
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlfaq8.1'

$ man perlfaq8.1

PERLFAQ8(1) Perl Programmers Reference Guide PERLFAQ8(1)

NAME

 perlfaq8 - System Interaction

VERSION

 version 5.20210411

DESCRIPTION

 This section of the Perl FAQ covers questions involving operating system interaction.

 Topics include interprocess communication (IPC), control over the user-interface

 (keyboard, screen and pointing devices), and most anything else not related to data

 manipulation.

 Read the FAQs and documentation specific to the port of perl to your operating system (eg,

 perlvms, perlplan9, ...). These should contain more detailed information on the vagaries

 of your perl.

 How do I find out which operating system I'm running under?

 The $^O variable ($OSNAME if you use "English") contains an indication of the name of the

 operating system (not its release number) that your perl binary was built for.

 How come exec() doesn't return?

 (contributed by brian d foy)

 The "exec" function's job is to turn your process into another command and never to

 return. If that's not what you want to do, don't use "exec". :)

 If you want to run an external command and still keep your Perl process going, look at a

 piped "open", "fork", or "system".

 How do I do fancy stuff with the keyboard/screen/mouse? Page 1/28

 How you access/control keyboards, screens, and pointing devices ("mice") is system-

 dependent. Try the following modules:

 Keyboard

 Term::Cap Standard perl distribution

 Term::ReadKey CPAN

 Term::ReadLine::Gnu CPAN

 Term::ReadLine::Perl CPAN

 Term::Screen CPAN

 Screen

 Term::Cap Standard perl distribution

 Curses CPAN

 Term::ANSIColor CPAN

 Mouse

 Tk CPAN

 Wx CPAN

 Gtk2 CPAN

 Qt4 kdebindings4 package

 Some of these specific cases are shown as examples in other answers in this section of the

 perlfaq.

 How do I print something out in color?

 In general, you don't, because you don't know whether the recipient has a color-aware

 display device. If you know that they have an ANSI terminal that understands color, you

 can use the Term::ANSIColor module from CPAN:

 use Term::ANSIColor;

 print color("red"), "Stop!\n", color("reset");

 print color("green"), "Go!\n", color("reset");

 Or like this:

 use Term::ANSIColor qw(:constants);

 print RED, "Stop!\n", RESET;

 print GREEN, "Go!\n", RESET;

 How do I read just one key without waiting for a return key?

 Controlling input buffering is a remarkably system-dependent matter. On many systems, you

 can just use the stty command as shown in "getc" in perlfunc, but as you see, that's Page 2/28

 already getting you into portability snags.

 open(TTY, "+</dev/tty") or die "no tty: $!";

 system "stty cbreak </dev/tty >/dev/tty 2>&1";

 $key = getc(TTY); # perhaps this works

 # OR ELSE

 sysread(TTY, $key, 1); # probably this does

 system "stty -cbreak </dev/tty >/dev/tty 2>&1";

 The Term::ReadKey module from CPAN offers an easy-to-use interface that should be more

 efficient than shelling out to stty for each key. It even includes limited support for

 Windows.

 use Term::ReadKey;

 ReadMode('cbreak');

 $key = ReadKey(0);

 ReadMode('normal');

 However, using the code requires that you have a working C compiler and can use it to

 build and install a CPAN module. Here's a solution using the standard POSIX module, which

 is already on your system (assuming your system supports POSIX).

 use HotKey;

 $key = readkey();

 And here's the "HotKey" module, which hides the somewhat mystifying calls to manipulate

 the POSIX termios structures.

 # HotKey.pm

 package HotKey;

 use strict;

 use warnings;

 use parent 'Exporter';

 our @EXPORT = qw(cbreak cooked readkey);

 use POSIX qw(:termios_h);

 my ($term, $oterm, $echo, $noecho, $fd_stdin);

 $fd_stdin = fileno(STDIN);

 $term = POSIX::Termios->new();

 $term->getattr($fd_stdin);

 $oterm = $term->getlflag(); Page 3/28

 $echo = ECHO | ECHOK | ICANON;

 $noecho = $oterm & ~$echo;

 sub cbreak {

 $term->setlflag($noecho); # ok, so i don't want echo either

 $term->setcc(VTIME, 1);

 $term->setattr($fd_stdin, TCSANOW);

 }

 sub cooked {

 $term->setlflag($oterm);

 $term->setcc(VTIME, 0);

 $term->setattr($fd_stdin, TCSANOW);

 }

 sub readkey {

 my $key = '';

 cbreak();

 sysread(STDIN, $key, 1);

 cooked();

 return $key;

 }

 END { cooked() }

 1;

 How do I check whether input is ready on the keyboard?

 The easiest way to do this is to read a key in nonblocking mode with the Term::ReadKey

 module from CPAN, passing it an argument of -1 to indicate not to block:

 use Term::ReadKey;

 ReadMode('cbreak');

 if (defined (my $char = ReadKey(-1))) {

 # input was waiting and it was $char

 } else {

 # no input was waiting

 }

 ReadMode('normal'); # restore normal tty settings

 How do I clear the screen? Page 4/28

 (contributed by brian d foy)

 To clear the screen, you just have to print the special sequence that tells the terminal

 to clear the screen. Once you have that sequence, output it when you want to clear the

 screen.

