal 127 is a
not a control character on EBCDIC machines, "\c?" instead maps on them to "APC", which is
255 in 0037 and 1047, and 95 in POSIX-BC.
FUNCTION DIFFERENCES
“chr()" "chr()" must be given an EBCDIC code number argument to yield a desired character
return value on an EBCDIC platform. For example:
$CAPITAL_LETTER_A = chr(193);
"ord()" "ord()" will return EBCDIC code number values on an EBCDIC platform. For example:
$the_number_ 193 = ord("A");
"pack()”
The "c" and "C" templates for "pack()" are dependent upon character set encoding.
Examples of usage on EBCDIC include:
$foo = pack("CCCC",193,194,195,196);
$foo eq "ABCD"
$foo = pack("C4",193,194,195,196);
same thing
$foo = pack("ccxxcc”,193,194,195,196);
$foo eq "AB\0\OCD"
The "U" template has been ported to mean "Unicode" on all platforms so that
pack("U", 65) eq 'A'
is true on all platforms. If you want native code points for the low 256, use the
"W" template. This means that the equivalences
pack("W", ord($character)) eq $character
unpack("W", $character) == ord $character
will hold.
"print()"
One must be careful with scalars and strings that are passed to print that contain

ASCII encodings. One common place for this to occur is in the output of the MIME Page 31/44

type header for CGI script writing. For example, many Perl programming guides
recommend something similar to:
print "Content-type:\ttext/htmI\015\012\015\012";
this may be wrong on EBCDIC
You can instead write
print "Content-type:\ttext/htm\n\n\r\n"; # OK for DGW et al
and have it work portably.
That is because the translation from EBCDIC to ASCII is done by the web server in
this case. Consult your web server's documentation for further details.
"printf()"
The formats that can convert characters to numbers and vice versa will be
different from their ASCII counterparts when executed on an EBCDIC platform.
Examples include:
printf("%c%c%c",193,194,195); # prints ABC
"sort()"
EBCDIC sort results may differ from ASCII sort results especially for mixed case
strings. This is discussed in more detail below.
"sprintf()"
See the discussion of "printf()" above. An example of the use of sprintf would
be:
$CAPITAL_LETTER_A = sprintf("%c",193);
"unpack()"
See the discussion of "pack()" above.
Note that it is possible to write portable code for these by specifying things in Unicode
numbers, and using a conversion function:
printf("%c",utf8::unicode_to_native(65)); # prints A on all
platforms
print utf8::native_to_unicode(ord("A")); # Likewise, prints 65
See "Unicode and EBCDIC" in perluniintro and "CONVERSIONS" for other options.

REGULAR EXPRESSION DIFFERENCES

You can write your regular expressions just like someone on an ASCII platform would do.

But keep in mind that using octal or hex notation to specify a particular code point will

give you the character that the EBCDIC code page natively maps to it. (This is also true

Page 32/44

of all double-quoted strings.) If you want to write portably, just use the "\N{U+...}"
notation everywhere where you would have used "\x{...}", and don't use octal notation at
all.
Starting in Perl v5.22, this applies to ranges in bracketed character classes. If you
say, for example, "gr/[\N{U+20}-\N{U+7F}]/", it means the characters "\N{U+20}",
“\N{U+21}", ..., "\N{U+7F}". This range is all the printable characters that the ASCII
character set contains.
Prior to v5.22, you couldn't specify any ranges portably, except (starting in Perl v5.5.3)
all subsets of the "[A-Z]" and "[a-z]" ranges are specially coded to not pick up gap
characters. For example, characters such as "?" ("o WITH CIRCUMFLEX") that lie between
"I":and "J" would not be matched by the regular expression range "/[H-K]/". But if either
of the range end points is explicitly numeric (and neither is specified by "\N{U+...}"),
the gap characters are matched:
/[\x89-\x91]/
will match "\x8e", even though "\x89" is "i" and "\x91 " is "j", and "\x8e" is a gap
character, from the alphabetic viewpoint.
Another construct to be wary of is the inappropriate use of hex (unless you use
“\N{U+...}"") or octal constants in regular expressions. Consider the following set of
subs:
subis_c0{
my $char = substr(shift,0,1);
$char =~ /\000-\037]/;
}
sub is_print_ascii {
my $char = substr(shift,0,1);
$char =~ /[\040-\176]/;
}
sub is_delete {
my $char = substr(shift,0,1);
$char eq "\177";
}
subis_c1{

my $char = substr(shift,0,1);

