
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlfunc.1'

$ man perlfunc.1

PERLFUNC(1) Perl Programmers Reference Guide PERLFUNC(1)

NAME

 perlfunc - Perl builtin functions

DESCRIPTION

 The functions in this section can serve as terms in an expression. They fall into two

 major categories: list operators and named unary operators. These differ in their

 precedence relationship with a following comma. (See the precedence table in perlop.)

 List operators take more than one argument, while unary operators can never take more than

 one argument. Thus, a comma terminates the argument of a unary operator, but merely

 separates the arguments of a list operator. A unary operator generally provides scalar

 context to its argument, while a list operator may provide either scalar or list contexts

 for its arguments. If it does both, scalar arguments come first and list argument follow,

 and there can only ever be one such list argument. For instance, "splice" has three

 scalar arguments followed by a list, whereas "gethostbyname" has four scalar arguments.

 In the syntax descriptions that follow, list operators that expect a list (and provide

 list context for elements of the list) are shown with LIST as an argument. Such a list

 may consist of any combination of scalar arguments or list values; the list values will be

 included in the list as if each individual element were interpolated at that point in the

 list, forming a longer single-dimensional list value. Commas should separate literal

 elements of the LIST.

 Any function in the list below may be used either with or without parentheses around its

 arguments. (The syntax descriptions omit the parentheses.) If you use parentheses, the

 simple but occasionally surprising rule is this: It looks like a function, therefore it is Page 1/182

 a function, and precedence doesn't matter. Otherwise it's a list operator or unary

 operator, and precedence does matter. Whitespace between the function and left

 parenthesis doesn't count, so sometimes you need to be careful:

 print 1+2+4; # Prints 7.

 print(1+2) + 4; # Prints 3.

 print (1+2)+4; # Also prints 3!

 print +(1+2)+4; # Prints 7.

 print ((1+2)+4); # Prints 7.

 If you run Perl with the "use warnings" pragma, it can warn you about this. For example,

 the third line above produces:

 print (...) interpreted as function at - line 1.

 Useless use of integer addition in void context at - line 1.

 A few functions take no arguments at all, and therefore work as neither unary nor list

 operators. These include such functions as "time" and "endpwent". For example,

 "time+86_400" always means "time() + 86_400".

 For functions that can be used in either a scalar or list context, nonabortive failure is

 generally indicated in scalar context by returning the undefined value, and in list

 context by returning the empty list.

 Remember the following important rule: There is no rule that relates the behavior of an

 expression in list context to its behavior in scalar context, or vice versa. It might do

 two totally different things. Each operator and function decides which sort of value

 would be most appropriate to return in scalar context. Some operators return the length

 of the list that would have been returned in list context. Some operators return the

 first value in the list. Some operators return the last value in the list. Some

 operators return a count of successful operations. In general, they do what you want,

 unless you want consistency.

 A named array in scalar context is quite different from what would at first glance appear

 to be a list in scalar context. You can't get a list like "(1,2,3)" into being in scalar

 context, because the compiler knows the context at compile time. It would generate the

 scalar comma operator there, not the list concatenation version of the comma. That means

 it was never a list to start with.

 In general, functions in Perl that serve as wrappers for system calls ("syscalls") of the

 same name (like chown(2), fork(2), closedir(2), etc.) return true when they succeed and Page 2/182

 "undef" otherwise, as is usually mentioned in the descriptions below. This is different

 from the C interfaces, which return "-1" on failure. Exceptions to this rule include

 "wait", "waitpid", and "syscall". System calls also set the special $! variable on

 failure. Other functions do not, except accidentally.

 Extension modules can also hook into the Perl parser to define new kinds of keyword-headed

 expression. These may look like functions, but may also look completely different. The

 syntax following the keyword is defined entirely by the extension. If you are an

 implementor, see "PL_keyword_plugin" in perlapi for the mechanism. If you are using such

 a module, see the module's documentation for details of the syntax that it defines.

 Perl Functions by Category

 Here are Perl's functions (including things that look like functions, like some keywords

 and named operators) arranged by category. Some functions appear in more than one place.

 Any warnings, including those produced by keywords, are described in perldiag and

 warnings.

 Functions for SCALARs or strings

 "chomp", "chop", "chr", "crypt", "fc", "hex", "index", "lc", "lcfirst", "length",

 "oct", "ord", "pack", "q//", "qq//", "reverse", "rindex", "sprintf", "substr",

 "tr///", "uc", "ucfirst", "y///"

 "fc" is available only if the "fc" feature is enabled or if it is prefixed with

 "CORE::". The "fc" feature is enabled automatically with a "use v5.16" (or higher)

 declaration in the current scope.

 Regular expressions and pattern matching

 "m//", "pos", "qr//", "quotemeta", "s///", "split", "study"

 Numeric functions

 "abs", "atan2", "cos", "exp", "hex", "int", "log", "oct", "rand", "sin", "sqrt",

 "srand"

 Functions for real @ARRAYs

 "each", "keys", "pop", "push", "shift", "splice", "unshift", "values"

 Functions for list data

 "grep", "join", "map", "qw//", "reverse", "sort", "unpack"

 Functions for real %HASHes

 "delete", "each", "exists", "keys", "values"

 Input and output functions Page 3/182

 "binmode", "close", "closedir", "dbmclose", "dbmopen", "die", "eof", "fileno",

 "flock", "format", "getc", "print", "printf", "read", "readdir", "readline",

 "rewinddir", "say", "seek", "seekdir", "select", "syscall", "sysread", "sysseek",

 "syswrite", "tell", "telldir", "truncate", "warn", "write"

 "say" is available only if the "say" feature is enabled or if it is prefixed with

 "CORE::". The "say" feature is enabled automatically with a "use v5.10" (or higher)

 declaration in the current scope.

 Functions for fixed-length data or records

 "pack", "read", "syscall", "sysread", "sysseek", "syswrite", "unpack", "vec"

 Functions for filehandles, files, or directories

 "-X", "chdir", "chmod", "chown", "chroot", "fcntl", "glob", "ioctl", "link", "lstat",

 "mkdir", "open", "opendir", "readlink", "rename", "rmdir", "select", "stat",

 "symlink", "sysopen", "umask", "unlink", "utime"

 Keywords related to the control flow of your Perl program

 "break", "caller", "continue", "die", "do", "dump", "eval", "evalbytes", "exit",

 "__FILE__", "goto", "last", "__LINE__", "next", "__PACKAGE__", "redo", "return",

 "sub", "__SUB__", "wantarray"

 "break" is available only if you enable the experimental "switch" feature or use the

 "CORE::" prefix. The "switch" feature also enables the "default", "given" and "when"

 statements, which are documented in "Switch Statements" in perlsyn. The "switch"

 feature is enabled automatically with a "use v5.10" (or higher) declaration in the

 current scope. In Perl v5.14 and earlier, "continue" required the "switch" feature,

 like the other keywords.

 "evalbytes" is only available with the "evalbytes" feature (see feature) or if

 prefixed with "CORE::". "__SUB__" is only available with the "current_sub" feature or

 if prefixed with "CORE::". Both the "evalbytes" and "current_sub" features are

 enabled automatically with a "use v5.16" (or higher) declaration in the current scope.

 Keywords related to scoping

 "caller", "import", "local", "my", "our", "package", "state", "use"

 "state" is available only if the "state" feature is enabled or if it is prefixed with

 "CORE::". The "state" feature is enabled automatically with a "use v5.10" (or higher)

 declaration in the current scope.

 Miscellaneous functions Page 4/182

 "defined", "formline", "lock", "prototype", "reset", "scalar", "undef"

 Functions for processes and process groups

 "alarm", "exec", "fork", "getpgrp", "getppid", "getpriority", "kill", "pipe", "qx//",

 "readpipe", "setpgrp", "setpriority", "sleep", "system", "times", "wait", "waitpid"

 Keywords related to Perl modules

 "do", "import", "no", "package", "require", "use"

 Keywords related to classes and object-orientation

 "bless", "dbmclose", "dbmopen", "package", "ref", "tie", "tied", "untie", "use"

 Low-level socket functions

 "accept", "bind", "connect", "getpeername", "getsockname", "getsockopt", "listen",

 "recv", "send", "setsockopt", "shutdown", "socket", "socketpair"

 System V interprocess communication functions

 "msgctl", "msgget", "msgrcv", "msgsnd", "semctl", "semget", "semop", "shmctl",

 "shmget", "shmread", "shmwrite"

 Fetching user and group info

 "endgrent", "endhostent", "endnetent", "endpwent", "getgrent", "getgrgid", "getgrnam",

 "getlogin", "getpwent", "getpwnam", "getpwuid", "setgrent", "setpwent"

 Fetching network info

 "endprotoent", "endservent", "gethostbyaddr", "gethostbyname", "gethostent",

 "getnetbyaddr", "getnetbyname", "getnetent", "getprotobyname", "getprotobynumber",

 "getprotoent", "getservbyname", "getservbyport", "getservent", "sethostent",

 "setnetent", "setprotoent", "setservent"

 Time-related functions

 "gmtime", "localtime", "time", "times"

 Non-function keywords

 "and", "AUTOLOAD", "BEGIN", "CHECK", "cmp", "CORE", "__DATA__", "default", "DESTROY",

 "else", "elseif", "elsif", "END", "__END__", "eq", "for", "foreach", "ge", "given",

 "gt", "if", "INIT", "le", "lt", "ne", "not", "or", "UNITCHECK", "unless", "until",

 "when", "while", "x", "xor"

 Portability

 Perl was born in Unix and can therefore access all common Unix system calls. In non-Unix

 environments, the functionality of some Unix system calls may not be available or details

 of the available functionality may differ slightly. The Perl functions affected by this Page 5/182

 are:

 "-X", "binmode", "chmod", "chown", "chroot", "crypt", "dbmclose", "dbmopen", "dump",

 "endgrent", "endhostent", "endnetent", "endprotoent", "endpwent", "endservent", "exec",

 "fcntl", "flock", "fork", "getgrent", "getgrgid", "gethostbyname", "gethostent",

 "getlogin", "getnetbyaddr", "getnetbyname", "getnetent", "getppid", "getpgrp",

 "getpriority", "getprotobynumber", "getprotoent", "getpwent", "getpwnam", "getpwuid",

 "getservbyport", "getservent", "getsockopt", "glob", "ioctl", "kill", "link", "lstat",

 "msgctl", "msgget", "msgrcv", "msgsnd", "open", "pipe", "readlink", "rename", "select",

 "semctl", "semget", "semop", "setgrent", "sethostent", "setnetent", "setpgrp",

 "setpriority", "setprotoent", "setpwent", "setservent", "setsockopt", "shmctl", "shmget",

 "shmread", "shmwrite", "socket", "socketpair", "stat", "symlink", "syscall", "sysopen",

 "system", "times", "truncate", "umask", "unlink", "utime", "wait", "waitpid"

 For more information about the portability of these functions, see perlport and other

 available platform-specific documentation.

 Alphabetical Listing of Perl Functions

 -X FILEHANDLE

 -X EXPR

 -X DIRHANDLE

 -X A file test, where X is one of the letters listed below. This unary operator takes

 one argument, either a filename, a filehandle, or a dirhandle, and tests the

 associated file to see if something is true about it. If the argument is omitted,

 tests $_, except for "-t", which tests STDIN. Unless otherwise documented, it returns

 1 for true and '' for false. If the file doesn't exist or can't be examined, it

 returns "undef" and sets $! (errno). With the exception of the "-l" test they all

 follow symbolic links because they use "stat()" and not "lstat()" (so dangling

 symlinks can't be examined and will therefore report failure).