 You can use the Term::ANSIScreen module to get the special sequence. Import the "cls"

 function (or the ":screen" tag):

 use Term::ANSIScreen qw(cls);

 my $clear_screen = cls();

 print $clear_screen;

 The Term::Cap module can also get the special sequence if you want to deal with the low-

 level details of terminal control. The "Tputs" method returns the string for the given

 capability:

 use Term::Cap;

 my $terminal = Term::Cap->Tgetent({ OSPEED => 9600 });

 my $clear_screen = $terminal->Tputs('cl');

 print $clear_screen;

 On Windows, you can use the Win32::Console module. After creating an object for the output

 filehandle you want to affect, call the "Cls" method:

 Win32::Console;

 my $OUT = Win32::Console->new(STD_OUTPUT_HANDLE);

 my $clear_string = $OUT->Cls;

 print $clear_screen;

 If you have a command-line program that does the job, you can call it in backticks to

 capture whatever it outputs so you can use it later:

 my $clear_string = `clear`;

 print $clear_string;

 How do I get the screen size?

 If you have Term::ReadKey module installed from CPAN, you can use it to fetch the width

 and height in characters and in pixels:

 use Term::ReadKey;

 my ($wchar, $hchar, $wpixels, $hpixels) = GetTerminalSize();

 This is more portable than the raw "ioctl", but not as illustrative:

 require './sys/ioctl.ph'; Page 5/28

 die "no TIOCGWINSZ " unless defined &TIOCGWINSZ;

 open(my $tty_fh, "+</dev/tty") or die "No tty: $!";

 unless (ioctl($tty_fh, &TIOCGWINSZ, $winsize='')) {

 die sprintf "$0: ioctl TIOCGWINSZ (%08x: $!)\n", &TIOCGWINSZ;

 }

 my ($row, $col, $xpixel, $ypixel) = unpack('S4', $winsize);

 print "(row,col) = ($row,$col)";

 print " (xpixel,ypixel) = ($xpixel,$ypixel)" if $xpixel || $ypixel;

 print "\n";

 How do I ask the user for a password?

 (This question has nothing to do with the web. See a different FAQ for that.)

 There's an example of this in "crypt" in perlfunc. First, you put the terminal into "no

 echo" mode, then just read the password normally. You may do this with an old-style

 "ioctl()" function, POSIX terminal control (see POSIX or its documentation the Camel

 Book), or a call to the stty program, with varying degrees of portability.

 You can also do this for most systems using the Term::ReadKey module from CPAN, which is

 easier to use and in theory more portable.

 use Term::ReadKey;

 ReadMode('noecho');

 my $password = ReadLine(0);

 How do I read and write the serial port?

 This depends on which operating system your program is running on. In the case of Unix,

 the serial ports will be accessible through files in "/dev"; on other systems, device

 names will doubtless differ. Several problem areas common to all device interaction are

 the following:

 lockfiles

 Your system may use lockfiles to control multiple access. Make sure you follow the

 correct protocol. Unpredictable behavior can result from multiple processes reading

 from one device.

 open mode

 If you expect to use both read and write operations on the device, you'll have to open

 it for update (see "open" in perlfunc for details). You may wish to open it without

 running the risk of blocking by using "sysopen()" and "O_RDWR|O_NDELAY|O_NOCTTY" from Page 6/28

 the Fcntl module (part of the standard perl distribution). See "sysopen" in perlfunc

 for more on this approach.

 end of line

 Some devices will be expecting a "\r" at the end of each line rather than a "\n". In

 some ports of perl, "\r" and "\n" are different from their usual (Unix) ASCII values

 of "\015" and "\012". You may have to give the numeric values you want directly, using

 octal ("\015"), hex ("0x0D"), or as a control-character specification ("\cM").

 print DEV "atv1\012"; # wrong, for some devices

 print DEV "atv1\015"; # right, for some devices

 Even though with normal text files a "\n" will do the trick, there is still no unified

 scheme for terminating a line that is portable between Unix, DOS/Win, and Macintosh,

 except to terminate ALL line ends with "\015\012", and strip what you don't need from

 the output. This applies especially to socket I/O and autoflushing, discussed next.

 flushing output

 If you expect characters to get to your device when you "print()" them, you'll want to

 autoflush that filehandle. You can use "select()" and the $| variable to control

 autoflushing (see "$|" in perlvar and "select" in perlfunc, or perlfaq5, "How do I

 flush/unbuffer an output filehandle? Why must I do this?"):

 my $old_handle = select($dev_fh);

 $| = 1;

 select($old_handle);

 You'll also see code that does this without a temporary variable, as in

 select((select($deb_handle), $| = 1)[0]);

 Or if you don't mind pulling in a few thousand lines of code just because you're

 afraid of a little $| variable:

 use IO::Handle;

 $dev_fh->autoflush(1);

 As mentioned in the previous item, this still doesn't work when using socket I/O

 between Unix and Macintosh. You'll need to hard code your line terminators, in that

 case.

 non-blocking input

 If you are doing a blocking "read()" or "sysread()", you'll have to arrange for an

 alarm handler to provide a timeout (see "alarm" in perlfunc). If you have a non- Page 7/28

 blocking open, you'll likely have a non-blocking read, which means you may have to use

 a 4-arg "select()" to determine whether I/O is ready on that device (see "select" in

 perlfunc.

 While trying to read from his caller-id box, the notorious Jamie Zawinski

 "<jwz@netscape.com>", after much gnashing of teeth and fighting with "sysread", "sysopen",

 POSIX's "tcgetattr" business, and various other functions that go bump in the night,

 finally came up with this:

 sub open_modem {

 use IPC::Open2;

 my $stty = `/bin/stty -g`;

 open2(*MODEM_IN, *MODEM_OUT, "cu -l$modem_device -s2400 2>&1");

 # starting cu hoses /dev/tty's stty settings, even when it has

 # been opened on a pipe...

 system("/bin/stty $stty");

 $_ = <MODEM_IN>;

 chomp;

 if (!m/^Connected/) {

 print STDERR "$0: cu printed `$_' instead of `Connected'\n";

 }

 }

 How do I decode encrypted password files?

 You spend lots and lots of money on dedicated hardware, but this is bound to get you

 talked about.