Page 33/44

$char =~ /[\200-\237]/;
}
subis_latin_1{ # But not ASCII; not C1
my $char = substr(shift,0,1);
$char =~ /[\240-\377]/;
}
These are valid only on ASCII platforms. Starting in Perl v5.22, simply changing the
octal constants to equivalent "\N{U+...}" values makes them portable:
subis_c0{
my $char = substr(shift,0,1);
$char =~ /\N{U+00}-\N{U+1F}]/;
}
sub is_print_ascii {
my $char = substr(shift,0,1);
$char =~ /\N{U+20}-\N{U+7E}]/;
}
sub is_delete {
my $char = substr(shift,0,1);

$char eq "\N{U+7F}";

}
subis _cl1{
my $char = substr(shift,0,1);
$char =~ /\N{U+80}-\N{U+9F}]/;
}

subis_latin_1{ # Butnot ASCII; not C1
my $char = substr(shift,0,1);
$char =~ /\N{U+AO0}-\N{U+FF}/;
}
And here are some alternative portable ways to write them:
sub Is_cO {
my $char = substr(shift,0,1);
return $char =~ /[[:cntrl:])/a && ! Is_delete($char);

Alternatively: Page 34/44

return $char =~ /[[:cntrl:]}/
&& $char =~ /[[:ascii:]}/
&& !Is_delete($char);
}
sub Is_print_ascii {
my $char = substr(shift,0,1);
return $char =~ /[[:print:]}/a;
Alternatively:
return $char =~ /[[:print:]}/ && $char =~ /[[:ascii:]]/;
Or
return $char
o =~ ["¥\$%&'()*+\-V0-9:;<=>\@A-Z[\\|*_"a-z{|}~1/;
}
sub Is_delete {
my $char = substr(shift,0,1);
return utf8::native_to_unicode(ord $char) == 0x7F;
}
subls_cl{
use feature 'unicode_strings';
my $char = substr(shift,0,1);
return $char =~ /[[:cntrl:])/ && $char !~ /[[:ascii:]]/;
}
sub Is_latin_1{ # But not ASCII; not C1
use feature 'unicode_strings';
my $char = substr(shift,0,1);
return ord($char) < 256
&& $char !~ /[[:ascii:])/
&& $char !~ /[[:cntrl:])/;
}
Another way to write "Is_latin_1()" would be to use the characters in the range
explicitly:
sub Is_latin_1 {

my $char = substr(shift,0,1); Page 35/44

}

Although that form may run into trouble in network transit (due to the presence of 8 bit
characters) or on non ISO-Latin character sets. But it does allow "Is_c1" to be rewritten
so it works on Perls that don't have 'unicode_strings' (earlier than v5.14):
sub Is_latin_1 { # But not ASCII; not C1
my $char = substr(shift,0,1);
return ord($char) < 256
&& $char !~ /[[:ascii:]J/
&& !'Is_latinl($char);
}
SOCKETS
Most socket programming assumes ASCII character encodings in network byte order.
Exceptions can include CGI script writing under a host web server where the server may
take care of translation for you. Most host web servers convert EBCDIC data to ISO-8859-1
or Unicode on output.
SORTING
One big difference between ASCII-based character sets and EBCDIC ones are the relative
positions of the characters when sorted in native order. Of most concern are the upper-
and lowercase letters, the digits, and the underscore ("_"). On ASCII platforms the
native sort order has the digits come before the uppercase letters which come before the
underscore which comes before the lowercase letters. On EBCDIC, the underscore comes
first, then the lowercase letters, then the uppercase ones, and the digits last. If
sorted on an ASCII-based platform, the two-letter abbreviation for a physician comes
before the two letter abbreviation for drive; that is:
@sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.") on ASCII,
but (‘'dr.";'Dr.") on EBCDIC
The property of lowercase before uppercase letters in EBCDIC is even carried to the Latin
1 EBCDIC pages such as 0037 and 1047. An example would be that "?" ("E WITH DIAERESIS",
203) comes before "?" ("e WITH DIAERESIS", 235) on an ASCII platform, but the latter (83)
comes before the former (115) on an EBCDIC platform. (Astute readers will note that the

uppercase version of "?" "SMALL LETTER SHARP S" is simply "SS" and that the upper case Page 36/44

