
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlembed.1'

$ man perlembed.1

PERLEMBED(1) Perl Programmers Reference Guide PERLEMBED(1)

NAME

 perlembed - how to embed perl in your C program

DESCRIPTION

 PREAMBLE

 Do you want to:

 Use C from Perl?

 Read perlxstut, perlxs, h2xs, perlguts, and perlapi.

 Use a Unix program from Perl?

 Read about back-quotes and about "system" and "exec" in perlfunc.

 Use Perl from Perl?

 Read about "do" in perlfunc and "eval" in perlfunc and "require" in perlfunc and

 "use" in perlfunc.

 Use C from C?

 Rethink your design.

 Use Perl from C?

 Read on...

 ROADMAP

 ? Compiling your C program

 ? Adding a Perl interpreter to your C program

 ? Calling a Perl subroutine from your C program

 ? Evaluating a Perl statement from your C program

 ? Performing Perl pattern matches and substitutions from your C program Page 1/24

 ? Fiddling with the Perl stack from your C program

 ? Maintaining a persistent interpreter

 ? Maintaining multiple interpreter instances

 ? Using Perl modules, which themselves use C libraries, from your C program

 ? Embedding Perl under Win32

 Compiling your C program

 If you have trouble compiling the scripts in this documentation, you're not alone. The

 cardinal rule: COMPILE THE PROGRAMS IN EXACTLY THE SAME WAY THAT YOUR PERL WAS COMPILED.

 (Sorry for yelling.)

 Also, every C program that uses Perl must link in the perl library. What's that, you ask?

 Perl is itself written in C; the perl library is the collection of compiled C programs

 that were used to create your perl executable (/usr/bin/perl or equivalent). (Corollary:

 you can't use Perl from your C program unless Perl has been compiled on your machine, or

 installed properly--that's why you shouldn't blithely copy Perl executables from machine

 to machine without also copying the lib directory.)

 When you use Perl from C, your C program will--usually--allocate, "run", and deallocate a

 PerlInterpreter object, which is defined by the perl library.

 If your copy of Perl is recent enough to contain this documentation (version 5.002 or

 later), then the perl library (and EXTERN.h and perl.h, which you'll also need) will

 reside in a directory that looks like this:

 /usr/local/lib/perl5/your_architecture_here/CORE

 or perhaps just

 /usr/local/lib/perl5/CORE

 or maybe something like

 /usr/opt/perl5/CORE

 Execute this statement for a hint about where to find CORE:

 perl -MConfig -e 'print $Config{archlib}'

 Here's how you'd compile the example in the next section, "Adding a Perl interpreter to

 your C program", on my Linux box:

 % gcc -O2 -Dbool=char -DHAS_BOOL -I/usr/local/include

 -I/usr/local/lib/perl5/i586-linux/5.003/CORE

 -L/usr/local/lib/perl5/i586-linux/5.003/CORE

 -o interp interp.c -lperl -lm Page 2/24

 (That's all one line.) On my DEC Alpha running old 5.003_05, the incantation is a bit

 different:

 % cc -O2 -Olimit 2900 -I/usr/local/include

 -I/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE

 -L/usr/local/lib/perl5/alpha-dec_osf/5.00305/CORE -L/usr/local/lib

 -D__LANGUAGE_C__ -D_NO_PROTO -o interp interp.c -lperl -lm

 How can you figure out what to add? Assuming your Perl is post-5.001, execute a "perl -V"

 command and pay special attention to the "cc" and "ccflags" information.

 You'll have to choose the appropriate compiler (cc, gcc, et al.) for your machine: "perl

 -MConfig -e 'print $Config{cc}'" will tell you what to use.

 You'll also have to choose the appropriate library directory (/usr/local/lib/...) for your

 machine. If your compiler complains that certain functions are undefined, or that it

 can't locate -lperl, then you need to change the path following the "-L". If it complains

 that it can't find EXTERN.h and perl.h, you need to change the path following the "-I".

 You may have to add extra libraries as well. Which ones? Perhaps those printed by

 perl -MConfig -e 'print $Config{libs}'

 Provided your perl binary was properly configured and installed the ExtUtils::Embed module

 will determine all of this information for you:

 % cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

 If the ExtUtils::Embed module isn't part of your Perl distribution, you can retrieve it

 from <https://metacpan.org/pod/ExtUtils::Embed> (If this documentation came from your Perl

 distribution, then you're running 5.004 or better and you already have it.)

 The ExtUtils::Embed kit on CPAN also contains all source code for the examples in this

 document, tests, additional examples and other information you may find useful.

 Adding a Perl interpreter to your C program

 In a sense, perl (the C program) is a good example of embedding Perl (the language), so

 I'll demonstrate embedding with miniperlmain.c, included in the source distribution.