 Seriously, you can't if they are Unix password files--the Unix password system employs

 one-way encryption. It's more like hashing than encryption. The best you can do is check

 whether something else hashes to the same string. You can't turn a hash back into the

 original string. Programs like Crack can forcibly (and intelligently) try to guess

 passwords, but don't (can't) guarantee quick success.

 If you're worried about users selecting bad passwords, you should proactively check when

 they try to change their password (by modifying passwd(1), for example).

 How do I start a process in the background?

 (contributed by brian d foy)

 There's not a single way to run code in the background so you don't have to wait for it to Page 8/28

 finish before your program moves on to other tasks. Process management depends on your

 particular operating system, and many of the techniques are covered in perlipc.

 Several CPAN modules may be able to help, including IPC::Open2 or IPC::Open3, IPC::Run,

 Parallel::Jobs, Parallel::ForkManager, POE, Proc::Background, and Win32::Process. There

 are many other modules you might use, so check those namespaces for other options too.

 If you are on a Unix-like system, you might be able to get away with a system call where

 you put an "&" on the end of the command:

 system("cmd &")

 You can also try using "fork", as described in perlfunc (although this is the same thing

 that many of the modules will do for you).

 STDIN, STDOUT, and STDERR are shared

 Both the main process and the backgrounded one (the "child" process) share the same

 STDIN, STDOUT and STDERR filehandles. If both try to access them at once, strange

 things can happen. You may want to close or reopen these for the child. You can get

 around this with "open"ing a pipe (see "open" in perlfunc) but on some systems this

 means that the child process cannot outlive the parent.

 Signals

 You'll have to catch the SIGCHLD signal, and possibly SIGPIPE too. SIGCHLD is sent

 when the backgrounded process finishes. SIGPIPE is sent when you write to a filehandle

 whose child process has closed (an untrapped SIGPIPE can cause your program to

 silently die). This is not an issue with "system("cmd&")".

 Zombies

 You have to be prepared to "reap" the child process when it finishes.

 $SIG{CHLD} = sub { wait };

 $SIG{CHLD} = 'IGNORE';

 You can also use a double fork. You immediately "wait()" for your first child, and the

 init daemon will "wait()" for your grandchild once it exits.

 unless ($pid = fork) {

 unless (fork) {

 exec "what you really wanna do";

 die "exec failed!";

 }

 exit 0; Page 9/28

 }

 waitpid($pid, 0);

 See "Signals" in perlipc for other examples of code to do this. Zombies are not an

 issue with "system("prog &")".

 How do I trap control characters/signals?

 You don't actually "trap" a control character. Instead, that character generates a signal

 which is sent to your terminal's currently foregrounded process group, which you then trap

 in your process. Signals are documented in "Signals" in perlipc and the section on

 "Signals" in the Camel.

 You can set the values of the %SIG hash to be the functions you want to handle the signal.

 After perl catches the signal, it looks in %SIG for a key with the same name as the

 signal, then calls the subroutine value for that key.

 # as an anonymous subroutine

 $SIG{INT} = sub { syswrite(STDERR, "ouch\n", 5) };

 # or a reference to a function

 $SIG{INT} = \&ouch;

 # or the name of the function as a string

 $SIG{INT} = "ouch";

 Perl versions before 5.8 had in its C source code signal handlers which would catch the

 signal and possibly run a Perl function that you had set in %SIG. This violated the rules

 of signal handling at that level causing perl to dump core. Since version 5.8.0, perl

 looks at %SIG after the signal has been caught, rather than while it is being caught.

 Previous versions of this answer were incorrect.

 How do I modify the shadow password file on a Unix system?

 If perl was installed correctly and your shadow library was written properly, the

 "getpw*()" functions described in perlfunc should in theory provide (read-only) access to

 entries in the shadow password file. To change the file, make a new shadow password file

 (the format varies from system to system--see passwd(1) for specifics) and use pwd_mkdb(8)

 to install it (see pwd_mkdb(8) for more details).

 How do I set the time and date?

 Assuming you're running under sufficient permissions, you should be able to set the

 system-wide date and time by running the date(1) program. (There is no way to set the time

 and date on a per-process basis.) This mechanism will work for Unix, MS-DOS, Windows, and Page 10/28

 NT; the VMS equivalent is "set time".

 However, if all you want to do is change your time zone, you can probably get away with

 setting an environment variable:

 $ENV{TZ} = "MST7MDT"; # Unixish

 $ENV{'SYS$TIMEZONE_DIFFERENTIAL'}="-5" # vms

 system('trn', 'comp.lang.perl.misc');

 How can I sleep() or alarm() for under a second?

 If you want finer granularity than the 1 second that the "sleep()" function provides, the

 easiest way is to use the "select()" function as documented in "select" in perlfunc. Try

 the Time::HiRes and the BSD::Itimer modules (available from CPAN, and starting from Perl

 5.8 Time::HiRes is part of the standard distribution).

 How can I measure time under a second?

 (contributed by brian d foy)

 The Time::HiRes module (part of the standard distribution as of Perl 5.8) measures time

 with the "gettimeofday()" system call, which returns the time in microseconds since the

 epoch. If you can't install Time::HiRes for older Perls and you are on a Unixish system,

 you may be able to call gettimeofday(2) directly. See "syscall" in perlfunc.

 How can I do an atexit() or setjmp()/longjmp()? (Exception handling)

 You can use the "END" block to simulate "atexit()". Each package's "END" block is called

 when the program or thread ends. See the perlmod manpage for more details about "END"

 blocks.