versions of "?" (small "y WITH DIAERESIS") and "?" ("MICRO SIGN") are not in the 0..255
range but are in Unicode, in a Unicode enabled Perl).
The sort order will cause differences between results obtained on ASCII platforms versus
EBCDIC platforms. What follows are some suggestions on how to deal with these
differences.
Ignore ASCII vs. EBCDIC sort differences.
This is the least computationally expensive strategy. It may require some user education.
Use a sort helper function
This is completely general, but the most computationally expensive strategy. Choose one
or the other character set and transform to that for every sort comparison. Here's a
complete example that transforms to ASCII sort order:
sub native_to_uni($) {
my $string = shift;
Saves time on an ASCII platform
return $string if ord 'A' == 65;
my $output = "";
for my $i (0 .. length($string) - 1) {
$output
.= chr(utf8::native_to_unicode(ord(substr($string, $i, 1))));
}
Preserve utf8ness of input onto the output, even if it didn't need
to be utf8
utf8::upgrade($output) if utf8::is_utf8($string);
return $output;
}
sub ascii_order { # Sort helper
return native_to_uni($a) cmp native_to_uni($b);
}
sort ascii_order @list;
MONO CASE then sort data (for non-digits, non-underscore)
If you don't care about where digits and underscore sort to, you can do something like
this

sub case_insensitive_order { # Sort helper

Page 37/44

return Ic($a) cmp lc($b)
}
sort case_insensitive_order @list;
If performance is an issue, and you don't care if the output is in the same case as the
input, Use "tr///" to transform to the case most employed within the data. If the data
are primarily UPPERCASE non-Latinl, then apply "tr/[a-z])/[A-Z]/", and then "sort()". If
the data are primarily lowercase non Latinl then apply "tr/[A-Z]/[a-z]/" before sorting.
If the data are primarily UPPERCASE and include Latin-1 characters then apply:

tri[a-z)/[A-Z)/;

s/?/SS/g;
then "sort()". If you have a choice, it's better to lowercase things to avoid the
problems of the two Latin-1 characters whose uppercase is outside Latin-1: "?" (small "y
WITH DIAERESIS") and "?" ("MICRO SIGN"). If you do need to upppercase, you can; with a
Unicode-enabled Perl, do:
tr/?\x{178}/,
tr/?N\x{39C}/;
Perform sorting on one type of platform only.
This strategy can employ a network connection. As such it would be computationally
expensive.
TRANSFORMATION FORMATS
There are a variety of ways of transforming data with an intra character set mapping that
serve a variety of purposes. Sorting was discussed in the previous section and a few of
the other more popular mapping techniques are discussed next.
URL decoding and encoding
Note that some URLs have hexadecimal ASCII code points in them in an attempt to overcome
character or protocol limitation issues. For example the tilde character is not on every
keyboard hence a URL of the form:
http://www.pvhp.com/~pvhp/
may also be expressed as either of:
http://www.pvhp.com/%7Epvhp/
http://www.pvhp.com/%7epvhp/

where 7E is the hexadecimal ASCII code point for "~". Here is an example of decoding such Page 38/44

a URL in any EBCDIC code page:
$url = 'http://www.pvhp.com/%7Epvhp/';
$url =~ s/%([0-9a-fA-F]{2})/
pack("c",utf8::unicode_to_native(hex($1)))/xge;
Conversely, here is a partial solution for the task of encoding such a URL in any EBCDIC
code page:
$url = 'http://www.pvhp.com/~pvhp/";
The following regular expression does not address the
mappings for: (.' => '%2E', /' => '%2F', ' => '%3A)
Surl =~ s/([\t "#%&\(\),;<=>\A\@\\\]*{|}~])/
sprintf("%%%02X",utf8::native_to_unicode(ord($1)))/xge;
where a more complete solution would split the URL into components and apply a full s///
substitution only to the appropriate parts.
uu encoding and decoding
The "u" template to "pack()" or "unpack()" will render EBCDIC data in EBCDIC characters
equivalent to their ASCII counterparts. For example, the following will print "Yes
indeed\n" on either an ASCII or EBCDIC computer:
$all_byte chrs=";
for (0..255) { $all_byte_chrs .= chr($.); }
$uuencode_byte chrs = pack('u’, $all_byte chrs);
($uu = <<’ENDOFHEREDOC') =~ s/Ms*//gm;
M“$"P0%!@<("OH+# T.#Q 1$A,4%187&!D:&QP="A\@(2(C)"4F)R@I*BLL
M+2XO,#$R,SOU-C<X.3H[/#TNT!IOD-$149'2$E*2TQ-3D]045)35%565UA9
M6EM<75Y?8&%B8V1E9F=H:61K;&UN;W!Q<G-T=79W>'EZ>WQ]?G" @8*#A(6&
MAXB)BHN,C82/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GI*FIIZRMKIMPL;*S
MM+6VM[BYNKN\O;Z_P,"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
?2X>+CY.7FYACIZNOL[>[OV'R_3UJO?XA?K[/W~ P
ENDOFHEREDOC
if (fuuencode_byte chrs eq $uu) {
print "Yes ";
}
$uudecode_byte_chrs = unpack('u’, $uuencode_byte_chrs);