 Here's a bastardized, non-portable version of miniperlmain.c containing the essentials of

 embedding:

 #include <EXTERN.h> /* from the Perl distribution */

 #include <perl.h> /* from the Perl distribution */

 static PerlInterpreter *my_perl; /*** The Perl interpreter ***/

 int main(int argc, char **argv, char **env) Page 3/24

 {

 PERL_SYS_INIT3(&argc,&argv,&env);

 my_perl = perl_alloc();

 perl_construct(my_perl);

 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 perl_parse(my_perl, NULL, argc, argv, (char **)NULL);

 perl_run(my_perl);

 perl_destruct(my_perl);

 perl_free(my_perl);

 PERL_SYS_TERM();

 exit(EXIT_SUCCESS);

 }

 Notice that we don't use the "env" pointer. Normally handed to "perl_parse" as its final

 argument, "env" here is replaced by "NULL", which means that the current environment will

 be used.

 The macros PERL_SYS_INIT3() and PERL_SYS_TERM() provide system-specific tune up of the C

 runtime environment necessary to run Perl interpreters; they should only be called once

 regardless of how many interpreters you create or destroy. Call PERL_SYS_INIT3() before

 you create your first interpreter, and PERL_SYS_TERM() after you free your last

 interpreter.

 Since PERL_SYS_INIT3() may change "env", it may be more appropriate to provide "env" as an

 argument to perl_parse().

 Also notice that no matter what arguments you pass to perl_parse(), PERL_SYS_INIT3() must

 be invoked on the C main() argc, argv and env and only once.

 Mind that argv[argc] must be NULL, same as those passed to a main function in C.

 Now compile this program (I'll call it interp.c) into an executable:

 % cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

 After a successful compilation, you'll be able to use interp just like perl itself:

 % interp

 print "Pretty Good Perl \n";

 print "10890 - 9801 is ", 10890 - 9801;

 <CTRL-D>

 Pretty Good Perl Page 4/24

 10890 - 9801 is 1089

 or

 % interp -e 'printf("%x", 3735928559)'

 deadbeef

 You can also read and execute Perl statements from a file while in the midst of your C

 program, by placing the filename in argv[1] before calling perl_run.

 Calling a Perl subroutine from your C program

 To call individual Perl subroutines, you can use any of the call_* functions documented in

 perlcall. In this example we'll use "call_argv".

 That's shown below, in a program I'll call showtime.c.

 #include <EXTERN.h>

 #include <perl.h>

 static PerlInterpreter *my_perl;

 int main(int argc, char **argv, char **env)

 {

 char *args[] = { NULL };

 PERL_SYS_INIT3(&argc,&argv,&env);

 my_perl = perl_alloc();

 perl_construct(my_perl);

 perl_parse(my_perl, NULL, argc, argv, NULL);

 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 /*** skipping perl_run() ***/

 call_argv("showtime", G_DISCARD | G_NOARGS, args);

 perl_destruct(my_perl);

 perl_free(my_perl);

 PERL_SYS_TERM();

 exit(EXIT_SUCCESS);

 }

 where showtime is a Perl subroutine that takes no arguments (that's the G_NOARGS) and for

 which I'll ignore the return value (that's the G_DISCARD). Those flags, and others, are

 discussed in perlcall.

 I'll define the showtime subroutine in a file called showtime.pl:

 print "I shan't be printed."; Page 5/24

 sub showtime {

 print time;

 }

 Simple enough. Now compile and run:

 % cc -o showtime showtime.c \

 `perl -MExtUtils::Embed -e ccopts -e ldopts`

 % showtime showtime.pl

 818284590

 yielding the number of seconds that elapsed between January 1, 1970 (the beginning of the

 Unix epoch), and the moment I began writing this sentence.

 In this particular case we don't have to call perl_run, as we set the PL_exit_flag

 PERL_EXIT_DESTRUCT_END which executes END blocks in perl_destruct.

 If you want to pass arguments to the Perl subroutine, you can add strings to the

 "NULL"-terminated "args" list passed to call_argv. For other data types, or to examine

 return values, you'll need to manipulate the Perl stack. That's demonstrated in "Fiddling

 with the Perl stack from your C program".

 Evaluating a Perl statement from your C program

 Perl provides two API functions to evaluate pieces of Perl code. These are "eval_sv" in

 perlapi and "eval_pv" in perlapi.

 Arguably, these are the only routines you'll ever need to execute snippets of Perl code

 from within your C program. Your code can be as long as you wish; it can contain multiple

 statements; it can employ "use" in perlfunc, "require" in perlfunc, and "do" in perlfunc

 to include external Perl files.

 eval_pv lets us evaluate individual Perl strings, and then extract variables for coercion

 into C types. The following program, string.c, executes three Perl strings, extracting an

 "int" from the first, a "float" from the second, and a "char *" from the third.