 For example, you can use this to make sure your filter program managed to finish its

 output without filling up the disk:

 END {

 close(STDOUT) || die "stdout close failed: $!";

 }

 The "END" block isn't called when untrapped signals kill the program, though, so if you

 use "END" blocks you should also use

 use sigtrap qw(die normal-signals);

 Perl's exception-handling mechanism is its "eval()" operator. You can use "eval()" as

 "setjmp" and "die()" as "longjmp". For details of this, see the section on signals,

 especially the time-out handler for a blocking "flock()" in "Signals" in perlipc or the

 section on "Signals" in Programming Perl. Page 11/28

 If exception handling is all you're interested in, use one of the many CPAN modules that

 handle exceptions, such as Try::Tiny.

 If you want the "atexit()" syntax (and an "rmexit()" as well), try the "AtExit" module

 available from CPAN.

 Why doesn't my sockets program work under System V (Solaris)? What does the error message

 "Protocol not supported" mean?

 Some Sys-V based systems, notably Solaris 2.X, redefined some of the standard socket

 constants. Since these were constant across all architectures, they were often hardwired

 into perl code. The proper way to deal with this is to "use Socket" to get the correct

 values.

 Note that even though SunOS and Solaris are binary compatible, these values are different.

 Go figure.

 How can I call my system's unique C functions from Perl?

 In most cases, you write an external module to do it--see the answer to "Where can I learn

 about linking C with Perl? [h2xs, xsubpp]". However, if the function is a system call,

 and your system supports "syscall()", you can use the "syscall" function (documented in

 perlfunc).

 Remember to check the modules that came with your distribution, and CPAN as well--someone

 may already have written a module to do it. On Windows, try Win32::API. On Macs, try

 Mac::Carbon. If no module has an interface to the C function, you can inline a bit of C in

 your Perl source with Inline::C.

 Where do I get the include files to do ioctl() or syscall()?

 Historically, these would be generated by the h2ph tool, part of the standard perl

 distribution. This program converts cpp(1) directives in C header files to files

 containing subroutine definitions, like "SYS_getitimer()", which you can use as arguments

 to your functions. It doesn't work perfectly, but it usually gets most of the job done.

 Simple files like errno.h, syscall.h, and socket.h were fine, but the hard ones like

 ioctl.h nearly always need to be hand-edited. Here's how to install the *.ph files:

 1. Become the super-user

 2. cd /usr/include

 3. h2ph *.h */*.h

 If your system supports dynamic loading, for reasons of portability and sanity you

 probably ought to use h2xs (also part of the standard perl distribution). This tool Page 12/28

 converts C header files to Perl extensions. See perlxstut for how to get started with

 h2xs.

 If your system doesn't support dynamic loading, you still probably ought to use h2xs. See

 perlxstut and ExtUtils::MakeMaker for more information (in brief, just use make perl

 instead of a plain make to rebuild perl with a new static extension).

 Why do setuid perl scripts complain about kernel problems?

 Some operating systems have bugs in the kernel that make setuid scripts inherently

 insecure. Perl gives you a number of options (described in perlsec) to work around such

 systems.

 How can I open a pipe both to and from a command?

 The IPC::Open2 module (part of the standard perl distribution) is an easy-to-use approach

 that internally uses "pipe()", "fork()", and "exec()" to do the job. Make sure you read

 the deadlock warnings in its documentation, though (see IPC::Open2). See "Bidirectional

 Communication with Another Process" in perlipc and "Bidirectional Communication with

 Yourself" in perlipc

 You may also use the IPC::Open3 module (part of the standard perl distribution), but be

 warned that it has a different order of arguments from IPC::Open2 (see IPC::Open3).

 Why can't I get the output of a command with system()?

 You're confusing the purpose of "system()" and backticks (``). "system()" runs a command

 and returns exit status information (as a 16 bit value: the low 7 bits are the signal the

 process died from, if any, and the high 8 bits are the actual exit value). Backticks (``)

 run a command and return what it sent to STDOUT.

 my $exit_status = system("mail-users");

 my $output_string = `ls`;

 How can I capture STDERR from an external command?

 There are three basic ways of running external commands:

 system $cmd; # using system()

 my $output = `$cmd`; # using backticks (``)

 open (my $pipe_fh, "$cmd |"); # using open()

 With "system()", both STDOUT and STDERR will go the same place as the script's STDOUT and

 STDERR, unless the "system()" command redirects them. Backticks and "open()" read only

 the STDOUT of your command.

 You can also use the "open3()" function from IPC::Open3. Benjamin Goldberg provides some Page 13/28

 sample code:

 To capture a program's STDOUT, but discard its STDERR:

 use IPC::Open3;

 use File::Spec;

 my $in = '';

 open(NULL, ">", File::Spec->devnull);

 my $pid = open3($in, *PH, ">&NULL", "cmd");

 while(<PH>) { }

 waitpid($pid, 0);

 To capture a program's STDERR, but discard its STDOUT:

 use IPC::Open3;

 use File::Spec;

 my $in = '';

 open(NULL, ">", File::Spec->devnull);

 my $pid = open3($in, ">&NULL", *PH, "cmd");

 while(<PH>) { }

 waitpid($pid, 0);

 To capture a program's STDERR, and let its STDOUT go to our own STDERR:

 use IPC::Open3;

 my $in = '';

 my $pid = open3($in, ">&STDERR", *PH, "cmd");

 while(<PH>) { }

 waitpid($pid, 0);

 To read both a command's STDOUT and its STDERR separately, you can redirect them to temp

 files, let the command run, then read the temp files:

 use IPC::Open3;

 use IO::File;

 my $in = '';

 local *CATCHOUT = IO::File->new_tmpfile;

 local *CATCHERR = IO::File->new_tmpfile;

 my $pid = open3($in, ">&CATCHOUT", ">&CATCHERR", "cmd");

 waitpid($pid, 0);

 seek $_, 0, 0 for *CATCHOUT, *CATCHERR; Page 14/28

 while(<CATCHOUT>) {}

 while(<CATCHERR>) {}

 But there's no real need for both to be tempfiles... the following should work just as

 well, without deadlocking:

 use IPC::Open3;

 my $in = '';

 use IO::File;

 local *CATCHERR = IO::File->new_tmpfile;

 my $pid = open3($in, *CATCHOUT, ">&CATCHERR", "cmd");

 while(<CATCHOUT>) {}

 waitpid($pid, 0);

 seek CATCHERR, 0, 0;

 while(<CATCHERR>) {}

 And it'll be faster, too, since we can begin processing the program's stdout immediately,

 rather than waiting for the program to finish.