 Despite the funny names, precedence is the same as any other named unary operator.

 The operator may be any of:

 -r File is readable by effective uid/gid.

 -w File is writable by effective uid/gid.

 -x File is executable by effective uid/gid.

 -o File is owned by effective uid.

 -R File is readable by real uid/gid. Page 6/182

 -W File is writable by real uid/gid.

 -X File is executable by real uid/gid.

 -O File is owned by real uid.

 -e File exists.

 -z File has zero size (is empty).

 -s File has nonzero size (returns size in bytes).

 -f File is a plain file.

 -d File is a directory.

 -l File is a symbolic link (false if symlinks aren't

 supported by the file system).

 -p File is a named pipe (FIFO), or Filehandle is a pipe.

 -S File is a socket.

 -b File is a block special file.

 -c File is a character special file.

 -t Filehandle is opened to a tty.

 -u File has setuid bit set.

 -g File has setgid bit set.

 -k File has sticky bit set.

 -T File is an ASCII or UTF-8 text file (heuristic guess).

 -B File is a "binary" file (opposite of -T).

 -M Script start time minus file modification time, in days.

 -A Same for access time.

 -C Same for inode change time (Unix, may differ for other

 platforms)

 Example:

 while (<>) {

 chomp;

 next unless -f $_; # ignore specials

 #...

 }

 Note that "-s/a/b/" does not do a negated substitution. Saying "-exp($foo)" still

 works as expected, however: only single letters following a minus are interpreted as

 file tests. Page 7/182

 These operators are exempt from the "looks like a function rule" described above.

 That is, an opening parenthesis after the operator does not affect how much of the

 following code constitutes the argument. Put the opening parentheses before the

 operator to separate it from code that follows (this applies only to operators with

 higher precedence than unary operators, of course):

 -s($file) + 1024 # probably wrong; same as -s($file + 1024)

 (-s $file) + 1024 # correct

 The interpretation of the file permission operators "-r", "-R", "-w", "-W", "-x", and

 "-X" is by default based solely on the mode of the file and the uids and gids of the

 user. There may be other reasons you can't actually read, write, or execute the file:

 for example network filesystem access controls, ACLs (access control lists), read-only

 filesystems, and unrecognized executable formats. Note that the use of these six

 specific operators to verify if some operation is possible is usually a mistake,

 because it may be open to race conditions.

 Also note that, for the superuser on the local filesystems, the "-r", "-R", "-w", and

 "-W" tests always return 1, and "-x" and "-X" return 1 if any execute bit is set in

 the mode. Scripts run by the superuser may thus need to do a "stat" to determine the

 actual mode of the file, or temporarily set their effective uid to something else.

 If you are using ACLs, there is a pragma called "filetest" that may produce more

 accurate results than the bare "stat" mode bits. When under "use filetest 'access'",

 the above-mentioned filetests test whether the permission can(not) be granted using

 the access(2) family of system calls. Also note that the "-x" and "-X" tests may

 under this pragma return true even if there are no execute permission bits set (nor

 any extra execute permission ACLs). This strangeness is due to the underlying system

 calls' definitions. Note also that, due to the implementation of "use filetest

 'access'", the "_" special filehandle won't cache the results of the file tests when

 this pragma is in effect. Read the documentation for the "filetest" pragma for more

 information.

 The "-T" and "-B" tests work as follows. The first block or so of the file is

 examined to see if it is valid UTF-8 that includes non-ASCII characters. If so, it's

 a "-T" file. Otherwise, that same portion of the file is examined for odd characters

 such as strange control codes or characters with the high bit set. If more than a

 third of the characters are strange, it's a "-B" file; otherwise it's a "-T" file. Page 8/182

 Also, any file containing a zero byte in the examined portion is considered a binary

 file. (If executed within the scope of a use?locale which includes "LC_CTYPE", odd

 characters are anything that isn't a printable nor space in the current locale.) If

 "-T" or "-B" is used on a filehandle, the current IO buffer is examined rather than

 the first block. Both "-T" and "-B" return true on an empty file, or a file at EOF

 when testing a filehandle. Because you have to read a file to do the "-T" test, on

 most occasions you want to use a "-f" against the file first, as in "next unless -f

 $file && -T $file".

 If any of the file tests (or either the "stat" or "lstat" operator) is given the

 special filehandle consisting of a solitary underline, then the stat structure of the

 previous file test (or "stat" operator) is used, saving a system call. (This doesn't

 work with "-t", and you need to remember that "lstat" and "-l" leave values in the

 stat structure for the symbolic link, not the real file.) (Also, if the stat buffer

 was filled by an "lstat" call, "-T" and "-B" will reset it with the results of "stat

 _"). Example:

 print "Can do.\n" if -r $a || -w _ || -x _;

 stat($filename);

 print "Readable\n" if -r _;

 print "Writable\n" if -w _;

 print "Executable\n" if -x _;

 print "Setuid\n" if -u _;

 print "Setgid\n" if -g _;

 print "Sticky\n" if -k _;

 print "Text\n" if -T _;

 print "Binary\n" if -B _;

 As of Perl 5.10.0, as a form of purely syntactic sugar, you can stack file test

 operators, in a way that "-f -w -x $file" is equivalent to "-x $file && -w _ && -f _".

 (This is only fancy syntax: if you use the return value of "-f $file" as an argument

 to another filetest operator, no special magic will happen.)

 Portability issues: "-X" in perlport.

 To avoid confusing would-be users of your code with mysterious syntax errors, put

 something like this at the top of your script:

 use 5.010; # so filetest ops can stack Page 9/182

 abs VALUE

 abs Returns the absolute value of its argument. If VALUE is omitted, uses $_.

 accept NEWSOCKET,GENERICSOCKET

 Accepts an incoming socket connect, just as accept(2) does. Returns the packed

 address if it succeeded, false otherwise. See the example in "Sockets: Client/Server

 Communication" in perlipc.

 On systems that support a close-on-exec flag on files, the flag will be set for the

 newly opened file descriptor, as determined by the value of $^F. See "$^F" in

 perlvar.

 alarm SECONDS

 alarm

 Arranges to have a SIGALRM delivered to this process after the specified number of

 wallclock seconds has elapsed. If SECONDS is not specified, the value stored in $_ is

 used. (On some machines, unfortunately, the elapsed time may be up to one second less

 or more than you specified because of how seconds are counted, and process scheduling

 may delay the delivery of the signal even further.)

 Only one timer may be counting at once. Each call disables the previous timer, and an

 argument of 0 may be supplied to cancel the previous timer without starting a new one.

 The returned value is the amount of time remaining on the previous timer.

 For delays of finer granularity than one second, the Time::HiRes module (from CPAN,

 and starting from Perl 5.8 part of the standard distribution) provides "ualarm". You

 may also use Perl's four-argument version of "select" leaving the first three

 arguments undefined, or you might be able to use the "syscall" interface to access

 setitimer(2) if your system supports it. See perlfaq8 for details.

 It is usually a mistake to intermix "alarm" and "sleep" calls, because "sleep" may be

 internally implemented on your system with "alarm".

 If you want to use "alarm" to time out a system call you need to use an "eval"/"die"

 pair. You can't rely on the alarm causing the system call to fail with $! set to

 "EINTR" because Perl sets up signal handlers to restart system calls on some systems.

 Using "eval"/"die" always works, modulo the caveats given in "Signals" in perlipc.

 eval {

 local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required

 alarm $timeout; Page 10/182

 my $nread = sysread $socket, $buffer, $size;

 alarm 0;

 };

 if ($@) {

 die unless $@ eq "alarm\n"; # propagate unexpected errors

 # timed out

 }

 else {

 # didn't

 }

 For more information see perlipc.

 Portability issues: "alarm" in perlport.

 atan2 Y,X

 Returns the arctangent of Y/X in the range -PI to PI.

 For the tangent operation, you may use the "Math::Trig::tan" function, or use the

 familiar relation:

 sub tan { sin($_[0]) / cos($_[0]) }

 The return value for "atan2(0,0)" is implementation-defined; consult your atan2(3)

 manpage for more information.

 Portability issues: "atan2" in perlport.

 bind SOCKET,NAME

 Binds a network address to a socket, just as bind(2) does. Returns true if it

 succeeded, false otherwise. NAME should be a packed address of the appropriate type

 for the socket. See the examples in "Sockets: Client/Server Communication" in

 perlipc.

 binmode FILEHANDLE, LAYER

 binmode FILEHANDLE

 Arranges for FILEHANDLE to be read or written in "binary" or "text" mode on systems

 where the run-time libraries distinguish between binary and text files. If FILEHANDLE

 is an expression, the value is taken as the name of the filehandle. Returns true on

 success, otherwise it returns "undef" and sets $! (errno).

 On some systems (in general, DOS- and Windows-based systems) "binmode" is necessary

 when you're not working with a text file. For the sake of portability it is a good Page 11/182

 idea always to use it when appropriate, and never to use it when it isn't appropriate.

 Also, people can set their I/O to be by default UTF8-encoded Unicode, not bytes.

 In other words: regardless of platform, use "binmode" on binary data, like images, for

 example.

 If LAYER is present it is a single string, but may contain multiple directives. The

 directives alter the behaviour of the filehandle. When LAYER is present, using

 binmode on a text file makes sense.

 If LAYER is omitted or specified as ":raw" the filehandle is made suitable for passing

 binary data. This includes turning off possible CRLF translation and marking it as

 bytes (as opposed to Unicode characters). Note that, despite what may be implied in

 "Programming Perl" (the Camel, 3rd edition) or elsewhere, ":raw" is not simply the

 inverse of ":crlf". Other layers that would affect the binary nature of the stream

 are also disabled. See PerlIO, and the discussion about the PERLIO environment

 variable in perlrun.

 The ":bytes", ":crlf", ":utf8", and any other directives of the form ":...", are

 called I/O layers. The open pragma can be used to establish default I/O layers.

 The LAYER parameter of the "binmode" function is described as "DISCIPLINE" in

 "Programming Perl, 3rd Edition". However, since the publishing of this book, by many

 known as "Camel III", the consensus of the naming of this functionality has moved from

 "discipline" to "layer". All documentation of this version of Perl therefore refers

 to "layers" rather than to "disciplines". Now back to the regularly scheduled

 documentation...

 To mark FILEHANDLE as UTF-8, use ":utf8" or ":encoding(UTF-8)". ":utf8" just marks

 the data as UTF-8 without further checking, while ":encoding(UTF-8)" checks the data

 for actually being valid UTF-8. More details can be found in PerlIO::encoding.

 In general, "binmode" should be called after "open" but before any I/O is done on the

 filehandle. Calling "binmode" normally flushes any pending buffered output data (and

 perhaps pending input data) on the handle. An exception to this is the ":encoding"

 layer that changes the default character encoding of the handle. The ":encoding"

 layer sometimes needs to be called in mid-stream, and it doesn't flush the stream.

 ":encoding" also implicitly pushes on top of itself the ":utf8" layer because

 internally Perl operates on UTF8-encoded Unicode characters.

 The operating system, device drivers, C libraries, and Perl run-time system all Page 12/182

 conspire to let the programmer treat a single character ("\n") as the line terminator,

 irrespective of external representation. On many operating systems, the native text

 file representation matches the internal representation, but on some platforms the

 external representation of "\n" is made up of more than one character.