 #include <EXTERN.h>

 #include <perl.h>

 static PerlInterpreter *my_perl;

 main (int argc, char **argv, char **env)

 {

 char *embedding[] = { "", "-e", "0", NULL };

 PERL_SYS_INIT3(&argc,&argv,&env); Page 6/24

 my_perl = perl_alloc();

 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 3, embedding, NULL);

 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 perl_run(my_perl);

 /** Treat $a as an integer **/

 eval_pv("$a = 3; $a **= 2", TRUE);

 printf("a = %d\n", SvIV(get_sv("a", 0)));

 /** Treat $a as a float **/

 eval_pv("$a = 3.14; $a **= 2", TRUE);

 printf("a = %f\n", SvNV(get_sv("a", 0)));

 /** Treat $a as a string **/

 eval_pv(

 "$a = 'rekcaH lreP rehtonA tsuJ'; $a = reverse($a);", TRUE);

 printf("a = %s\n", SvPV_nolen(get_sv("a", 0)));

 perl_destruct(my_perl);

 perl_free(my_perl);

 PERL_SYS_TERM();

 }

 All of those strange functions with sv in their names help convert Perl scalars to C

 types. They're described in perlguts and perlapi.

 If you compile and run string.c, you'll see the results of using SvIV() to create an

 "int", SvNV() to create a "float", and SvPV() to create a string:

 a = 9

 a = 9.859600

 a = Just Another Perl Hacker

 In the example above, we've created a global variable to temporarily store the computed

 value of our eval'ed expression. It is also possible and in most cases a better strategy

 to fetch the return value from eval_pv() instead. Example:

 ...

 SV *val = eval_pv("reverse 'rekcaH lreP rehtonA tsuJ'", TRUE);

 printf("%s\n", SvPV_nolen(val));

 ... Page 7/24

 This way, we avoid namespace pollution by not creating global variables and we've

 simplified our code as well.

 Performing Perl pattern matches and substitutions from your C program

 The eval_sv() function lets us evaluate strings of Perl code, so we can define some

 functions that use it to "specialize" in matches and substitutions: match(), substitute(),

 and matches().

 I32 match(SV *string, char *pattern);

 Given a string and a pattern (e.g., "m/clasp/" or "/\b\w*\b/", which in your C program

 might appear as "/\\b\\w*\\b/"), match() returns 1 if the string matches the pattern and 0

 otherwise.

 int substitute(SV **string, char *pattern);

 Given a pointer to an "SV" and an "=~" operation (e.g., "s/bob/robert/g" or

 "tr[A-Z][a-z]"), substitute() modifies the string within the "SV" as according to the

 operation, returning the number of substitutions made.

 SSize_t matches(SV *string, char *pattern, AV **matches);

 Given an "SV", a pattern, and a pointer to an empty "AV", matches() evaluates "$string =~

 $pattern" in a list context, and fills in matches with the array elements, returning the

 number of matches found.

 Here's a sample program, match.c, that uses all three (long lines have been wrapped here):

 #include <EXTERN.h>

 #include <perl.h>

 static PerlInterpreter *my_perl;

 /** my_eval_sv(code, error_check)

 ** kinda like eval_sv(),

 ** but we pop the return value off the stack

 **/

 SV* my_eval_sv(SV *sv, I32 croak_on_error)

 {

 dSP;

 SV* retval;

 PUSHMARK(SP);

 eval_sv(sv, G_SCALAR);

 SPAGAIN; Page 8/24

 retval = POPs;

 PUTBACK;

 if (croak_on_error && SvTRUE(ERRSV))

 croak_sv(ERRSV);

 return retval;

 }

 /** match(string, pattern)

 **

 ** Used for matches in a scalar context.

 **

 ** Returns 1 if the match was successful; 0 otherwise.

 **/

 I32 match(SV *string, char *pattern)

 {

 SV *command = newSV(0), *retval;

 sv_setpvf(command, "my $string = '%s'; $string =~ %s",

 SvPV_nolen(string), pattern);

 retval = my_eval_sv(command, TRUE);

 SvREFCNT_dec(command);

 return SvIV(retval);

 }

 /** substitute(string, pattern)

 **

 ** Used for =~ operations that

 ** modify their left-hand side (s/// and tr///)

 **

 ** Returns the number of successful matches, and

 ** modifies the input string if there were any.

 **/

 I32 substitute(SV **string, char *pattern)

 {

 SV *command = newSV(0), *retval;

 sv_setpvf(command, "$string = '%s'; ($string =~ %s)", Page 9/24

 SvPV_nolen(*string), pattern);

 retval = my_eval_sv(command, TRUE);

 SvREFCNT_dec(command);

 *string = get_sv("string", 0);

 return SvIV(retval);