 With any of these, you can change file descriptors before the call:

 open(STDOUT, ">logfile");

 system("ls");

 or you can use Bourne shell file-descriptor redirection:

 $output = `$cmd 2>some_file`;

 open (PIPE, "cmd 2>some_file |");

 You can also use file-descriptor redirection to make STDERR a duplicate of STDOUT:

 $output = `$cmd 2>&1`;

 open (PIPE, "cmd 2>&1 |");

 Note that you cannot simply open STDERR to be a dup of STDOUT in your Perl program and

 avoid calling the shell to do the redirection. This doesn't work:

 open(STDERR, ">&STDOUT");

 $alloutput = `cmd args`; # stderr still escapes

 This fails because the "open()" makes STDERR go to where STDOUT was going at the time of

 the "open()". The backticks then make STDOUT go to a string, but don't change STDERR

 (which still goes to the old STDOUT).

 Note that you must use Bourne shell (sh(1)) redirection syntax in backticks, not csh(1)!

 Details on why Perl's "system()" and backtick and pipe opens all use the Bourne shell are Page 15/28

 in the versus/csh.whynot article in the "Far More Than You Ever Wanted To Know" collection

 in <http://www.cpan.org/misc/olddoc/FMTEYEWTK.tgz> . To capture a command's STDERR and

 STDOUT together:

 $output = `cmd 2>&1`; # either with backticks

 $pid = open(PH, "cmd 2>&1 |"); # or with an open pipe

 while (<PH>) { } # plus a read

 To capture a command's STDOUT but discard its STDERR:

 $output = `cmd 2>/dev/null`; # either with backticks

 $pid = open(PH, "cmd 2>/dev/null |"); # or with an open pipe

 while (<PH>) { } # plus a read

 To capture a command's STDERR but discard its STDOUT:

 $output = `cmd 2>&1 1>/dev/null`; # either with backticks

 $pid = open(PH, "cmd 2>&1 1>/dev/null |"); # or with an open pipe

 while (<PH>) { } # plus a read

 To exchange a command's STDOUT and STDERR in order to capture the STDERR but leave its

 STDOUT to come out our old STDERR:

 $output = `cmd 3>&1 1>&2 2>&3 3>&-`; # either with backticks

 $pid = open(PH, "cmd 3>&1 1>&2 2>&3 3>&-|");# or with an open pipe

 while (<PH>) { } # plus a read

 To read both a command's STDOUT and its STDERR separately, it's easiest to redirect them

 separately to files, and then read from those files when the program is done:

 system("program args 1>program.stdout 2>program.stderr");

 Ordering is important in all these examples. That's because the shell processes file

 descriptor redirections in strictly left to right order.

 system("prog args 1>tmpfile 2>&1");

 system("prog args 2>&1 1>tmpfile");

 The first command sends both standard out and standard error to the temporary file. The

 second command sends only the old standard output there, and the old standard error shows

 up on the old standard out.

 Why doesn't open() return an error when a pipe open fails?

 If the second argument to a piped "open()" contains shell metacharacters, perl "fork()"s,

 then "exec()"s a shell to decode the metacharacters and eventually run the desired

 program. If the program couldn't be run, it's the shell that gets the message, not Perl. Page 16/28

 All your Perl program can find out is whether the shell itself could be successfully

 started. You can still capture the shell's STDERR and check it for error messages. See

 "How can I capture STDERR from an external command?" elsewhere in this document, or use

 the IPC::Open3 module.

 If there are no shell metacharacters in the argument of "open()", Perl runs the command

 directly, without using the shell, and can correctly report whether the command started.

 What's wrong with using backticks in a void context?

 Strictly speaking, nothing. Stylistically speaking, it's not a good way to write

 maintainable code. Perl has several operators for running external commands. Backticks are

 one; they collect the output from the command for use in your program. The "system"

 function is another; it doesn't do this.

 Writing backticks in your program sends a clear message to the readers of your code that

 you wanted to collect the output of the command. Why send a clear message that isn't

 true?

 Consider this line:

 `cat /etc/termcap`;

 You forgot to check $? to see whether the program even ran correctly. Even if you wrote

 print `cat /etc/termcap`;

 this code could and probably should be written as

 system("cat /etc/termcap") == 0

 or die "cat program failed!";

 which will echo the cat command's output as it is generated, instead of waiting until the

 program has completed to print it out. It also checks the return value.

 "system" also provides direct control over whether shell wildcard processing may take

 place, whereas backticks do not.

 How can I call backticks without shell processing?

 This is a bit tricky. You can't simply write the command like this:

 @ok = `grep @opts '$search_string' @filenames`;

 As of Perl 5.8.0, you can use "open()" with multiple arguments. Just like the list forms

 of "system()" and "exec()", no shell escapes happen.

 open(GREP, "-|", 'grep', @opts, $search_string, @filenames);

 chomp(@ok = <GREP>);

 close GREP; Page 17/28

 You can also:

 my @ok = ();

 if (open(GREP, "-|")) {

 while (<GREP>) {

 chomp;

 push(@ok, $_);

 }

 close GREP;

 } else {

 exec 'grep', @opts, $search_string, @filenames;

 }

 Just as with "system()", no shell escapes happen when you "exec()" a list. Further

 examples of this can be found in "Safe Pipe Opens" in perlipc.