 All variants of Unix, Mac OS (old and new), and Stream_LF files on VMS use a single

 character to end each line in the external representation of text (even though that

 single character is CARRIAGE RETURN on old, pre-Darwin flavors of Mac OS, and is LINE

 FEED on Unix and most VMS files). In other systems like OS/2, DOS, and the various

 flavors of MS-Windows, your program sees a "\n" as a simple "\cJ", but what's stored

 in text files are the two characters "\cM\cJ". That means that if you don't use

 "binmode" on these systems, "\cM\cJ" sequences on disk will be converted to "\n" on

 input, and any "\n" in your program will be converted back to "\cM\cJ" on output.

 This is what you want for text files, but it can be disastrous for binary files.

 Another consequence of using "binmode" (on some systems) is that special end-of-file

 markers will be seen as part of the data stream. For systems from the Microsoft

 family this means that, if your binary data contain "\cZ", the I/O subsystem will

 regard it as the end of the file, unless you use "binmode".

 "binmode" is important not only for "readline" and "print" operations, but also when

 using "read", "seek", "sysread", "syswrite" and "tell" (see perlport for more

 details). See the $/ and "$\" variables in perlvar for how to manually set your input

 and output line-termination sequences.

 Portability issues: "binmode" in perlport.

 bless REF,CLASSNAME

 bless REF

 This function tells the thingy referenced by REF that it is now an object in the

 CLASSNAME package. If CLASSNAME is an empty string, it is interpreted as referring to

 the "main" package. If CLASSNAME is omitted, the current package is used. Because a

 "bless" is often the last thing in a constructor, it returns the reference for

 convenience. Always use the two-argument version if a derived class might inherit the

 method doing the blessing. See perlobj for more about the blessing (and blessings) of

 objects.

 Consider always blessing objects in CLASSNAMEs that are mixed case. Namespaces with

 all lowercase names are considered reserved for Perl pragmas. Builtin types have all Page 13/182

 uppercase names. To prevent confusion, you may wish to avoid such package names as

 well. It is advised to avoid the class name 0, because much code erroneously uses the

 result of "ref" as a truth value.

 See "Perl Modules" in perlmod.

 break

 Break out of a "given" block.

 "break" is available only if the "switch" feature is enabled or if it is prefixed with

 "CORE::". The "switch" feature is enabled automatically with a "use v5.10" (or higher)

 declaration in the current scope.

 caller EXPR

 caller

 Returns the context of the current pure perl subroutine call. In scalar context,

 returns the caller's package name if there is a caller (that is, if we're in a

 subroutine or "eval" or "require") and the undefined value otherwise. caller never

 returns XS subs and they are skipped. The next pure perl sub will appear instead of

 the XS sub in caller's return values. In list context, caller returns

 # 0 1 2

 my ($package, $filename, $line) = caller;

 Like "__FILE__" and "__LINE__", the filename and line number returned here may be

 altered by the mechanism described at "Plain Old Comments (Not!)" in perlsyn.

 With EXPR, it returns some extra information that the debugger uses to print a stack

 trace. The value of EXPR indicates how many call frames to go back before the current

 one.

 # 0 1 2 3 4

 my ($package, $filename, $line, $subroutine, $hasargs,

 # 5 6 7 8 9 10

 $wantarray, $evaltext, $is_require, $hints, $bitmask, $hinthash)

 = caller($i);

 Here, $subroutine is the function that the caller called (rather than the function

 containing the caller). Note that $subroutine may be "(eval)" if the frame is not a

 subroutine call, but an "eval". In such a case additional elements $evaltext and

 $is_require are set: $is_require is true if the frame is created by a "require" or

 "use" statement, $evaltext contains the text of the "eval EXPR" statement. In Page 14/182

 particular, for an "eval BLOCK" statement, $subroutine is "(eval)", but $evaltext is

 undefined. (Note also that each "use" statement creates a "require" frame inside an

 "eval EXPR" frame.) $subroutine may also be "(unknown)" if this particular subroutine

 happens to have been deleted from the symbol table. $hasargs is true if a new

 instance of @_ was set up for the frame. $hints and $bitmask contain pragmatic hints

 that the caller was compiled with. $hints corresponds to $^H, and $bitmask

 corresponds to "${^WARNING_BITS}". The $hints and $bitmask values are subject to

 change between versions of Perl, and are not meant for external use.

 $hinthash is a reference to a hash containing the value of "%^H" when the caller was

 compiled, or "undef" if "%^H" was empty. Do not modify the values of this hash, as

 they are the actual values stored in the optree.

 Note that the only types of call frames that are visible are subroutine calls and

 "eval". Other forms of context, such as "while" or "foreach" loops or "try" blocks are

 not considered interesting to "caller", as they do not alter the behaviour of the

 "return" expression.

 Furthermore, when called from within the DB package in list context, and with an

 argument, caller returns more detailed information: it sets the list variable

 @DB::args to be the arguments with which the subroutine was invoked.

 Be aware that the optimizer might have optimized call frames away before "caller" had

 a chance to get the information. That means that caller(N) might not return

 information about the call frame you expect it to, for "N > 1". In particular,

 @DB::args might have information from the previous time "caller" was called.

 Be aware that setting @DB::args is best effort, intended for debugging or generating

 backtraces, and should not be relied upon. In particular, as @_ contains aliases to

 the caller's arguments, Perl does not take a copy of @_, so @DB::args will contain

 modifications the subroutine makes to @_ or its contents, not the original values at

 call time. @DB::args, like @_, does not hold explicit references to its elements, so

 under certain cases its elements may have become freed and reallocated for other

 variables or temporary values. Finally, a side effect of the current implementation

 is that the effects of "shift @_" can normally be undone (but not "pop @_" or other

 splicing, and not if a reference to @_ has been taken, and subject to the caveat about

 reallocated elements), so @DB::args is actually a hybrid of the current state and

 initial state of @_. Buyer beware. Page 15/182

 chdir EXPR

 chdir FILEHANDLE

 chdir DIRHANDLE

 chdir

 Changes the working directory to EXPR, if possible. If EXPR is omitted, changes to

 the directory specified by $ENV{HOME}, if set; if not, changes to the directory

 specified by $ENV{LOGDIR}. (Under VMS, the variable $ENV{'SYS$LOGIN'} is also

 checked, and used if it is set.) If neither is set, "chdir" does nothing and fails.

 It returns true on success, false otherwise. See the example under "die".

 On systems that support fchdir(2), you may pass a filehandle or directory handle as

 the argument. On systems that don't support fchdir(2), passing handles raises an

 exception.

 chmod LIST

 Changes the permissions of a list of files. The first element of the list must be the

 numeric mode, which should probably be an octal number, and which definitely should

 not be a string of octal digits: 0644 is okay, but "0644" is not. Returns the number

 of files successfully changed. See also "oct" if all you have is a string.

 my $cnt = chmod 0755, "foo", "bar";

 chmod 0755, @executables;

 my $mode = "0644"; chmod $mode, "foo"; # !!! sets mode to

 # --w----r-T

 my $mode = "0644"; chmod oct($mode), "foo"; # this is better

 my $mode = 0644; chmod $mode, "foo"; # this is best

 On systems that support fchmod(2), you may pass filehandles among the files. On

 systems that don't support fchmod(2), passing filehandles raises an exception.

 Filehandles must be passed as globs or glob references to be recognized; barewords are

 considered filenames.

 open(my $fh, "<", "foo");

 my $perm = (stat $fh)[2] & 07777;

 chmod($perm | 0600, $fh);

 You can also import the symbolic "S_I*" constants from the "Fcntl" module:

 use Fcntl qw(:mode);

 chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables; Page 16/182

 # Identical to the chmod 0755 of the example above.

 Portability issues: "chmod" in perlport.

 chomp VARIABLE

 chomp(LIST)

 chomp

 This safer version of "chop" removes any trailing string that corresponds to the

 current value of $/ (also known as $INPUT_RECORD_SEPARATOR in the "English" module).

 It returns the total number of characters removed from all its arguments. It's often

 used to remove the newline from the end of an input record when you're worried that

 the final record may be missing its newline. When in paragraph mode ("$/ = ''"), it

 removes all trailing newlines from the string. When in slurp mode ("$/ = undef") or

 fixed-length record mode ($/ is a reference to an integer or the like; see perlvar),

 "chomp" won't remove anything. If VARIABLE is omitted, it chomps $_. Example:

 while (<>) {

 chomp; # avoid \n on last field

 my @array = split(/:/);

 # ...

 }

 If VARIABLE is a hash, it chomps the hash's values, but not its keys, resetting the

 "each" iterator in the process.

 You can actually chomp anything that's an lvalue, including an assignment:

 chomp(my $cwd = `pwd`);

 chomp(my $answer = <STDIN>);

 If you chomp a list, each element is chomped, and the total number of characters

 removed is returned.

 Note that parentheses are necessary when you're chomping anything that is not a simple

 variable. This is because "chomp $cwd = `pwd`;" is interpreted as "(chomp $cwd) =

 `pwd`;", rather than as "chomp($cwd = `pwd`)" which you might expect. Similarly,

 "chomp $a, $b" is interpreted as "chomp($a), $b" rather than as "chomp($a, $b)".

 chop VARIABLE

 chop(LIST)

 chop

 Chops off the last character of a string and returns the character chopped. It is Page 17/182

 much more efficient than "s/.$//s" because it neither scans nor copies the string. If

 VARIABLE is omitted, chops $_. If VARIABLE is a hash, it chops the hash's values, but

 not its keys, resetting the "each" iterator in the process.

 You can actually chop anything that's an lvalue, including an assignment.

 If you chop a list, each element is chopped. Only the value of the last "chop" is

 returned.

 Note that "chop" returns the last character. To return all but the last character,

 use "substr($string, 0, -1)".

 See also "chomp".

 chown LIST

 Changes the owner (and group) of a list of files. The first two elements of the list

 must be the numeric uid and gid, in that order. A value of -1 in either position is

 interpreted by most systems to leave that value unchanged. Returns the number of

 files successfully changed.

 my $cnt = chown $uid, $gid, 'foo', 'bar';

 chown $uid, $gid, @filenames;

 On systems that support fchown(2), you may pass filehandles among the files. On

 systems that don't support fchown(2), passing filehandles raises an exception.

 Filehandles must be passed as globs or glob references to be recognized; barewords are

 considered filenames.

 Here's an example that looks up nonnumeric uids in the passwd file:

 print "User: ";

 chomp(my $user = <STDIN>);

 print "Files: ";

 chomp(my $pattern = <STDIN>);

 my ($login,$pass,$uid,$gid) = getpwnam($user)

 or die "$user not in passwd file";

 my @ary = glob($pattern); # expand filenames

 chown $uid, $gid, @ary;

 On most systems, you are not allowed to change the ownership of the file unless you're

 the superuser, although you should be able to change the group to any of your

 secondary groups. On insecure systems, these restrictions may be relaxed, but this is

 not a portable assumption. On POSIX systems, you can detect this condition this way: Page 18/182

 use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);

 my $can_chown_giveaway = ! sysconf(_PC_CHOWN_RESTRICTED);

 Portability issues: "chown" in perlport.

 chr NUMBER

 chr Returns the character represented by that NUMBER in the character set. For example,

 "chr(65)" is "A" in either ASCII or Unicode, and chr(0x263a) is a Unicode smiley face.

 Negative values give the Unicode replacement character (chr(0xfffd)), except under the

 bytes pragma, where the low eight bits of the value (truncated to an integer) are

 used.

 If NUMBER is omitted, uses $_.

 For the reverse, use "ord".

 Note that characters from 128 to 255 (inclusive) are by default internally not encoded

 as UTF-8 for backward compatibility reasons.