 }

 /** matches(string, pattern, matches)

 **

 ** Used for matches in a list context.

 **

 ** Returns the number of matches,

 ** and fills in **matches with the matching substrings

 **/

 SSize_t matches(SV *string, char *pattern, AV **match_list)

 {

 SV *command = newSV(0);

 SSize_t num_matches;

 sv_setpvf(command, "my $string = '%s'; @array = ($string =~ %s)",

 SvPV_nolen(string), pattern);

 my_eval_sv(command, TRUE);

 SvREFCNT_dec(command);

 *match_list = get_av("array", 0);

 num_matches = av_top_index(*match_list) + 1;

 return num_matches;

 }

 main (int argc, char **argv, char **env)

 {

 char *embedding[] = { "", "-e", "0", NULL };

 AV *match_list;

 I32 num_matches, i;

 SV *text;

 PERL_SYS_INIT3(&argc,&argv,&env);

 my_perl = perl_alloc(); Page 10/24

 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 3, embedding, NULL);

 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 text = newSV(0);

 sv_setpv(text, "When he is at a convenience store and the "

 "bill comes to some amount like 76 cents, Maynard is "

 "aware that there is something he *should* do, something "

 "that will enable him to get back a quarter, but he has "

 "no idea *what*. He fumbles through his red squeezey "

 "changepurse and gives the boy three extra pennies with "

 "his dollar, hoping that he might luck into the correct "

 "amount. The boy gives him back two of his own pennies "

 "and then the big shiny quarter that is his prize. "

 "-RICHH");

 if (match(text, "m/quarter/")) /** Does text contain 'quarter'? **/

 printf("match: Text contains the word 'quarter'.\n\n");

 else

 printf("match: Text doesn't contain the word 'quarter'.\n\n");

 if (match(text, "m/eighth/")) /** Does text contain 'eighth'? **/

 printf("match: Text contains the word 'eighth'.\n\n");

 else

 printf("match: Text doesn't contain the word 'eighth'.\n\n");

 /** Match all occurrences of /wi../ **/

 num_matches = matches(text, "m/(wi..)/g", &match_list);

 printf("matches: m/(wi..)/g found %d matches...\n", num_matches);

 for (i = 0; i < num_matches; i++)

 printf("match: %s\n",

 SvPV_nolen(*av_fetch(match_list, i, FALSE)));

 printf("\n");

 /** Remove all vowels from text **/

 num_matches = substitute(&text, "s/[aeiou]//gi");

 if (num_matches) {

 printf("substitute: s/[aeiou]//gi...%lu substitutions made.\n", Page 11/24

 (unsigned long)num_matches);

 printf("Now text is: %s\n\n", SvPV_nolen(text));

 }

 /** Attempt a substitution **/

 if (!substitute(&text, "s/Perl/C/")) {

 printf("substitute: s/Perl/C...No substitution made.\n\n");

 }

 SvREFCNT_dec(text);

 PL_perl_destruct_level = 1;

 perl_destruct(my_perl);

 perl_free(my_perl);

 PERL_SYS_TERM();

 }

 which produces the output (again, long lines have been wrapped here)

 match: Text contains the word 'quarter'.

 match: Text doesn't contain the word 'eighth'.

 matches: m/(wi..)/g found 2 matches...

 match: will

 match: with

 substitute: s/[aeiou]//gi...139 substitutions made.

 Now text is: Whn h s t cnvnnc str nd th bll cms t sm mnt lk 76 cnts,

 Mynrd s wr tht thr s smthng h *shld* d, smthng tht wll nbl hm t gt

 bck qrtr, bt h hs n d *wht*. H fmbls thrgh hs rd sqzy chngprs nd

 gvs th by thr xtr pnns wth hs dllr, hpng tht h mght lck nt th crrct

 mnt. Th by gvs hm bck tw f hs wn pnns nd thn th bg shny qrtr tht s

 hs prz. -RCHH

 substitute: s/Perl/C...No substitution made.

 Fiddling with the Perl stack from your C program

 When trying to explain stacks, most computer science textbooks mumble something about

 spring-loaded columns of cafeteria plates: the last thing you pushed on the stack is the

 first thing you pop off. That'll do for our purposes: your C program will push some

 arguments onto "the Perl stack", shut its eyes while some magic happens, and then pop the

 results--the return value of your Perl subroutine--off the stack. Page 12/24

 First you'll need to know how to convert between C types and Perl types, with newSViv()

 and sv_setnv() and newAV() and all their friends. They're described in perlguts and

 perlapi.

 Then you'll need to know how to manipulate the Perl stack. That's described in perlcall.

 Once you've understood those, embedding Perl in C is easy.