if (Suudecode_byte_chrs eq $all_byte_chrs) { Page 39/44

print "indeed\n";
}
Here is a very spartan uudecoder that will work on EBCDIC:
#!/usr/local/bin/perl
$_ = <> until ($mode,$file) = /"begin\s*(\d*)\s*(\S*)/;
open(OUT, "> $file") if $file ne ™;
while(<>) {
last if /*end/;
next if /[a-Z]/;
next unless int((((utf8::native_to_unicode(ord()) - 32) & 077)
+2)/3)
== int(length() / 4);
print OUT unpack('u”, $_);
}
close(OUT);
chmod oct($mode), $file;
Quoted-Printable encoding and decoding
On ASCIll-encoded platforms it is possible to strip characters outside of the printable set
using:
This QP encoder works on ASCII only
$qp_string =~ s/([=\x00-\x1F\x80-\xFF])/
sprintf("=%02X",ord($1))/xge;
Starting in Perl v5.22, this is trivially changeable to work portably on both ASCII and
EBCDIC platforms.
This QP encoder works on both ASCII and EBCDIC
$gp_string =~ s/([=\N{U+00}-\N{U+1FAN{U+80}-\N{U+FF}])/
sprintf("=%02X",ord($1))/xge;
For earlier Perls, a QP encoder that works on both ASCII and EBCDIC platforms would look
somewhat like the following:
$delete = utf8::unicode_to_native(ord("\x7F"));
$qp_string =~
s/(["[:print:]$delete])/

sprintf("=%02X",utf8::native_to_unicode(ord($1)))/xage;

Page 40/44

(although in production code the substitutions might be done in the EBCDIC branch with the
function call and separately in the ASCII branch without the expense of the identity map;
in Perl v5.22, the identity map is optimized out so there is no expense, but the
alternative above is simpler and is also available in v5.22).
Such QP strings can be decoded with:
This QP decoder is limited to ASCII only
$string =~ s/=([[:xdigit:][[:xdigit:])/chr hex $1/ge;
$string =~ s/=[\n\r]+$//;
Whereas a QP decoder that works on both ASCII and EBCDIC platforms would look somewhat
like the following:
$string =~ s/=([[:xdigit:][:xdigit:]])/
chr utf8::native_to_unicode(hex $1)/xge;
$string =~ s/=[\n\r]+$//;
Caesarean ciphers
The practice of shifting an alphabet one or more characters for encipherment dates back
thousands of years and was explicitly detailed by Gaius Julius Caesar in his Gallic Wars
text. A single alphabet shift is sometimes referred to as a rotation and the shift amount
is given as a number $n after the string 'rot' or "rot$n". Rot0 and rot26 would designate
identity maps on the 26-letter English version of the Latin alphabet. Rot13 has the
interesting property that alternate subsequent invocations are identity maps (thus rot13
is its own non-trivial inverse in the group of 26 alphabet rotations). Hence the
following is a rotl3 encoder and decoder that will work on ASCIl and EBCDIC platforms:
#!/usr/local/bin/perl
while(<>){
tr/n-za-mN-ZA-M/a-zA-Z/,
print;
}
In one-liner form:
perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
Hashing order and checksums
Perl deliberately randomizes hash order for security purposes on both ASCIl and EBCDIC
platforms.