 Note that if you're using Windows, no solution to this vexing issue is even possible. Even

 though Perl emulates "fork()", you'll still be stuck, because Windows does not have an

 argc/argv-style API.

 Why can't my script read from STDIN after I gave it EOF (^D on Unix, ^Z on MS-DOS)?

 This happens only if your perl is compiled to use stdio instead of perlio, which is the

 default. Some (maybe all?) stdios set error and eof flags that you may need to clear. The

 POSIX module defines "clearerr()" that you can use. That is the technically correct way to

 do it. Here are some less reliable workarounds:

 1. Try keeping around the seekpointer and go there, like this:

 my $where = tell($log_fh);

 seek($log_fh, $where, 0);

 2. If that doesn't work, try seeking to a different part of the file and then back.

 3. If that doesn't work, try seeking to a different part of the file, reading something,

 and then seeking back.

 4. If that doesn't work, give up on your stdio package and use sysread.

 How can I convert my shell script to perl?

 Learn Perl and rewrite it. Seriously, there's no simple converter. Things that are

 awkward to do in the shell are easy to do in Perl, and this very awkwardness is what would

 make a shell->perl converter nigh-on impossible to write. By rewriting it, you'll think

 about what you're really trying to do, and hopefully will escape the shell's pipeline Page 18/28

 datastream paradigm, which while convenient for some matters, causes many inefficiencies.

 Can I use perl to run a telnet or ftp session?

 Try the Net::FTP, TCP::Client, and Net::Telnet modules (available from CPAN).

 <http://www.cpan.org/scripts/netstuff/telnet.emul.shar> will also help for emulating the

 telnet protocol, but Net::Telnet is quite probably easier to use.

 If all you want to do is pretend to be telnet but don't need the initial telnet

 handshaking, then the standard dual-process approach will suffice:

 use IO::Socket; # new in 5.004

 my $handle = IO::Socket::INET->new('www.perl.com:80')

 or die "can't connect to port 80 on www.perl.com $!";

 $handle->autoflush(1);

 if (fork()) { # XXX: undef means failure

 select($handle);

 print while <STDIN>; # everything from stdin to socket

 } else {

 print while <$handle>; # everything from socket to stdout

 }

 close $handle;

 exit;

 How can I write expect in Perl?

 Once upon a time, there was a library called chat2.pl (part of the standard perl

 distribution), which never really got finished. If you find it somewhere, don't use it.

 These days, your best bet is to look at the Expect module available from CPAN, which also

 requires two other modules from CPAN, IO::Pty and IO::Stty.

 Is there a way to hide perl's command line from programs such as "ps"?

 First of all note that if you're doing this for security reasons (to avoid people seeing

 passwords, for example) then you should rewrite your program so that critical information

 is never given as an argument. Hiding the arguments won't make your program completely

 secure.

 To actually alter the visible command line, you can assign to the variable $0 as

 documented in perlvar. This won't work on all operating systems, though. Daemon programs

 like sendmail place their state there, as in:

 $0 = "orcus [accepting connections]"; Page 19/28

 I {changed directory, modified my environment} in a perl script. How come the change

 disappeared when I exited the script? How do I get my changes to be visible?

 Unix

 In the strictest sense, it can't be done--the script executes as a different process

 from the shell it was started from. Changes to a process are not reflected in its

 parent--only in any children created after the change. There is shell magic that may

 allow you to fake it by "eval()"ing the script's output in your shell; check out the

 comp.unix.questions FAQ for details.

 How do I close a process's filehandle without waiting for it to complete?

 Assuming your system supports such things, just send an appropriate signal to the process

 (see "kill" in perlfunc). It's common to first send a TERM signal, wait a little bit, and

 then send a KILL signal to finish it off.

 How do I fork a daemon process?

 If by daemon process you mean one that's detached (disassociated from its tty), then the

 following process is reported to work on most Unixish systems. Non-Unix users should check

 their Your_OS::Process module for other solutions.

 ? Open /dev/tty and use the TIOCNOTTY ioctl on it. See tty(1) for details. Or better

 yet, you can just use the "POSIX::setsid()" function, so you don't have to worry about

 process groups.

 ? Change directory to /

 ? Reopen STDIN, STDOUT, and STDERR so they're not connected to the old tty.

 ? Background yourself like this:

 fork && exit;

 The Proc::Daemon module, available from CPAN, provides a function to perform these actions

 for you.

 How do I find out if I'm running interactively or not?

 (contributed by brian d foy)

 This is a difficult question to answer, and the best answer is only a guess.

 What do you really want to know? If you merely want to know if one of your filehandles is

 connected to a terminal, you can try the "-t" file test:

 if(-t STDOUT) {

 print "I'm connected to a terminal!\n";

 } Page 20/28

 However, you might be out of luck if you expect that means there is a real person on the

 other side. With the Expect module, another program can pretend to be a person. The

 program might even come close to passing the Turing test.

 The IO::Interactive module does the best it can to give you an answer. Its

 "is_interactive" function returns an output filehandle; that filehandle points to standard

 output if the module thinks the session is interactive. Otherwise, the filehandle is a

 null handle that simply discards the output:

 use IO::Interactive;

 print { is_interactive } "I might go to standard output!\n";

 This still doesn't guarantee that a real person is answering your prompts or reading your

 output.

 If you want to know how to handle automated testing for your distribution, you can check

 the environment. The CPAN Testers, for instance, set the value of "AUTOMATED_TESTING":

 unless($ENV{AUTOMATED_TESTING}) {

 print "Hello interactive tester!\n";

 }

 How do I timeout a slow event?