 Because C has no builtin function for integer exponentiation, let's make Perl's **

 operator available to it (this is less useful than it sounds, because Perl implements **

 with C's pow() function). First I'll create a stub exponentiation function in power.pl:

 sub expo {

 my ($a, $b) = @_;

 return $a ** $b;

 }

 Now I'll create a C program, power.c, with a function PerlPower() that contains all the

 perlguts necessary to push the two arguments into expo() and to pop the return value out.

 Take a deep breath...

 #include <EXTERN.h>

 #include <perl.h>

 static PerlInterpreter *my_perl;

 static void

 PerlPower(int a, int b)

 {

 dSP; /* initialize stack pointer */

 ENTER; /* everything created after here */

 SAVETMPS; /* ...is a temporary variable. */

 PUSHMARK(SP); /* remember the stack pointer */

 XPUSHs(sv_2mortal(newSViv(a))); /* push the base onto the stack */

 XPUSHs(sv_2mortal(newSViv(b))); /* push the exponent onto stack */

 PUTBACK; /* make local stack pointer global */

 call_pv("expo", G_SCALAR); /* call the function */

 SPAGAIN; /* refresh stack pointer */

 /* pop the return value from stack */

 printf ("%d to the %dth power is %d.\n", a, b, POPi);

 PUTBACK; Page 13/24

 FREETMPS; /* free that return value */

 LEAVE; /* ...and the XPUSHed "mortal" args.*/

 }

 int main (int argc, char **argv, char **env)

 {

 char *my_argv[] = { "", "power.pl", NULL };

 PERL_SYS_INIT3(&argc,&argv,&env);

 my_perl = perl_alloc();

 perl_construct(my_perl);

 perl_parse(my_perl, NULL, 2, my_argv, (char **)NULL);

 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 perl_run(my_perl);

 PerlPower(3, 4); /*** Compute 3 ** 4 ***/

 perl_destruct(my_perl);

 perl_free(my_perl);

 PERL_SYS_TERM();

 exit(EXIT_SUCCESS);

 }

 Compile and run:

 % cc -o power power.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

 % power

 3 to the 4th power is 81.

 Maintaining a persistent interpreter

 When developing interactive and/or potentially long-running applications, it's a good idea

 to maintain a persistent interpreter rather than allocating and constructing a new

 interpreter multiple times. The major reason is speed: since Perl will only be loaded

 into memory once.

 However, you have to be more cautious with namespace and variable scoping when using a

 persistent interpreter. In previous examples we've been using global variables in the

 default package "main". We knew exactly what code would be run, and assumed we could

 avoid variable collisions and outrageous symbol table growth.

 Let's say your application is a server that will occasionally run Perl code from some

 arbitrary file. Your server has no way of knowing what code it's going to run. Very Page 14/24

 dangerous.

 If the file is pulled in by "perl_parse()", compiled into a newly constructed interpreter,

 and subsequently cleaned out with "perl_destruct()" afterwards, you're shielded from most

 namespace troubles.

 One way to avoid namespace collisions in this scenario is to translate the filename into a

 guaranteed-unique package name, and then compile the code into that package using "eval"

 in perlfunc. In the example below, each file will only be compiled once. Or, the

 application might choose to clean out the symbol table associated with the file after it's

 no longer needed. Using "call_argv" in perlapi, We'll call the subroutine

 "Embed::Persistent::eval_file" which lives in the file "persistent.pl" and pass the

 filename and boolean cleanup/cache flag as arguments.

 Note that the process will continue to grow for each file that it uses. In addition,

 there might be "AUTOLOAD"ed subroutines and other conditions that cause Perl's symbol

 table to grow. You might want to add some logic that keeps track of the process size, or

 restarts itself after a certain number of requests, to ensure that memory consumption is

 minimized. You'll also want to scope your variables with "my" in perlfunc whenever

 possible.

 package Embed::Persistent;

 #persistent.pl

 use strict;

 our %Cache;

 use Symbol qw(delete_package);

 sub valid_package_name {

 my($string) = @_;

 $string =~ s/([^A-Za-z0-9\/])/sprintf("_%2x",unpack("C",$1))/eg;

 # second pass only for words starting with a digit

 $string =~ s|/(\d)|sprintf("/_%2x",unpack("C",$1))|eg;

 # Dress it up as a real package name

 $string =~ s|/|::|g;

 return "Embed" . $string;

 }

 sub eval_file {

 my($filename, $delete) = @_; Page 15/24

 my $package = valid_package_name($filename);

 my $mtime = -M $filename;

 if(defined $Cache{$package}{mtime}

 &&

 $Cache{$package}{mtime} <= $mtime)

 {

 # we have compiled this subroutine already,

 # it has not been updated on disk, nothing left to do

 print STDERR "already compiled $package->handler\n";