 See perlunicode for more about Unicode.

 chroot FILENAME

 chroot

 This function works like the system call by the same name: it makes the named

 directory the new root directory for all further pathnames that begin with a "/" by

 your process and all its children. (It doesn't change your current working directory,

 which is unaffected.) For security reasons, this call is restricted to the superuser.

 If FILENAME is omitted, does a "chroot" to $_.

 NOTE: It is mandatory for security to "chdir("/")" ("chdir" to the root directory)

 immediately after a "chroot", otherwise the current working directory may be outside

 of the new root.

 Portability issues: "chroot" in perlport.

 close FILEHANDLE

 close

 Closes the file or pipe associated with the filehandle, flushes the IO buffers, and

 closes the system file descriptor. Returns true if those operations succeed and if no

 error was reported by any PerlIO layer. Closes the currently selected filehandle if

 the argument is omitted.

 You don't have to close FILEHANDLE if you are immediately going to do another "open"

 on it, because "open" closes it for you. (See "open".) However, an explicit "close" Page 19/182

 on an input file resets the line counter ($.), while the implicit close done by "open"

 does not.

 If the filehandle came from a piped open, "close" returns false if one of the other

 syscalls involved fails or if its program exits with non-zero status. If the only

 problem was that the program exited non-zero, $! will be set to 0. Closing a pipe

 also waits for the process executing on the pipe to exit--in case you wish to look at

 the output of the pipe afterwards--and implicitly puts the exit status value of that

 command into $? and "${^CHILD_ERROR_NATIVE}".

 If there are multiple threads running, "close" on a filehandle from a piped open

 returns true without waiting for the child process to terminate, if the filehandle is

 still open in another thread.

 Closing the read end of a pipe before the process writing to it at the other end is

 done writing results in the writer receiving a SIGPIPE. If the other end can't handle

 that, be sure to read all the data before closing the pipe.

 Example:

 open(OUTPUT, '|sort >foo') # pipe to sort

 or die "Can't start sort: $!";

 #... # print stuff to output

 close OUTPUT # wait for sort to finish

 or warn $! ? "Error closing sort pipe: $!"

 : "Exit status $? from sort";

 open(INPUT, 'foo') # get sort's results

 or die "Can't open 'foo' for input: $!";

 FILEHANDLE may be an expression whose value can be used as an indirect filehandle,

 usually the real filehandle name or an autovivified handle.

 closedir DIRHANDLE

 Closes a directory opened by "opendir" and returns the success of that system call.

 connect SOCKET,NAME

 Attempts to connect to a remote socket, just like connect(2). Returns true if it

 succeeded, false otherwise. NAME should be a packed address of the appropriate type

 for the socket. See the examples in "Sockets: Client/Server Communication" in

 perlipc.

 continue BLOCK Page 20/182

 continue

 When followed by a BLOCK, "continue" is actually a flow control statement rather than

 a function. If there is a "continue" BLOCK attached to a BLOCK (typically in a

 "while" or "foreach"), it is always executed just before the conditional is about to

 be evaluated again, just like the third part of a "for" loop in C. Thus it can be

 used to increment a loop variable, even when the loop has been continued via the

 "next" statement (which is similar to the C "continue" statement).

 "last", "next", or "redo" may appear within a "continue" block; "last" and "redo"

 behave as if they had been executed within the main block. So will "next", but since

 it will execute a "continue" block, it may be more entertaining.

 while (EXPR) {

 ### redo always comes here

 do_something;

 } continue {

 ### next always comes here

 do_something_else;

 # then back the top to re-check EXPR

 }

 ### last always comes here

 Omitting the "continue" section is equivalent to using an empty one, logically enough,

 so "next" goes directly back to check the condition at the top of the loop.

 When there is no BLOCK, "continue" is a function that falls through the current "when"

 or "default" block instead of iterating a dynamically enclosing "foreach" or exiting a

 lexically enclosing "given". In Perl 5.14 and earlier, this form of "continue" was

 only available when the "switch" feature was enabled. See feature and "Switch

 Statements" in perlsyn for more information.

 cos EXPR

 cos Returns the cosine of EXPR (expressed in radians). If EXPR is omitted, takes the

 cosine of $_.

 For the inverse cosine operation, you may use the "Math::Trig::acos" function, or use

 this relation:

 sub acos { atan2(sqrt(1 - $_[0] * $_[0]), $_[0]) }

 crypt PLAINTEXT,SALT Page 21/182

 Creates a digest string exactly like the crypt(3) function in the C library (assuming

 that you actually have a version there that has not been extirpated as a potential

 munition).

 "crypt" is a one-way hash function. The PLAINTEXT and SALT are turned into a short

 string, called a digest, which is returned. The same PLAINTEXT and SALT will always

 return the same string, but there is no (known) way to get the original PLAINTEXT from

 the hash. Small changes in the PLAINTEXT or SALT will result in large changes in the

 digest.

 There is no decrypt function. This function isn't all that useful for cryptography

 (for that, look for Crypt modules on your nearby CPAN mirror) and the name "crypt" is

 a bit of a misnomer. Instead it is primarily used to check if two pieces of text are

 the same without having to transmit or store the text itself. An example is checking

 if a correct password is given. The digest of the password is stored, not the

 password itself. The user types in a password that is "crypt"'d with the same salt as

 the stored digest. If the two digests match, the password is correct.

 When verifying an existing digest string you should use the digest as the salt (like

 "crypt($plain, $digest) eq $digest"). The SALT used to create the digest is visible

 as part of the digest. This ensures "crypt" will hash the new string with the same

 salt as the digest. This allows your code to work with the standard "crypt" and with

 more exotic implementations. In other words, assume nothing about the returned string

 itself nor about how many bytes of SALT may matter.

 Traditionally the result is a string of 13 bytes: two first bytes of the salt,

 followed by 11 bytes from the set "[./0-9A-Za-z]", and only the first eight bytes of

 PLAINTEXT mattered. But alternative hashing schemes (like MD5), higher level security

 schemes (like C2), and implementations on non-Unix platforms may produce different

 strings.

 When choosing a new salt create a random two character string whose characters come

 from the set "[./0-9A-Za-z]" (like "join '', ('.', '/', 0..9, 'A'..'Z', 'a'..'z')[rand

 64, rand 64]"). This set of characters is just a recommendation; the characters

 allowed in the salt depend solely on your system's crypt library, and Perl can't

 restrict what salts "crypt" accepts.

 Here's an example that makes sure that whoever runs this program knows their password:

 my $pwd = (getpwuid($<))[1]; Page 22/182

 system "stty -echo";

 print "Password: ";

 chomp(my $word = <STDIN>);

 print "\n";

 system "stty echo";

 if (crypt($word, $pwd) ne $pwd) {

 die "Sorry...\n";

 } else {

 print "ok\n";

 }

 Of course, typing in your own password to whoever asks you for it is unwise.

 The "crypt" function is unsuitable for hashing large quantities of data, not least of

 all because you can't get the information back. Look at the Digest module for more

 robust algorithms.

 If using "crypt" on a Unicode string (which potentially has characters with codepoints

 above 255), Perl tries to make sense of the situation by trying to downgrade (a copy

 of) the string back to an eight-bit byte string before calling "crypt" (on that copy).

 If that works, good. If not, "crypt" dies with "Wide character in crypt".

 Portability issues: "crypt" in perlport.

 dbmclose HASH

 [This function has been largely superseded by the "untie" function.]

 Breaks the binding between a DBM file and a hash.

 Portability issues: "dbmclose" in perlport.

 dbmopen HASH,DBNAME,MASK

 [This function has been largely superseded by the "tie" function.]

 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a hash. HASH

 is the name of the hash. (Unlike normal "open", the first argument is not a

 filehandle, even though it looks like one). DBNAME is the name of the database

 (without the .dir or .pag extension if any). If the database does not exist, it is

 created with protection specified by MASK (as modified by the "umask"). To prevent

 creation of the database if it doesn't exist, you may specify a MODE of 0, and the

 function will return a false value if it can't find an existing database. If your

 system supports only the older DBM functions, you may make only one "dbmopen" call in Page 23/182

 your program. In older versions of Perl, if your system had neither DBM nor ndbm,

 calling "dbmopen" produced a fatal error; it now falls back to sdbm(3).

 If you don't have write access to the DBM file, you can only read hash variables, not

 set them. If you want to test whether you can write, either use file tests or try

 setting a dummy hash entry inside an "eval" to trap the error.

 Note that functions such as "keys" and "values" may return huge lists when used on

 large DBM files. You may prefer to use the "each" function to iterate over large DBM

 files. Example:

 # print out history file offsets

 dbmopen(%HIST,'/usr/lib/news/history',0666);

 while (($key,$val) = each %HIST) {

 print $key, ' = ', unpack('L',$val), "\n";

 }

 dbmclose(%HIST);

 See also AnyDBM_File for a more general description of the pros and cons of the

 various dbm approaches, as well as DB_File for a particularly rich implementation.

 You can control which DBM library you use by loading that library before you call

 "dbmopen":

 use DB_File;

 dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")

 or die "Can't open netscape history file: $!";

 Portability issues: "dbmopen" in perlport.

 defined EXPR

 defined

 Returns a Boolean value telling whether EXPR has a value other than the undefined

 value "undef". If EXPR is not present, $_ is checked.

 Many operations return "undef" to indicate failure, end of file, system error,

 uninitialized variable, and other exceptional conditions. This function allows you to

 distinguish "undef" from other values. (A simple Boolean test will not distinguish

 among "undef", zero, the empty string, and "0", which are all equally false.) Note

 that since "undef" is a valid scalar, its presence doesn't necessarily indicate an

 exceptional condition: "pop" returns "undef" when its argument is an empty array, or

 when the element to return happens to be "undef". Page 24/182

 You may also use "defined(&func)" to check whether subroutine "func" has ever been

 defined. The return value is unaffected by any forward declarations of "func". A

 subroutine that is not defined may still be callable: its package may have an

 "AUTOLOAD" method that makes it spring into existence the first time that it is

 called; see perlsub.

 Use of "defined" on aggregates (hashes and arrays) is no longer supported. It used to

 report whether memory for that aggregate had ever been allocated. You should instead

 use a simple test for size:

 if (@an_array) { print "has array elements\n" }

 if (%a_hash) { print "has hash members\n" }

 When used on a hash element, it tells you whether the value is defined, not whether

 the key exists in the hash. Use "exists" for the latter purpose.

 Examples:

 print if defined $switch{D};

 print "$val\n" while defined($val = pop(@ary));

 die "Can't readlink $sym: $!"

 unless defined($value = readlink $sym);

 sub foo { defined &$bar ? $bar->(@_) : die "No bar"; }

 $debugging = 0 unless defined $debugging;

 Note: Many folks tend to overuse "defined" and are then surprised to discover that

 the number 0 and "" (the zero-length string) are, in fact, defined values. For

 example, if you say

 "ab" =~ /a(.*)b/;

 The pattern match succeeds and $1 is defined, although it matched "nothing". It

 didn't really fail to match anything. Rather, it matched something that happened to

 be zero characters long. This is all very above-board and honest. When a function

 returns an undefined value, it's an admission that it couldn't give you an honest

 answer. So you should use "defined" only when questioning the integrity of what

 you're trying to do. At other times, a simple comparison to 0 or "" is what you want.

 See also "undef", "exists", "ref".

 delete EXPR

 Given an expression that specifies an element or slice of a hash, "delete" deletes the

 specified elements from that hash so that "exists" on that element no longer returns Page 25/182

 true. Setting a hash element to the undefined value does not remove its key, but

 deleting it does; see "exists".