EBCDIC checksums will differ for the same file translated into ASCII and vice versa. Page 41/44

118N AND L10N
Internationalization (I18N) and localization (L1ON) are supported at least in principle
even on EBCDIC platforms. The details are system-dependent and discussed under the "OS
ISSUES" section below.
MULTI-OCTET CHARACTER SETS
Perl works with UTF-EBCDIC, a multi-byte encoding. In Perls earlier than v5.22, there may
be various bugs in this regard.
Legacy multi byte EBCDIC code pages XXX.
OS ISSUES
There may be a few system-dependent issues of concern to EBCDIC Perl programmers.
0S/400
PASE The PASE environment is a runtime environment for OS/400 that can run executables
built for PowerPC AIX in OS/400; see perlos400. PASE is ASClI-based, not EBCDIC-
based as the ILE.
IFS access
XXX.
0S/390, z/0OS
Perl runs under Unix Systems Services or USS.
"sigaction”
"SA_SIGINFO" can have segmentation faults.
"chcp" chep is supported as a shell utility for displaying and changing one's code page.
See also chep(l).
dataset access
For sequential data set access try:
my @ds_records = “cat //DSNAME;
or:
my @ds_records = “cat //'HLQ.DSNAME";
See also the 0S390::Stdio module on CPAN.
"iconv" iconv is supported as both a shell utility and a C RTL routine. See also the
iconv(1) and iconv(3) manual pages.
locales Locales are supported. There may be glitches when a locale is another EBCDIC code
page which has some of the code-page variant characters in other positions.

There aren't currently any real UTF-8 locales, even though some locale names Page 42/44

contain the string "UTF-8".
See perllocale for information on locales. The L10N files are in /usr/nis/locale.
$Config{d_setlocale} is 'define’ on OS/390 or z/OS.
POSIX-BC?
XXX.
BUGS

? Not all shells will allow multiple "-e" string arguments to perl to be concatenated
together properly as recipes in this document 0, 2, 4, 5, and 6 might seem to imply.

? There are a significant number of test failures in the CPAN modules shipped with Perl
v5.22 and 5.24. These are only in modules not primarily maintained by Perl 5 porters.
Some of these are failures in the tests only: they don't realize that it is proper to
get different results on EBCDIC platforms. And some of the failures are real bugs.

If you compile and do a "make test" on Perl, all tests on the "/cpan" directory are
skipped.
Encode partially works.

? In earlier Perl versions, when byte and character data were concatenated, the new
string was sometimes created by decoding the byte strings as ISO 8859-1 (Latin-1),
even if the old Unicode string used EBCDIC.

SEE ALSO
perllocale, perlfunc, perlunicode, utf8.
REFERENCES

<http://anubis.dkuug.dk/i18n/charmaps>

<https://www.unicode.org/>

<https://www.unicode.org/unicode/reports/tr16/>

<http://lwww.wps.com/projects/codes/> ASCII: American Standard Code for Information

Infiltration Tom Jennings, September 1999.

The Unicode Standard, Version 3.0 The Unicode Consortium, Lisa Moore ed., ISBN

0-201-61633-5, Addison Wesley Developers Press, February 2000.

CDRA: IBM - Character Data Representation Architecture - Reference and Registry, IBM

SC09-2190-00, December 1996.

"Demystifying Character Sets", Andrea Vine, Multilingual Computing & Technology, #26 Vol.

10 Issue 4, August/September 1999; ISSN 1523-0309; Multilingual Computing Inc. Sandpoint

ID, USA. Page 43/44

Codes, Ciphers, and Other Cryptic and Clandestine Communication Fred B. Wrixon, ISBN
1-57912-040-7, Black Dog & Leventhal Publishers, 1998.
<http://www.bobbemer.com/P-BIT.HTM> IBM - EBCDIC and the P-bit; The biggest Computer Goof
Ever Robert Bemer.

HISTORY
15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.

AUTHOR
Peter Prymmer pvhp@best.com wrote this in 1999 and 2000 with CCSID 0819 and 0037 help from
Chris Leach and Andr? Pirard A.Pirard@ulg.ac.be as well as POSIX-BC help from Thomas
Dorner Thomas.Dorner@start.de. Thanks also to Vickie Cooper, Philip Newton, William
Raffloer, and Joe Smith. Trademarks, registered trademarks, service marks and registered
service marks used in this document are the property of their respective owners.
Now maintained by Perl5 Porters.

perl v5.34.0 2023-11-23 PERLEBCDIC(1)

Page 44/44