 }

 else {

 local *FH;

 open FH, $filename or die "open '$filename' $!";

 local($/) = undef;

 my $sub = <FH>;

 close FH;

 #wrap the code into a subroutine inside our unique package

 my $eval = qq{package $package; sub handler { $sub; }};

 {

 # hide our variables within this block

 my($filename,$mtime,$package,$sub);

 eval $eval;

 }

 die $@ if $@;

 #cache it unless we're cleaning out each time

 $Cache{$package}{mtime} = $mtime unless $delete;

 }

 eval {$package->handler;};

 die $@ if $@;

 delete_package($package) if $delete;

 #take a look if you want

 #print Devel::Symdump->rnew($package)->as_string, $/;

 } Page 16/24

 1;

 __END__

 /* persistent.c */

 #include <EXTERN.h>

 #include <perl.h>

 /* 1 = clean out filename's symbol table after each request,

 0 = don't

 */

 #ifndef DO_CLEAN

 #define DO_CLEAN 0

 #endif

 #define BUFFER_SIZE 1024

 static PerlInterpreter *my_perl = NULL;

 int

 main(int argc, char **argv, char **env)

 {

 char *embedding[] = { "", "persistent.pl", NULL };

 char *args[] = { "", DO_CLEAN, NULL };

 char filename[BUFFER_SIZE];

 int failing, exitstatus;

 PERL_SYS_INIT3(&argc,&argv,&env);

 if((my_perl = perl_alloc()) == NULL) {

 fprintf(stderr, "no memory!");

 exit(EXIT_FAILURE);

 }

 perl_construct(my_perl);

 PL_origalen = 1; /* don't let $0 assignment update the

 proctitle or embedding[0] */

 failing = perl_parse(my_perl, NULL, 2, embedding, NULL);

 PL_exit_flags |= PERL_EXIT_DESTRUCT_END;

 if(!failing)

 failing = perl_run(my_perl);

 if(!failing) { Page 17/24

 while(printf("Enter file name: ") &&

 fgets(filename, BUFFER_SIZE, stdin)) {

 filename[strlen(filename)-1] = '\0'; /* strip \n */

 /* call the subroutine,

 passing it the filename as an argument */

 args[0] = filename;

 call_argv("Embed::Persistent::eval_file",

 G_DISCARD | G_EVAL, args);

 /* check $@ */

 if(SvTRUE(ERRSV))

 fprintf(stderr, "eval error: %s\n", SvPV_nolen(ERRSV));

 }

 }

 PL_perl_destruct_level = 0;

 exitstatus = perl_destruct(my_perl);

 perl_free(my_perl);

 PERL_SYS_TERM();

 exit(exitstatus);

 }

 Now compile:

 % cc -o persistent persistent.c \

 `perl -MExtUtils::Embed -e ccopts -e ldopts`

 Here's an example script file:

 #test.pl

 my $string = "hello";

 foo($string);

 sub foo {

 print "foo says: @_\n";

 }

 Now run:

 % persistent

 Enter file name: test.pl

 foo says: hello Page 18/24

 Enter file name: test.pl

 already compiled Embed::test_2epl->handler

 foo says: hello

 Enter file name: ^C

 Execution of END blocks

 Traditionally END blocks have been executed at the end of the perl_run. This causes

 problems for applications that never call perl_run. Since perl 5.7.2 you can specify

 "PL_exit_flags |= PERL_EXIT_DESTRUCT_END" to get the new behaviour. This also enables the

 running of END blocks if the perl_parse fails and "perl_destruct" will return the exit

 value.

 $0 assignments

 When a perl script assigns a value to $0 then the perl runtime will try to make this value

 show up as the program name reported by "ps" by updating the memory pointed to by the argv

 passed to perl_parse() and also calling API functions like setproctitle() where available.

 This behaviour might not be appropriate when embedding perl and can be disabled by

 assigning the value 1 to the variable "PL_origalen" before perl_parse() is called.

 The persistent.c example above is for instance likely to segfault when $0 is assigned to

 if the "PL_origalen = 1;" assignment is removed. This because perl will try to write to

 the read only memory of the "embedding[]" strings.

 Maintaining multiple interpreter instances

 Some rare applications will need to create more than one interpreter during a session.

 Such an application might sporadically decide to release any resources associated with the

 interpreter.

 The program must take care to ensure that this takes place before the next interpreter is

 constructed. By default, when perl is not built with any special options, the global

 variable "PL_perl_destruct_level" is set to 0, since extra cleaning isn't usually needed

 when a program only ever creates a single interpreter in its entire lifetime.

 Setting "PL_perl_destruct_level" to 1 makes everything squeaky clean:

 while(1) {

 ...

 /* reset global variables here with PL_perl_destruct_level = 1 */

 PL_perl_destruct_level = 1;

 perl_construct(my_perl); Page 19/24

 ...