 In list context, usually returns the value or values deleted, or the last such element

 in scalar context. The return list's length corresponds to that of the argument list:

 deleting non-existent elements returns the undefined value in their corresponding

 positions. When a key/value hash slice is passed to "delete", the return value is a

 list of key/value pairs (two elements for each item deleted from the hash).

 "delete" may also be used on arrays and array slices, but its behavior is less

 straightforward. Although "exists" will return false for deleted entries, deleting

 array elements never changes indices of existing values; use "shift" or "splice" for

 that. However, if any deleted elements fall at the end of an array, the array's size

 shrinks to the position of the highest element that still tests true for "exists", or

 to 0 if none do. In other words, an array won't have trailing nonexistent elements

 after a delete.

 WARNING: Calling "delete" on array values is strongly discouraged. The notion of

 deleting or checking the existence of Perl array elements is not conceptually

 coherent, and can lead to surprising behavior.

 Deleting from %ENV modifies the environment. Deleting from a hash tied to a DBM file

 deletes the entry from the DBM file. Deleting from a "tied" hash or array may not

 necessarily return anything; it depends on the implementation of the "tied" package's

 DELETE method, which may do whatever it pleases.

 The "delete local EXPR" construct localizes the deletion to the current block at run

 time. Until the block exits, elements locally deleted temporarily no longer exist.

 See "Localized deletion of elements of composite types" in perlsub.

 my %hash = (foo => 11, bar => 22, baz => 33);

 my $scalar = delete $hash{foo}; # $scalar is 11

 $scalar = delete @hash{qw(foo bar)}; # $scalar is 22

 my @array = delete @hash{qw(foo baz)}; # @array is (undef,33)

 The following (inefficiently) deletes all the values of %HASH and @ARRAY:

 foreach my $key (keys %HASH) {

 delete $HASH{$key};

 }

 foreach my $index (0 .. $#ARRAY) { Page 26/182

 delete $ARRAY[$index];

 }

 And so do these:

 delete @HASH{keys %HASH};

 delete @ARRAY[0 .. $#ARRAY];

 But both are slower than assigning the empty list or undefining %HASH or @ARRAY, which

 is the customary way to empty out an aggregate:

 %HASH = (); # completely empty %HASH

 undef %HASH; # forget %HASH ever existed

 @ARRAY = (); # completely empty @ARRAY

 undef @ARRAY; # forget @ARRAY ever existed

 The EXPR can be arbitrarily complicated provided its final operation is an element or

 slice of an aggregate:

 delete $ref->[$x][$y]{$key};

 delete $ref->[$x][$y]->@{$key1, $key2, @morekeys};

 delete $ref->[$x][$y][$index];

 delete $ref->[$x][$y]->@[$index1, $index2, @moreindices];

 die LIST

 "die" raises an exception. Inside an "eval" the exception is stuffed into $@ and the

 "eval" is terminated with the undefined value. If the exception is outside of all

 enclosing "eval"s, then the uncaught exception is printed to "STDERR" and perl exits

 with an exit code indicating failure. If you need to exit the process with a specific

 exit code, see "exit".

 Equivalent examples:

 die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';

 chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"

 Most of the time, "die" is called with a string to use as the exception. You may

 either give a single non-reference operand to serve as the exception, or a list of two

 or more items, which will be stringified and concatenated to make the exception.

 If the string exception does not end in a newline, the current script line number and

 input line number (if any) and a newline are appended to it. Note that the "input

 line number" (also known as "chunk") is subject to whatever notion of "line" happens

 to be currently in effect, and is also available as the special variable $.. See "$/" Page 27/182

 in perlvar and "$." in perlvar.

 Hint: sometimes appending ", stopped" to your message will cause it to make better

 sense when the string "at foo line 123" is appended. Suppose you are running script

 "canasta".

 die "/etc/games is no good";

 die "/etc/games is no good, stopped";

 produce, respectively

 /etc/games is no good at canasta line 123.

 /etc/games is no good, stopped at canasta line 123.

 If LIST was empty or made an empty string, and $@ already contains an exception value

 (typically from a previous "eval"), then that value is reused after appending

 "\t...propagated". This is useful for propagating exceptions:

 eval { ... };

 die unless $@ =~ /Expected exception/;

 If LIST was empty or made an empty string, and $@ contains an object reference that

 has a "PROPAGATE" method, that method will be called with additional file and line

 number parameters. The return value replaces the value in $@; i.e., as if "$@ = eval

 { $@->PROPAGATE(__FILE__, __LINE__) };" were called.

 If LIST was empty or made an empty string, and $@ is also empty, then the string

 "Died" is used.

 You can also call "die" with a reference argument, and if this is trapped within an

 "eval", $@ contains that reference. This permits more elaborate exception handling

 using objects that maintain arbitrary state about the exception. Such a scheme is

 sometimes preferable to matching particular string values of $@ with regular

 expressions.

 Because Perl stringifies uncaught exception messages before display, you'll probably

 want to overload stringification operations on exception objects. See overload for

 details about that. The stringified message should be non-empty, and should end in a

 newline, in order to fit in with the treatment of string exceptions. Also, because an

 exception object reference cannot be stringified without destroying it, Perl doesn't

 attempt to append location or other information to a reference exception. If you want

 location information with a complex exception object, you'll have to arrange to put

 the location information into the object yourself. Page 28/182

 Because $@ is a global variable, be careful that analyzing an exception caught by

 "eval" doesn't replace the reference in the global variable. It's easiest to make a

 local copy of the reference before any manipulations. Here's an example:

 use Scalar::Util "blessed";

 eval { ... ; die Some::Module::Exception->new(FOO => "bar") };

 if (my $ev_err = $@) {

 if (blessed($ev_err)

 && $ev_err->isa("Some::Module::Exception")) {

 # handle Some::Module::Exception

 }

 else {

 # handle all other possible exceptions

 }

 }

 If an uncaught exception results in interpreter exit, the exit code is determined from

 the values of $! and $? with this pseudocode:

 exit $! if $!; # errno

 exit $? >> 8 if $? >> 8; # child exit status

 exit 255; # last resort

 As with "exit", $? is set prior to unwinding the call stack; any "DESTROY" or "END"

 handlers can then alter this value, and thus Perl's exit code.

 The intent is to squeeze as much possible information about the likely cause into the

 limited space of the system exit code. However, as $! is the value of C's "errno",

 which can be set by any system call, this means that the value of the exit code used

 by "die" can be non-predictable, so should not be relied upon, other than to be non-

 zero.

 You can arrange for a callback to be run just before the "die" does its deed, by

 setting the $SIG{__DIE__} hook. The associated handler is called with the exception

 as an argument, and can change the exception, if it sees fit, by calling "die" again.

 See "%SIG" in perlvar for details on setting %SIG entries, and "eval" for some

 examples. Although this feature was to be run only right before your program was to

 exit, this is not currently so: the $SIG{__DIE__} hook is currently called even inside

 "eval"ed blocks/strings! If one wants the hook to do nothing in such situations, put Page 29/182

 die @_ if $^S;

 as the first line of the handler (see "$^S" in perlvar). Because this promotes

 strange action at a distance, this counterintuitive behavior may be fixed in a future

 release.

 See also "exit", "warn", and the Carp module.

 do BLOCK

 Not really a function. Returns the value of the last command in the sequence of

 commands indicated by BLOCK. When modified by the "while" or "until" loop modifier,

 executes the BLOCK once before testing the loop condition. (On other statements the

 loop modifiers test the conditional first.)

 "do BLOCK" does not count as a loop, so the loop control statements "next", "last", or

 "redo" cannot be used to leave or restart the block. See perlsyn for alternative

 strategies.

 do EXPR

 Uses the value of EXPR as a filename and executes the contents of the file as a Perl

 script:

 # load the exact specified file (./ and ../ special-cased)

 do '/foo/stat.pl';

 do './stat.pl';

 do '../foo/stat.pl';

 # search for the named file within @INC

 do 'stat.pl';

 do 'foo/stat.pl';

 "do './stat.pl'" is largely like

 eval `cat stat.pl`;

 except that it's more concise, runs no external processes, and keeps track of the

 current filename for error messages. It also differs in that code evaluated with "do

 FILE" cannot see lexicals in the enclosing scope; "eval STRING" does. It's the same,

 however, in that it does reparse the file every time you call it, so you probably

 don't want to do this inside a loop.

 Using "do" with a relative path (except for ./ and ../), like

 do 'foo/stat.pl';

 will search the @INC directories, and update %INC if the file is found. See "@INC" in Page 30/182

 perlvar and "%INC" in perlvar for these variables. In particular, note that whilst

 historically @INC contained '.' (the current directory) making these two cases

 equivalent, that is no longer necessarily the case, as '.' is not included in @INC by

 default in perl versions 5.26.0 onwards. Instead, perl will now warn:

 do "stat.pl" failed, '.' is no longer in @INC;

 did you mean do "./stat.pl"?

 If "do" can read the file but cannot compile it, it returns "undef" and sets an error

 message in $@. If "do" cannot read the file, it returns undef and sets $! to the

 error. Always check $@ first, as compilation could fail in a way that also sets $!.

 If the file is successfully compiled, "do" returns the value of the last expression

 evaluated.

 Inclusion of library modules is better done with the "use" and "require" operators,

 which also do automatic error checking and raise an exception if there's a problem.

 You might like to use "do" to read in a program configuration file. Manual error

 checking can be done this way:

 # Read in config files: system first, then user.

 # Beware of using relative pathnames here.

 for $file ("/share/prog/defaults.rc",

 "$ENV{HOME}/.someprogrc")

 {

 unless ($return = do $file) {

 warn "couldn't parse $file: $@" if $@;

 warn "couldn't do $file: $!" unless defined $return;

 warn "couldn't run $file" unless $return;

 }

 }

 dump LABEL

 dump EXPR

 dump

 This function causes an immediate core dump. See also the -u command-line switch in

 perlrun, which does the same thing. Primarily this is so that you can use the undump

 program (not supplied) to turn your core dump into an executable binary after having

 initialized all your variables at the beginning of the program. When the new binary Page 31/182

 is executed it will begin by executing a "goto LABEL" (with all the restrictions that

 "goto" suffers). Think of it as a goto with an intervening core dump and

 reincarnation. If "LABEL" is omitted, restarts the program from the top. The "dump

 EXPR" form, available starting in Perl 5.18.0, allows a name to be computed at run

 time, being otherwise identical to "dump LABEL".

 WARNING: Any files opened at the time of the dump will not be open any more when the

 program is reincarnated, with possible resulting confusion by Perl.

 This function is now largely obsolete, mostly because it's very hard to convert a core

 file into an executable. As of Perl 5.30, it must be invoked as "CORE::dump()".

 Unlike most named operators, this has the same precedence as assignment. It is also

 exempt from the looks-like-a-function rule, so "dump ("foo")."bar"" will cause "bar"

 to be part of the argument to "dump".

 Portability issues: "dump" in perlport.

 each HASH

 each ARRAY

 When called on a hash in list context, returns a 2-element list consisting of the key

 and value for the next element of a hash. In Perl 5.12 and later only, it will also

 return the index and value for the next element of an array so that you can iterate

 over it; older Perls consider this a syntax error. When called in scalar context,

 returns only the key (not the value) in a hash, or the index in an array.

 Hash entries are returned in an apparently random order. The actual random order is

 specific to a given hash; the exact same series of operations on two hashes may result

 in a different order for each hash. Any insertion into the hash may change the order,

 as will any deletion, with the exception that the most recent key returned by "each"

 or "keys" may be deleted without changing the order. So long as a given hash is

 unmodified you may rely on "keys", "values" and "each" to repeatedly return the same

 order as each other. See "Algorithmic Complexity Attacks" in perlsec for details on

 why hash order is randomized. Aside from the guarantees provided here the exact

 details of Perl's hash algorithm and the hash traversal order are subject to change in

 any release of Perl.