 Use the "alarm()" function, probably in conjunction with a signal handler, as documented

 in "Signals" in perlipc and the section on "Signals" in the Camel. You may instead use the

 more flexible Sys::AlarmCall module available from CPAN.

 The "alarm()" function is not implemented on all versions of Windows. Check the

 documentation for your specific version of Perl.

 How do I set CPU limits?

 (contributed by Xho)

 Use the BSD::Resource module from CPAN. As an example:

 use BSD::Resource;

 setrlimit(RLIMIT_CPU,10,20) or die $!;

 This sets the soft and hard limits to 10 and 20 seconds, respectively. After 10 seconds

 of time spent running on the CPU (not "wall" time), the process will be sent a signal

 (XCPU on some systems) which, if not trapped, will cause the process to terminate. If that

 signal is trapped, then after 10 more seconds (20 seconds in total) the process will be

 killed with a non-trappable signal.

 See the BSD::Resource and your systems documentation for the gory details. Page 21/28

 How do I avoid zombies on a Unix system?

 Use the reaper code from "Signals" in perlipc to call "wait()" when a SIGCHLD is received,

 or else use the double-fork technique described in "How do I start a process in the

 background?" in perlfaq8.

 How do I use an SQL database?

 The DBI module provides an abstract interface to most database servers and types,

 including Oracle, DB2, Sybase, mysql, Postgresql, ODBC, and flat files. The DBI module

 accesses each database type through a database driver, or DBD. You can see a complete list

 of available drivers on CPAN: <http://www.cpan.org/modules/by-module/DBD/> . You can read

 more about DBI on <http://dbi.perl.org/> .

 Other modules provide more specific access: Win32::ODBC, Alzabo, "iodbc", and others found

 on CPAN Search: <https://metacpan.org/> .

 How do I make a system() exit on control-C?

 You can't. You need to imitate the "system()" call (see perlipc for sample code) and then

 have a signal handler for the INT signal that passes the signal on to the subprocess. Or

 you can check for it:

 $rc = system($cmd);

 if ($rc & 127) { die "signal death" }

 How do I open a file without blocking?

 If you're lucky enough to be using a system that supports non-blocking reads (most Unixish

 systems do), you need only to use the "O_NDELAY" or "O_NONBLOCK" flag from the "Fcntl"

 module in conjunction with "sysopen()":

 use Fcntl;

 sysopen(my $fh, "/foo/somefile", O_WRONLY|O_NDELAY|O_CREAT, 0644)

 or die "can't open /foo/somefile: $!":

 How do I tell the difference between errors from the shell and perl?

 (answer contributed by brian d foy)

 When you run a Perl script, something else is running the script for you, and that

 something else may output error messages. The script might emit its own warnings and error

 messages. Most of the time you cannot tell who said what.

 You probably cannot fix the thing that runs perl, but you can change how perl outputs its

 warnings by defining a custom warning and die functions.

 Consider this script, which has an error you may not notice immediately. Page 22/28

 #!/usr/locl/bin/perl

 print "Hello World\n";

 I get an error when I run this from my shell (which happens to be bash). That may look

 like perl forgot it has a "print()" function, but my shebang line is not the path to perl,

 so the shell runs the script, and I get the error.

 $./test

 ./test: line 3: print: command not found

 A quick and dirty fix involves a little bit of code, but this may be all you need to

 figure out the problem.

 #!/usr/bin/perl -w

 BEGIN {

 $SIG{__WARN__} = sub{ print STDERR "Perl: ", @_; };

 $SIG{__DIE__} = sub{ print STDERR "Perl: ", @_; exit 1};

 }

 $a = 1 + undef;

 $x / 0;

 __END__

 The perl message comes out with "Perl" in front. The "BEGIN" block works at compile time

 so all of the compilation errors and warnings get the "Perl:" prefix too.

 Perl: Useless use of division (/) in void context at ./test line 9.

 Perl: Name "main::a" used only once: possible typo at ./test line 8.

 Perl: Name "main::x" used only once: possible typo at ./test line 9.

 Perl: Use of uninitialized value in addition (+) at ./test line 8.

 Perl: Use of uninitialized value in division (/) at ./test line 9.

 Perl: Illegal division by zero at ./test line 9.

 Perl: Illegal division by zero at -e line 3.

 If I don't see that "Perl:", it's not from perl.

 You could also just know all the perl errors, and although there are some people who may

 know all of them, you probably don't. However, they all should be in the perldiag manpage.

 If you don't find the error in there, it probably isn't a perl error.

 Looking up every message is not the easiest way, so let perl to do it for you. Use the

 diagnostics pragma with turns perl's normal messages into longer discussions on the topic.

 use diagnostics; Page 23/28

 If you don't get a paragraph or two of expanded discussion, it might not be perl's

 message.

 How do I install a module from CPAN?

 (contributed by brian d foy)

 The easiest way is to have a module also named CPAN do it for you by using the "cpan"

 command that comes with Perl. You can give it a list of modules to install:

 $ cpan IO::Interactive Getopt::Whatever

 If you prefer "CPANPLUS", it's just as easy:

 $ cpanp i IO::Interactive Getopt::Whatever

 If you want to install a distribution from the current directory, you can tell "CPAN.pm"

 to install "." (the full stop):

 $ cpan .

 See the documentation for either of those commands to see what else you can do.

 If you want to try to install a distribution by yourself, resolving all dependencies on

 your own, you follow one of two possible build paths.

 For distributions that use Makefile.PL:

 $ perl Makefile.PL

 $ make test install

 For distributions that use Build.PL:

 $ perl Build.PL

 $./Build test

 $./Build install

 Some distributions may need to link to libraries or other third-party code and their build

 and installation sequences may be more complicated. Check any README or INSTALL files

 that you may find.