 /* clean and reset _everything_ during perl_destruct */

 PL_perl_destruct_level = 1;

 perl_destruct(my_perl);

 perl_free(my_perl);

 ...

 /* let's go do it again! */

 }

 When perl_destruct() is called, the interpreter's syntax parse tree and symbol tables are

 cleaned up, and global variables are reset. The second assignment to

 "PL_perl_destruct_level" is needed because perl_construct resets it to 0.

 Now suppose we have more than one interpreter instance running at the same time. This is

 feasible, but only if you used the Configure option "-Dusemultiplicity" or the options

 "-Dusethreads -Duseithreads" when building perl. By default, enabling one of these

 Configure options sets the per-interpreter global variable "PL_perl_destruct_level" to 1,

 so that thorough cleaning is automatic and interpreter variables are initialized

 correctly. Even if you don't intend to run two or more interpreters at the same time, but

 to run them sequentially, like in the above example, it is recommended to build perl with

 the "-Dusemultiplicity" option otherwise some interpreter variables may not be initialized

 correctly between consecutive runs and your application may crash.

 See also "Thread-aware system interfaces" in perlxs.

 Using "-Dusethreads -Duseithreads" rather than "-Dusemultiplicity" is more appropriate if

 you intend to run multiple interpreters concurrently in different threads, because it

 enables support for linking in the thread libraries of your system with the interpreter.

 Let's give it a try:

 #include <EXTERN.h>

 #include <perl.h>

 /* we're going to embed two interpreters */

 #define SAY_HELLO "-e", "print qq(Hi, I'm $^X\n)"

 int main(int argc, char **argv, char **env)

 {

 PerlInterpreter *one_perl, *two_perl;

 char *one_args[] = { "one_perl", SAY_HELLO, NULL }; Page 20/24

 char *two_args[] = { "two_perl", SAY_HELLO, NULL };

 PERL_SYS_INIT3(&argc,&argv,&env);

 one_perl = perl_alloc();

 two_perl = perl_alloc();

 PERL_SET_CONTEXT(one_perl);

 perl_construct(one_perl);

 PERL_SET_CONTEXT(two_perl);

 perl_construct(two_perl);

 PERL_SET_CONTEXT(one_perl);

 perl_parse(one_perl, NULL, 3, one_args, (char **)NULL);

 PERL_SET_CONTEXT(two_perl);

 perl_parse(two_perl, NULL, 3, two_args, (char **)NULL);

 PERL_SET_CONTEXT(one_perl);

 perl_run(one_perl);

 PERL_SET_CONTEXT(two_perl);

 perl_run(two_perl);

 PERL_SET_CONTEXT(one_perl);

 perl_destruct(one_perl);

 PERL_SET_CONTEXT(two_perl);

 perl_destruct(two_perl);

 PERL_SET_CONTEXT(one_perl);

 perl_free(one_perl);

 PERL_SET_CONTEXT(two_perl);

 perl_free(two_perl);

 PERL_SYS_TERM();

 exit(EXIT_SUCCESS);

 }

 Note the calls to PERL_SET_CONTEXT(). These are necessary to initialize the global state

 that tracks which interpreter is the "current" one on the particular process or thread

 that may be running it. It should always be used if you have more than one interpreter

 and are making perl API calls on both interpreters in an interleaved fashion.

 PERL_SET_CONTEXT(interp) should also be called whenever "interp" is used by a thread that

 did not create it (using either perl_alloc(), or the more esoteric perl_clone()). Page 21/24

 Compile as usual:

 % cc -o multiplicity multiplicity.c \

 `perl -MExtUtils::Embed -e ccopts -e ldopts`

 Run it, Run it:

 % multiplicity

 Hi, I'm one_perl

 Hi, I'm two_perl

 Using Perl modules, which themselves use C libraries, from your C program

 If you've played with the examples above and tried to embed a script that use()s a Perl

 module (such as Socket) which itself uses a C or C++ library, this probably happened:

 Can't load module Socket, dynamic loading not available in this perl.

 (You may need to build a new perl executable which either supports

 dynamic loading or has the Socket module statically linked into it.)

 What's wrong?

 Your interpreter doesn't know how to communicate with these extensions on its own. A

 little glue will help. Up until now you've been calling perl_parse(), handing it NULL for

 the second argument:

 perl_parse(my_perl, NULL, argc, my_argv, NULL);

 That's where the glue code can be inserted to create the initial contact between Perl and

 linked C/C++ routines. Let's take a look some pieces of perlmain.c to see how Perl does

 this:

 static void xs_init (pTHX);

 EXTERN_C void boot_DynaLoader (pTHX_ CV* cv);

 EXTERN_C void boot_Socket (pTHX_ CV* cv);

 EXTERN_C void

 xs_init(pTHX)

 {

 char *file = __FILE__;

 /* DynaLoader is a special case */

 newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);

 newXS("Socket::bootstrap", boot_Socket, file);

 }

 Simply put: for each extension linked with your Perl executable (determined during its Page 22/24

 initial configuration on your computer or when adding a new extension), a Perl subroutine

 is created to incorporate the extension's routines. Normally, that subroutine is named

 Module::bootstrap() and is invoked when you say use Module. In turn, this hooks into an

 XSUB, boot_Module, which creates a Perl counterpart for each of the extension's XSUBs.