 After "each" has returned all entries from the hash or array, the next call to "each"

 returns the empty list in list context and "undef" in scalar context; the next call

 following that one restarts iteration. Each hash or array has its own internal Page 32/182

 iterator, accessed by "each", "keys", and "values". The iterator is implicitly reset

 when "each" has reached the end as just described; it can be explicitly reset by

 calling "keys" or "values" on the hash or array, or by referencing the hash (but not

 array) in list context. If you add or delete a hash's elements while iterating over

 it, the effect on the iterator is unspecified; for example, entries may be skipped or

 duplicated--so don't do that. Exception: It is always safe to delete the item most

 recently returned by "each", so the following code works properly:

 while (my ($key, $value) = each %hash) {

 print $key, "\n";

 delete $hash{$key}; # This is safe

 }

 Tied hashes may have a different ordering behaviour to perl's hash implementation.

 The iterator used by "each" is attached to the hash or array, and is shared between

 all iteration operations applied to the same hash or array. Thus all uses of "each"

 on a single hash or array advance the same iterator location. All uses of "each" are

 also subject to having the iterator reset by any use of "keys" or "values" on the same

 hash or array, or by the hash (but not array) being referenced in list context. This

 makes "each"-based loops quite fragile: it is easy to arrive at such a loop with the

 iterator already part way through the object, or to accidentally clobber the iterator

 state during execution of the loop body. It's easy enough to explicitly reset the

 iterator before starting a loop, but there is no way to insulate the iterator state

 used by a loop from the iterator state used by anything else that might execute during

 the loop body. To avoid these problems, use a "foreach" loop rather than

 "while"-"each".

 This prints out your environment like the printenv(1) program, but in a different

 order:

 while (my ($key,$value) = each %ENV) {

 print "$key=$value\n";

 }

 Starting with Perl 5.14, an experimental feature allowed "each" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 As of Perl 5.18 you can use a bare "each" in a "while" loop, which will set $_ on Page 33/182

 every iteration. If either an "each" expression or an explicit assignment of an

 "each" expression to a scalar is used as a "while"/"for" condition, then the condition

 actually tests for definedness of the expression's value, not for its regular truth

 value.

 while (each %ENV) {

 print "$_=$ENV{$_}\n";

 }

 To avoid confusing would-be users of your code who are running earlier versions of

 Perl with mysterious syntax errors, put this sort of thing at the top of your file to

 signal that your code will work only on Perls of a recent vintage:

 use 5.012; # so keys/values/each work on arrays

 use 5.018; # so each assigns to $_ in a lone while test

 See also "keys", "values", and "sort".

 eof FILEHANDLE

 eof ()

 eof Returns 1 if the next read on FILEHANDLE will return end of file or if FILEHANDLE is

 not open. FILEHANDLE may be an expression whose value gives the real filehandle.

 (Note that this function actually reads a character and then "ungetc"s it, so isn't

 useful in an interactive context.) Do not read from a terminal file (or call

 "eof(FILEHANDLE)" on it) after end-of-file is reached. File types such as terminals

 may lose the end-of-file condition if you do.

 An "eof" without an argument uses the last file read. Using "eof()" with empty

 parentheses is different. It refers to the pseudo file formed from the files listed

 on the command line and accessed via the "<>" operator. Since "<>" isn't explicitly

 opened, as a normal filehandle is, an "eof()" before "<>" has been used will cause

 @ARGV to be examined to determine if input is available. Similarly, an "eof()" after

 "<>" has returned end-of-file will assume you are processing another @ARGV list, and

 if you haven't set @ARGV, will read input from "STDIN"; see "I/O Operators" in perlop.

 In a "while (<>)" loop, "eof" or "eof(ARGV)" can be used to detect the end of each

 file, whereas "eof()" will detect the end of the very last file only. Examples:

 # reset line numbering on each input file

 while (<>) {

 next if /^\s*#/; # skip comments Page 34/182

 print "$.\t$_";

 } continue {

 close ARGV if eof; # Not eof()!

 }

 # insert dashes just before last line of last file

 while (<>) {

 if (eof()) { # check for end of last file

 print "--------------\n";

 }

 print;

 last if eof(); # needed if we're reading from a terminal

 }

 Practical hint: you almost never need to use "eof" in Perl, because the input

 operators typically return "undef" when they run out of data or encounter an error.

 eval EXPR

 eval BLOCK

 eval

 "eval" in all its forms is used to execute a little Perl program, trapping any errors

 encountered so they don't crash the calling program.

 Plain "eval" with no argument is just "eval EXPR", where the expression is understood

 to be contained in $_. Thus there are only two real "eval" forms; the one with an

 EXPR is often called "string eval". In a string eval, the value of the expression

 (which is itself determined within scalar context) is first parsed, and if there were

 no errors, executed as a block within the lexical context of the current Perl program.

 This form is typically used to delay parsing and subsequent execution of the text of

 EXPR until run time. Note that the value is parsed every time the "eval" executes.

 The other form is called "block eval". It is less general than string eval, but the

 code within the BLOCK is parsed only once (at the same time the code surrounding the

 "eval" itself was parsed) and executed within the context of the current Perl program.

 This form is typically used to trap exceptions more efficiently than the first, while

 also providing the benefit of checking the code within BLOCK at compile time. BLOCK

 is parsed and compiled just once. Since errors are trapped, it often is used to check

 if a given feature is available. Page 35/182

 In both forms, the value returned is the value of the last expression evaluated inside

 the mini-program; a return statement may also be used, just as with subroutines. The

 expression providing the return value is evaluated in void, scalar, or list context,

 depending on the context of the "eval" itself. See "wantarray" for more on how the

 evaluation context can be determined.

 If there is a syntax error or runtime error, or a "die" statement is executed, "eval"

 returns "undef" in scalar context, or an empty list in list context, and $@ is set to

 the error message. (Prior to 5.16, a bug caused "undef" to be returned in list

 context for syntax errors, but not for runtime errors.) If there was no error, $@ is

 set to the empty string. A control flow operator like "last" or "goto" can bypass the

 setting of $@. Beware that using "eval" neither silences Perl from printing warnings

 to STDERR, nor does it stuff the text of warning messages into $@. To do either of

 those, you have to use the $SIG{__WARN__} facility, or turn off warnings inside the

 BLOCK or EXPR using "no?warnings?'all'". See "warn", perlvar, and warnings.

 Note that, because "eval" traps otherwise-fatal errors, it is useful for determining

 whether a particular feature (such as "socket" or "symlink") is implemented. It is

 also Perl's exception-trapping mechanism, where the "die" operator is used to raise

 exceptions.

 Before Perl 5.14, the assignment to $@ occurred before restoration of localized

 variables, which means that for your code to run on older versions, a temporary is

 required if you want to mask some, but not all errors:

 # alter $@ on nefarious repugnancy only

 {

 my $e;

 {

 local $@; # protect existing $@

 eval { test_repugnancy() };

 # $@ =~ /nefarious/ and die $@; # Perl 5.14 and higher only

 $@ =~ /nefarious/ and $e = $@;

 }

 die $e if defined $e

 }

 There are some different considerations for each form: Page 36/182

 String eval

 Since the return value of EXPR is executed as a block within the lexical context

 of the current Perl program, any outer lexical variables are visible to it, and

 any package variable settings or subroutine and format definitions remain

 afterwards.

 Under the "unicode_eval" feature

 If this feature is enabled (which is the default under a "use 5.16" or higher

 declaration), EXPR is considered to be in the same encoding as the surrounding

 program. Thus if "use?utf8" is in effect, the string will be treated as being

 UTF-8 encoded. Otherwise, the string is considered to be a sequence of

 independent bytes. Bytes that correspond to ASCII-range code points will have

 their normal meanings for operators in the string. The treatment of the other

 bytes depends on if the "'unicode_strings"" feature is in effect.

 In a plain "eval" without an EXPR argument, being in "use?utf8" or not is

 irrelevant; the UTF-8ness of $_ itself determines the behavior.

 Any "use?utf8" or "no?utf8" declarations within the string have no effect, and

 source filters are forbidden. ("unicode_strings", however, can appear within

 the string.) See also the "evalbytes" operator, which works properly with

 source filters.

 Variables defined outside the "eval" and used inside it retain their original

 UTF-8ness. Everything inside the string follows the normal rules for a Perl

 program with the given state of "use?utf8".

 Outside the "unicode_eval" feature

 In this case, the behavior is problematic and is not so easily described.

 Here are two bugs that cannot easily be fixed without breaking existing

 programs:

 ? It can lose track of whether something should be encoded as UTF-8 or not.

 ? Source filters activated within "eval" leak out into whichever file scope

 is currently being compiled. To give an example with the CPAN module

 Semi::Semicolons:

 BEGIN { eval "use Semi::Semicolons; # not filtered" }

 # filtered here!

 "evalbytes" fixes that to work the way one would expect: Page 37/182

 use feature "evalbytes";

 BEGIN { evalbytes "use Semi::Semicolons; # filtered" }

 # not filtered

 Problems can arise if the string expands a scalar containing a floating point

 number. That scalar can expand to letters, such as "NaN" or "Infinity"; or,

 within the scope of a "use locale", the decimal point character may be something

 other than a dot (such as a comma). None of these are likely to parse as you are

 likely expecting.

 You should be especially careful to remember what's being looked at when:

 eval $x; # CASE 1

 eval "$x"; # CASE 2

 eval '$x'; # CASE 3

 eval { $x }; # CASE 4

 eval "\$$x++"; # CASE 5

 $$x++; # CASE 6

 Cases 1 and 2 above behave identically: they run the code contained in the

 variable $x. (Although case 2 has misleading double quotes making the reader

 wonder what else might be happening (nothing is).) Cases 3 and 4 likewise behave

 in the same way: they run the code '$x', which does nothing but return the value

 of $x. (Case 4 is preferred for purely visual reasons, but it also has the

 advantage of compiling at compile-time instead of at run-time.) Case 5 is a place

 where normally you would like to use double quotes, except that in this particular

 situation, you can just use symbolic references instead, as in case 6.

 An "eval ''" executed within a subroutine defined in the "DB" package doesn't see

 the usual surrounding lexical scope, but rather the scope of the first non-DB

 piece of code that called it. You don't normally need to worry about this unless

 you are writing a Perl debugger.

 The final semicolon, if any, may be omitted from the value of EXPR.

 Block eval

 If the code to be executed doesn't vary, you may use the eval-BLOCK form to trap

 run-time errors without incurring the penalty of recompiling each time. The

 error, if any, is still returned in $@. Examples:

 # make divide-by-zero nonfatal Page 38/182

 eval { $answer = $a / $b; }; warn $@ if $@;

 # same thing, but less efficient

 eval '$answer = $a / $b'; warn $@ if $@;

 # a compile-time error

 eval { $answer = }; # WRONG

 # a run-time error

 eval '$answer ='; # sets $@

 If you want to trap errors when loading an XS module, some problems with the

 binary interface (such as Perl version skew) may be fatal even with "eval" unless

 $ENV{PERL_DL_NONLAZY} is set. See perlrun.

 Using the "eval {}" form as an exception trap in libraries does have some issues.