 What's the difference between require and use?

 (contributed by brian d foy)

 Perl runs "require" statement at run-time. Once Perl loads, compiles, and runs the file,

 it doesn't do anything else. The "use" statement is the same as a "require" run at

 compile-time, but Perl also calls the "import" method for the loaded package. These two

 are the same:

 use MODULE qw(import list);

 BEGIN { Page 24/28

 require MODULE;

 MODULE->import(import list);

 }

 However, you can suppress the "import" by using an explicit, empty import list. Both of

 these still happen at compile-time:

 use MODULE ();

 BEGIN {

 require MODULE;

 }

 Since "use" will also call the "import" method, the actual value for "MODULE" must be a

 bareword. That is, "use" cannot load files by name, although "require" can:

 require "$ENV{HOME}/lib/Foo.pm"; # no @INC searching!

 See the entry for "use" in perlfunc for more details.

 How do I keep my own module/library directory?

 When you build modules, tell Perl where to install the modules.

 If you want to install modules for your own use, the easiest way might be local::lib,

 which you can download from CPAN. It sets various installation settings for you, and uses

 those same settings within your programs.

 If you want more flexibility, you need to configure your CPAN client for your particular

 situation.

 For "Makefile.PL"-based distributions, use the INSTALL_BASE option when generating

 Makefiles:

 perl Makefile.PL INSTALL_BASE=/mydir/perl

 You can set this in your "CPAN.pm" configuration so modules automatically install in your

 private library directory when you use the CPAN.pm shell:

 % cpan

 cpan> o conf makepl_arg INSTALL_BASE=/mydir/perl

 cpan> o conf commit

 For "Build.PL"-based distributions, use the --install_base option:

 perl Build.PL --install_base /mydir/perl

 You can configure "CPAN.pm" to automatically use this option too:

 % cpan

 cpan> o conf mbuild_arg "--install_base /mydir/perl" Page 25/28

 cpan> o conf commit

 INSTALL_BASE tells these tools to put your modules into /mydir/perl/lib/perl5. See "How do

 I add a directory to my include path (@INC) at runtime?" for details on how to run your

 newly installed modules.

 There is one caveat with INSTALL_BASE, though, since it acts differently from the PREFIX

 and LIB settings that older versions of ExtUtils::MakeMaker advocated. INSTALL_BASE does

 not support installing modules for multiple versions of Perl or different architectures

 under the same directory. You should consider whether you really want that and, if you do,

 use the older PREFIX and LIB settings. See the ExtUtils::Makemaker documentation for more

 details.

 How do I add the directory my program lives in to the module/library search path?

 (contributed by brian d foy)

 If you know the directory already, you can add it to @INC as you would for any other

 directory. You might "use lib" if you know the directory at compile time:

 use lib $directory;

 The trick in this task is to find the directory. Before your script does anything else

 (such as a "chdir"), you can get the current working directory with the "Cwd" module,

 which comes with Perl:

 BEGIN {

 use Cwd;

 our $directory = cwd;

 }

 use lib $directory;

 You can do a similar thing with the value of $0, which holds the script name. That might

 hold a relative path, but "rel2abs" can turn it into an absolute path. Once you have the

 BEGIN {

 use File::Spec::Functions qw(rel2abs);

 use File::Basename qw(dirname);

 my $path = rel2abs($0);

 our $directory = dirname($path);

 }

 use lib $directory;

 The FindBin module, which comes with Perl, might work. It finds the directory of the Page 26/28

 currently running script and puts it in $Bin, which you can then use to construct the

 right library path:

 use FindBin qw($Bin);

 You can also use local::lib to do much of the same thing. Install modules using

 local::lib's settings then use the module in your program:

 use local::lib; # sets up a local lib at ~/perl5

 See the local::lib documentation for more details.

 How do I add a directory to my include path (@INC) at runtime?

 Here are the suggested ways of modifying your include path, including environment

 variables, run-time switches, and in-code statements:

 the "PERLLIB" environment variable

 $ export PERLLIB=/path/to/my/dir

 $ perl program.pl

 the "PERL5LIB" environment variable

 $ export PERL5LIB=/path/to/my/dir

 $ perl program.pl

 the "perl -Idir" command line flag

 $ perl -I/path/to/my/dir program.pl

 the "lib" pragma:

 use lib "$ENV{HOME}/myown_perllib";

 the local::lib module:

 use local::lib;

 use local::lib "~/myown_perllib";

 Where are modules installed?

 Modules are installed on a case-by-case basis (as provided by the methods described in the

 previous section), and in the operating system. All of these paths are stored in @INC,

 which you can display with the one-liner

 perl -e 'print join("\n",@INC,"")'

 The same information is displayed at the end of the output from the command

 perl -V

 To find out where a module's source code is located, use

 perldoc -l Encode

 to display the path to the module. In some cases (for example, the "AutoLoader" module), Page 27/28

 this command will show the path to a separate "pod" file; the module itself should be in

 the same directory, with a 'pm' file extension.

 What is socket.ph and where do I get it?

 It's a Perl 4 style file defining values for system networking constants. Sometimes it is

 built using h2ph when Perl is installed, but other times it is not. Modern programs should

 use "use Socket;" instead.

AUTHOR AND COPYRIGHT

 Copyright (c) 1997-2010 Tom Christiansen, Nathan Torkington, and other authors as noted.

 All rights reserved.

 This documentation is free; you can redistribute it and/or modify it under the same terms

 as Perl itself.

 Irrespective of its distribution, all code examples in this file are hereby placed into

 the public domain. You are permitted and encouraged to use this code in your own programs

 for fun or for profit as you see fit. A simple comment in the code giving credit would be

 courteous but is not required.

perl v5.34.0 2023-11-23 PERLFAQ8(1)

Page 28/28