 Don't worry about this part; leave that to the xsubpp and extension authors. If your

 extension is dynamically loaded, DynaLoader creates Module::bootstrap() for you on the

 fly. In fact, if you have a working DynaLoader then there is rarely any need to link in

 any other extensions statically.

 Once you have this code, slap it into the second argument of perl_parse():

 perl_parse(my_perl, xs_init, argc, my_argv, NULL);

 Then compile:

 % cc -o interp interp.c `perl -MExtUtils::Embed -e ccopts -e ldopts`

 % interp

 use Socket;

 use SomeDynamicallyLoadedModule;

 print "Now I can use extensions!\n"'

 ExtUtils::Embed can also automate writing the xs_init glue code.

 % perl -MExtUtils::Embed -e xsinit -- -o perlxsi.c

 % cc -c perlxsi.c `perl -MExtUtils::Embed -e ccopts`

 % cc -c interp.c `perl -MExtUtils::Embed -e ccopts`

 % cc -o interp perlxsi.o interp.o `perl -MExtUtils::Embed -e ldopts`

 Consult perlxs, perlguts, and perlapi for more details.

 Using embedded Perl with POSIX locales

 (See perllocale for information about these.) When a Perl interpreter normally starts up,

 it tells the system it wants to use the system's default locale. This is often, but not

 necessarily, the "C" or "POSIX" locale. Absent a "use?locale" within the perl code, this

 mostly has no effect (but see "Not within the scope of "use locale"" in perllocale).

 Also, there is not a problem if the locale you want to use in your embedded perl is the

 same as the system default. However, this doesn't work if you have set up and want to use

 a locale that isn't the system default one. Starting in Perl v5.20, you can tell the

 embedded Perl interpreter that the locale is already properly set up, and to skip doing

 its own normal initialization. It skips if the environment variable

 "PERL_SKIP_LOCALE_INIT" is set (even if set to 0 or ""). A perl that has this capability Page 23/24

 will define the C pre-processor symbol "HAS_SKIP_LOCALE_INIT". This allows code that has

 to work with multiple Perl versions to do some sort of work-around when confronted with an

 earlier Perl.

 If your program is using the POSIX 2008 multi-thread locale functionality, you should

 switch into the global locale and set that up properly before starting the Perl

 interpreter. It will then properly switch back to using the thread-safe functions.

Hiding Perl_

 If you completely hide the short forms of the Perl public API, add -DPERL_NO_SHORT_NAMES

 to the compilation flags. This means that for example instead of writing

 warn("%d bottles of beer on the wall", bottlecount);

 you will have to write the explicit full form

 Perl_warn(aTHX_ "%d bottles of beer on the wall", bottlecount);

 (See "Background and PERL_IMPLICIT_CONTEXT" in perlguts for the explanation of the

 "aTHX_".) Hiding the short forms is very useful for avoiding all sorts of nasty (C

 preprocessor or otherwise) conflicts with other software packages (Perl defines about 2400

 APIs with these short names, take or leave few hundred, so there certainly is room for

 conflict.)

MORAL

 You can sometimes write faster code in C, but you can always write code faster in Perl.

 Because you can use each from the other, combine them as you wish.

AUTHOR

 Jon Orwant <orwant@media.mit.edu> and Doug MacEachern <dougm@covalent.net>, with small

 contributions from Tim Bunce, Tom Christiansen, Guy Decoux, Hallvard Furuseth, Dov

 Grobgeld, and Ilya Zakharevich.

 Doug MacEachern has an article on embedding in Volume 1, Issue 4 of The Perl Journal (

 <http://www.tpj.com/>). Doug is also the developer of the most widely-used Perl

 embedding: the mod_perl system (perl.apache.org), which embeds Perl in the Apache web

 server. Oracle, Binary Evolution, ActiveState, and Ben Sugars's nsapi_perl have used this

 model for Oracle, Netscape and Internet Information Server Perl plugins.

COPYRIGHT

 Copyright (C) 1995, 1996, 1997, 1998 Doug MacEachern and Jon Orwant. All Rights Reserved.

 This document may be distributed under the same terms as Perl itself.

perl v5.34.0 2023-11-23 PERLEMBED(1) Page 24/24