 Due to the current arguably broken state of "__DIE__" hooks, you may wish not to

 trigger any "__DIE__" hooks that user code may have installed. You can use the

 "local $SIG{__DIE__}" construct for this purpose, as this example shows:

 # a private exception trap for divide-by-zero

 eval { local $SIG{'__DIE__'}; $answer = $a / $b; };

 warn $@ if $@;

 This is especially significant, given that "__DIE__" hooks can call "die" again,

 which has the effect of changing their error messages:

 # __DIE__ hooks may modify error messages

 {

 local $SIG{'__DIE__'} =

 sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };

 eval { die "foo lives here" };

 print $@ if $@; # prints "bar lives here"

 }

 Because this promotes action at a distance, this counterintuitive behavior may be

 fixed in a future release.

 "eval BLOCK" does not count as a loop, so the loop control statements "next",

 "last", or "redo" cannot be used to leave or restart the block.

 The final semicolon, if any, may be omitted from within the BLOCK.

 evalbytes EXPR

 evalbytes Page 39/182

 This function is similar to a string eval, except it always parses its argument (or $_

 if EXPR is omitted) as a string of independent bytes.

 If called when "use?utf8" is in effect, the string will be assumed to be encoded in

 UTF-8, and "evalbytes" will make a temporary copy to work from, downgraded to

 non-UTF-8. If this is not possible (because one or more characters in it require

 UTF-8), the "evalbytes" will fail with the error stored in $@.

 Bytes that correspond to ASCII-range code points will have their normal meanings for

 operators in the string. The treatment of the other bytes depends on if the

 "'unicode_strings"" feature is in effect.

 Of course, variables that are UTF-8 and are referred to in the string retain that:

 my $a = "\x{100}";

 evalbytes 'print ord $a, "\n"';

 prints

 256

 and $@ is empty.

 Source filters activated within the evaluated code apply to the code itself.

 "evalbytes" is available starting in Perl v5.16. To access it, you must say

 "CORE::evalbytes", but you can omit the "CORE::" if the "evalbytes" feature is

 enabled. This is enabled automatically with a "use v5.16" (or higher) declaration in

 the current scope.

 exec LIST

 exec PROGRAM LIST

 The "exec" function executes a system command and never returns; use "system" instead

 of "exec" if you want it to return. It fails and returns false only if the command

 does not exist and it is executed directly instead of via your system's command shell

 (see below).

 Since it's a common mistake to use "exec" instead of "system", Perl warns you if

 "exec" is called in void context and if there is a following statement that isn't

 "die", "warn", or "exit" (if warnings are enabled--but you always do that, right?).

 If you really want to follow an "exec" with some other statement, you can use one of

 these styles to avoid the warning:

 exec ('foo') or print STDERR "couldn't exec foo: $!";

 { exec ('foo') }; print STDERR "couldn't exec foo: $!"; Page 40/182

 If there is more than one argument in LIST, this calls execvp(3) with the arguments in

 LIST. If there is only one element in LIST, the argument is checked for shell

 metacharacters, and if there are any, the entire argument is passed to the system's

 command shell for parsing (this is "/bin/sh -c" on Unix platforms, but varies on other

 platforms). If there are no shell metacharacters in the argument, it is split into

 words and passed directly to "execvp", which is more efficient. Examples:

 exec '/bin/echo', 'Your arguments are: ', @ARGV;

 exec "sort $outfile | uniq";

 If you don't really want to execute the first argument, but want to lie to the program

 you are executing about its own name, you can specify the program you actually want to

 run as an "indirect object" (without a comma) in front of the LIST, as in "exec

 PROGRAM LIST". (This always forces interpretation of the LIST as a multivalued list,

 even if there is only a single scalar in the list.) Example:

 my $shell = '/bin/csh';

 exec $shell '-sh'; # pretend it's a login shell

 or, more directly,

 exec {'/bin/csh'} '-sh'; # pretend it's a login shell

 When the arguments get executed via the system shell, results are subject to its

 quirks and capabilities. See "`STRING`" in perlop for details.

 Using an indirect object with "exec" or "system" is also more secure. This usage

 (which also works fine with "system") forces interpretation of the arguments as a

 multivalued list, even if the list had just one argument. That way you're safe from

 the shell expanding wildcards or splitting up words with whitespace in them.

 my @args = ("echo surprise");

 exec @args; # subject to shell escapes

 # if @args == 1

 exec { $args[0] } @args; # safe even with one-arg list

 The first version, the one without the indirect object, ran the echo program, passing

 it "surprise" an argument. The second version didn't; it tried to run a program named

 "echo surprise", didn't find it, and set $? to a non-zero value indicating failure.

 On Windows, only the "exec PROGRAM LIST" indirect object syntax will reliably avoid

 using the shell; "exec LIST", even with more than one element, will fall back to the

 shell if the first spawn fails. Page 41/182

 Perl attempts to flush all files opened for output before the exec, but this may not

 be supported on some platforms (see perlport). To be safe, you may need to set $|

 ($AUTOFLUSH in English) or call the "autoflush" method of "IO::Handle" on any open

 handles to avoid lost output.

 Note that "exec" will not call your "END" blocks, nor will it invoke "DESTROY" methods

 on your objects.

 Portability issues: "exec" in perlport.

 exists EXPR

 Given an expression that specifies an element of a hash, returns true if the specified

 element in the hash has ever been initialized, even if the corresponding value is

 undefined.

 print "Exists\n" if exists $hash{$key};

 print "Defined\n" if defined $hash{$key};

 print "True\n" if $hash{$key};

 exists may also be called on array elements, but its behavior is much less obvious and

 is strongly tied to the use of "delete" on arrays.

 WARNING: Calling "exists" on array values is strongly discouraged. The notion of

 deleting or checking the existence of Perl array elements is not conceptually

 coherent, and can lead to surprising behavior.

 print "Exists\n" if exists $array[$index];

 print "Defined\n" if defined $array[$index];

 print "True\n" if $array[$index];

 A hash or array element can be true only if it's defined and defined only if it

 exists, but the reverse doesn't necessarily hold true.

 Given an expression that specifies the name of a subroutine, returns true if the

 specified subroutine has ever been declared, even if it is undefined. Mentioning a

 subroutine name for exists or defined does not count as declaring it. Note that a

 subroutine that does not exist may still be callable: its package may have an

 "AUTOLOAD" method that makes it spring into existence the first time that it is

 called; see perlsub.

 print "Exists\n" if exists &subroutine;

 print "Defined\n" if defined &subroutine;

 Note that the EXPR can be arbitrarily complicated as long as the final operation is a Page 42/182

 hash or array key lookup or subroutine name:

 if (exists $ref->{A}->{B}->{$key}) { }

 if (exists $hash{A}{B}{$key}) { }

 if (exists $ref->{A}->{B}->[$ix]) { }

 if (exists $hash{A}{B}[$ix]) { }

 if (exists &{$ref->{A}{B}{$key}}) { }

 Although the most deeply nested array or hash element will not spring into existence

 just because its existence was tested, any intervening ones will. Thus "$ref->{"A"}"

 and "$ref->{"A"}->{"B"}" will spring into existence due to the existence test for the

 $key element above. This happens anywhere the arrow operator is used, including even

 here:

 undef $ref;

 if (exists $ref->{"Some key"}) { }

 print $ref; # prints HASH(0x80d3d5c)

 Use of a subroutine call, rather than a subroutine name, as an argument to "exists" is

 an error.

 exists ⊂ # OK

 exists &sub(); # Error

 exit EXPR

 exit

 Evaluates EXPR and exits immediately with that value. Example:

 my $ans = <STDIN>;

 exit 0 if $ans =~ /^[Xx]/;

 See also "die". If EXPR is omitted, exits with 0 status. The only universally

 recognized values for EXPR are 0 for success and 1 for error; other values are subject

 to interpretation depending on the environment in which the Perl program is running.

 For example, exiting 69 (EX_UNAVAILABLE) from a sendmail incoming-mail filter will

 cause the mailer to return the item undelivered, but that's not true everywhere.

 Don't use "exit" to abort a subroutine if there's any chance that someone might want

 to trap whatever error happened. Use "die" instead, which can be trapped by an

 "eval".

 The "exit" function does not always exit immediately. It calls any defined "END"

 routines first, but these "END" routines may not themselves abort the exit. Likewise Page 43/182

 any object destructors that need to be called are called before the real exit. "END"

 routines and destructors can change the exit status by modifying $?. If this is a

 problem, you can call "POSIX::_exit($status)" to avoid "END" and destructor

 processing. See perlmod for details.

 Portability issues: "exit" in perlport.

 exp EXPR

 exp Returns e (the natural logarithm base) to the power of EXPR. If EXPR is omitted,

 gives "exp($_)".

 fc EXPR

 fc Returns the casefolded version of EXPR. This is the internal function implementing

 the "\F" escape in double-quoted strings.

 Casefolding is the process of mapping strings to a form where case differences are

 erased; comparing two strings in their casefolded form is effectively a way of asking

 if two strings are equal, regardless of case.

 Roughly, if you ever found yourself writing this

 lc($this) eq lc($that) # Wrong!

 # or

 uc($this) eq uc($that) # Also wrong!

 # or

 $this =~ /^\Q$that\E\z/i # Right!

 Now you can write

 fc($this) eq fc($that)

 And get the correct results.

 Perl only implements the full form of casefolding, but you can access the simple folds

 using "casefold()" in Unicode::UCD and "prop_invmap()" in Unicode::UCD. For further

 information on casefolding, refer to the Unicode Standard, specifically sections 3.13

 "Default Case Operations", 4.2 "Case-Normative", and 5.18 "Case Mappings", available

 at <https://www.unicode.org/versions/latest/>, as well as the Case Charts available at

 <https://www.unicode.org/charts/case/>.

 If EXPR is omitted, uses $_.

 This function behaves the same way under various pragmas, such as within

 "use?feature?'unicode_strings", as "lc" does, with the single exception of "fc" of

 LATIN CAPITAL LETTER SHARP S (U+1E9E) within the scope of "use?locale". The foldcase Page 44/182

 of this character would normally be "ss", but as explained in the "lc" section, case

 changes that cross the 255/256 boundary are problematic under locales, and are hence

 prohibited. Therefore, this function under locale returns instead the string

 "\x{17F}\x{17F}", which is the LATIN SMALL LETTER LONG S. Since that character itself

 folds to "s", the string of two of them together should be equivalent to a single

 U+1E9E when foldcased.

 While the Unicode Standard defines two additional forms of casefolding, one for Turkic

 languages and one that never maps one character into multiple characters, these are

 not provided by the Perl core. However, the CPAN module "Unicode::Casing" may be used

 to provide an implementation.

 "fc" is available only if the "fc" feature is enabled or if it is prefixed with

 "CORE::". The "fc" feature is enabled automatically with a "use v5.16" (or higher)

 declaration in the current scope.

 fcntl FILEHANDLE,FUNCTION,SCALAR

 Implements the fcntl(2) function. You'll probably have to say

 use Fcntl;

 first to get the correct constant definitions. Argument processing and value returned

 work just like "ioctl" below. For example:

 use Fcntl;

 my $flags = fcntl($filehandle, F_GETFL, 0)

 or die "Can't fcntl F_GETFL: $!";

 You don't have to check for "defined" on the return from "fcntl". Like "ioctl", it

 maps a 0 return from the system call into "0 but true" in Perl. This string is true

 in boolean context and 0 in numeric context. It is also exempt from the normal

 "Argument "..." isn't numeric" warnings on improper numeric conversions.

 Note that "fcntl" raises an exception if used on a machine that doesn't implement

 fcntl(2). See the Fcntl module or your fcntl(2) manpage to learn what functions are

 available on your system.

 Here's an example of setting a filehandle named $REMOTE to be non-blocking at the

 system level. You'll have to negotiate $| on your own, though.

 use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

 my $flags = fcntl($REMOTE, F_GETFL, 0)

 or die "Can't get flags for the socket: $!\n"; Page 45/182

 fcntl($REMOTE, F_SETFL, $flags | O_NONBLOCK)

 or die "Can't set flags for the socket: $!\n";

 Portability issues: "fcntl" in perlport.

 __FILE__

 A special token that returns the name of the file in which it occurs. It can be

 altered by the mechanism described at "Plain Old Comments (Not!)" in perlsyn.

 fileno FILEHANDLE

 fileno DIRHANDLE

 Returns the file descriptor for a filehandle or directory handle, or undefined if the

 filehandle is not open. If there is no real file descriptor at the OS level, as can

 happen with filehandles connected to memory objects via "open" with a reference for

 the third argument, -1 is returned.

 This is mainly useful for constructing bitmaps for "select" and low-level POSIX tty-

 handling operations. If FILEHANDLE is an expression, the value is taken as an

 indirect filehandle, generally its name.

 You can use this to find out whether two handles refer to the same underlying

 descriptor:

 if (fileno($this) != -1 && fileno($this) == fileno($that)) {

 print "\$this and \$that are dups\n";

 } elsif (fileno($this) != -1 && fileno($that) != -1) {

 print "\$this and \$that have different " .

 "underlying file descriptors\n";

 } else {

 print "At least one of \$this and \$that does " .

 "not have a real file descriptor\n";

 }

 The behavior of "fileno" on a directory handle depends on the operating system. On a

 system with dirfd(3) or similar, "fileno" on a directory handle returns the underlying

 file descriptor associated with the handle; on systems with no such support, it

 returns the undefined value, and sets $! (errno).

 flock FILEHANDLE,OPERATION

 Calls flock(2), or an emulation of it, on FILEHANDLE. Returns true for success, false

 on failure. Produces a fatal error if used on a machine that doesn't implement Page 46/182

 flock(2), fcntl(2) locking, or lockf(3). "flock" is Perl's portable file-locking

 interface, although it locks entire files only, not records.

 Two potentially non-obvious but traditional "flock" semantics are that it waits

 indefinitely until the lock is granted, and that its locks are merely advisory. Such

 discretionary locks are more flexible, but offer fewer guarantees. This means that

 programs that do not also use "flock" may modify files locked with "flock". See

 perlport, your port's specific documentation, and your system-specific local manpages

 for details. It's best to assume traditional behavior if you're writing portable

 programs. (But if you're not, you should as always feel perfectly free to write for

 your own system's idiosyncrasies (sometimes called "features"). Slavish adherence to

 portability concerns shouldn't get in the way of your getting your job done.)

 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with LOCK_NB.

 These constants are traditionally valued 1, 2, 8 and 4, but you can use the symbolic

 names if you import them from the Fcntl module, either individually, or as a group

 using the ":flock" tag. LOCK_SH requests a shared lock, LOCK_EX requests an exclusive

 lock, and LOCK_UN releases a previously requested lock. If LOCK_NB is bitwise-or'ed

 with LOCK_SH or LOCK_EX, then "flock" returns immediately rather than blocking waiting

 for the lock; check the return status to see if you got it.

 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE before

 locking or unlocking it.

 Note that the emulation built with lockf(3) doesn't provide shared locks, and it

 requires that FILEHANDLE be open with write intent. These are the semantics that

 lockf(3) implements. Most if not all systems implement lockf(3) in terms of fcntl(2)

 locking, though, so the differing semantics shouldn't bite too many people.

 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE be open with

 read intent to use LOCK_SH and requires that it be open with write intent to use

 LOCK_EX.

 Note also that some versions of "flock" cannot lock things over the network; you would

 need to use the more system-specific "fcntl" for that. If you like you can force Perl

 to ignore your system's flock(2) function, and so provide its own fcntl(2)-based

 emulation, by passing the switch "-Ud_flock" to the Configure program when you

 configure and build a new Perl.

 Here's a mailbox appender for BSD systems. Page 47/182

 # import LOCK_* and SEEK_END constants

 use Fcntl qw(:flock SEEK_END);

 sub lock {

 my ($fh) = @_;

 flock($fh, LOCK_EX) or die "Cannot lock mailbox - $!\n";

 # and, in case we're running on a very old UNIX

 # variant without the modern O_APPEND semantics...

 seek($fh, 0, SEEK_END) or die "Cannot seek - $!\n";

 }

 sub unlock {

 my ($fh) = @_;

 flock($fh, LOCK_UN) or die "Cannot unlock mailbox - $!\n";

 }

 open(my $mbox, ">>", "/usr/spool/mail/$ENV{'USER'}")

 or die "Can't open mailbox: $!";

 lock($mbox);

 print $mbox $msg,"\n\n";

 unlock($mbox);

 On systems that support a real flock(2), locks are inherited across "fork" calls,

 whereas those that must resort to the more capricious fcntl(2) function lose their

 locks, making it seriously harder to write servers.

 See also DB_File for other "flock" examples.

 Portability issues: "flock" in perlport.

 fork

 Does a fork(2) system call to create a new process running the same program at the

 same point. It returns the child pid to the parent process, 0 to the child process,

 or "undef" if the fork is unsuccessful. File descriptors (and sometimes locks on

 those descriptors) are shared, while everything else is copied. On most systems

 supporting fork(2), great care has gone into making it extremely efficient (for

 example, using copy-on-write technology on data pages), making it the dominant

 paradigm for multitasking over the last few decades.

 Perl attempts to flush all files opened for output before forking the child process,

 but this may not be supported on some platforms (see perlport). To be safe, you may Page 48/182

 need to set $| ($AUTOFLUSH in English) or call the "autoflush" method of "IO::Handle"

 on any open handles to avoid duplicate output.

 If you "fork" without ever waiting on your children, you will accumulate zombies. On

 some systems, you can avoid this by setting $SIG{CHLD} to "IGNORE". See also perlipc

 for more examples of forking and reaping moribund children.

 Note that if your forked child inherits system file descriptors like STDIN and STDOUT

 that are actually connected by a pipe or socket, even if you exit, then the remote

 server (such as, say, a CGI script or a backgrounded job launched from a remote shell)

 won't think you're done. You should reopen those to /dev/null if it's any issue.

 On some platforms such as Windows, where the fork(2) system call is not available,

 Perl can be built to emulate "fork" in the Perl interpreter. The emulation is

 designed, at the level of the Perl program, to be as compatible as possible with the

 "Unix" fork(2). However it has limitations that have to be considered in code

 intended to be portable. See perlfork for more details.

 Portability issues: "fork" in perlport.

 format

 Declare a picture format for use by the "write" function. For example:

 format Something =

 Test: @<<<<<<<< @||||| @>>>>>

 $str, $%, '$' . int($num)

 .

 $str = "widget";

 $num = $cost/$quantity;

 $~ = 'Something';

 write;

 See perlform for many details and examples.

 formline PICTURE,LIST

 This is an internal function used by "format"s, though you may call it, too. It

 formats (see perlform) a list of values according to the contents of PICTURE, placing

 the output into the format output accumulator, $^A (or $ACCUMULATOR in English).

 Eventually, when a "write" is done, the contents of $^A are written to some

 filehandle. You could also read $^A and then set $^A back to "". Note that a format

 typically does one "formline" per line of form, but the "formline" function itself Page 49/182

 doesn't care how many newlines are embedded in the PICTURE. This means that the "~"

 and "~~" tokens treat the entire PICTURE as a single line. You may therefore need to

 use multiple formlines to implement a single record format, just like the "format"

 compiler.

 Be careful if you put double quotes around the picture, because an "@" character may

 be taken to mean the beginning of an array name. "formline" always returns true. See

 perlform for other examples.

 If you are trying to use this instead of "write" to capture the output, you may find

 it easier to open a filehandle to a scalar ("open my $fh, ">", \$output") and write to

 that instead.

 getc FILEHANDLE

 getc

 Returns the next character from the input file attached to FILEHANDLE, or the

 undefined value at end of file or if there was an error (in the latter case $! is

 set). If FILEHANDLE is omitted, reads from STDIN. This is not particularly

 efficient. However, it cannot be used by itself to fetch single characters without

 waiting for the user to hit enter. For that, try something more like:

 if ($BSD_STYLE) {

 system "stty cbreak </dev/tty >/dev/tty 2>&1";

 }

 else {

 system "stty", '-icanon', 'eol', "\001";

 }

 my $key = getc(STDIN);

 if ($BSD_STYLE) {

 system "stty -cbreak </dev/tty >/dev/tty 2>&1";

 }

 else {

 system 'stty', 'icanon', 'eol', '^@'; # ASCII NUL

 }

 print "\n";

 Determination of whether $BSD_STYLE should be set is left as an exercise to the

 reader. Page 50/182

 The "POSIX::getattr" function can do this more portably on systems purporting POSIX

 compliance. See also the "Term::ReadKey" module on CPAN.

 getlogin

 This implements the C library function of the same name, which on most systems returns

 the current login from /etc/utmp, if any. If it returns the empty string, use

 "getpwuid".

 my $login = getlogin || getpwuid($<) || "Kilroy";

 Do not consider "getlogin" for authentication: it is not as secure as "getpwuid".

 Portability issues: "getlogin" in perlport.

 getpeername SOCKET

 Returns the packed sockaddr address of the other end of the SOCKET connection.

 use Socket;

 my $hersockaddr = getpeername($sock);

 my ($port, $iaddr) = sockaddr_in($hersockaddr);

 my $herhostname = gethostbyaddr($iaddr, AF_INET);

 my $herstraddr = inet_ntoa($iaddr);

 getpgrp PID

 Returns the current process group for the specified PID. Use a PID of 0 to get the

 current process group for the current process. Will raise an exception if used on a

 machine that doesn't implement getpgrp(2). If PID is omitted, returns the process

 group of the current process. Note that the POSIX version of "getpgrp" does not

 accept a PID argument, so only "PID==0" is truly portable.

 Portability issues: "getpgrp" in perlport.

 getppid

 Returns the process id of the parent process.

 Note for Linux users: Between v5.8.1 and v5.16.0 Perl would work around non-POSIX

 thread semantics the minority of Linux systems (and Debian GNU/kFreeBSD systems) that

 used LinuxThreads, this emulation has since been removed. See the documentation for

 $$ for details.

 Portability issues: "getppid" in perlport.

 getpriority WHICH,WHO

 Returns the current priority for a process, a process group, or a user. (See

 getpriority(2).) Will raise a fatal exception if used on a machine that doesn't Page 51/182

 implement getpriority(2).

 "WHICH" can be any of "PRIO_PROCESS", "PRIO_PGRP" or "PRIO_USER" imported from

 "RESOURCE CONSTANTS" in POSIX.

 Portability issues: "getpriority" in perlport.

 getpwnam NAME

 getgrnam NAME

 gethostbyname NAME

 getnetbyname NAME

 getprotobyname NAME

 getpwuid UID

 getgrgid GID

 getservbyname NAME,PROTO

 gethostbyaddr ADDR,ADDRTYPE

 getnetbyaddr ADDR,ADDRTYPE

 getprotobynumber NUMBER

 getservbyport PORT,PROTO

 getpwent

 getgrent

 gethostent

 getnetent

 getprotoent

 getservent

 setpwent

 setgrent

 sethostent STAYOPEN

 setnetent STAYOPEN

 setprotoent STAYOPEN

 setservent STAYOPEN

 endpwent

 endgrent

 endhostent

 endnetent

 endprotoent Page 52/182

 endservent

 These routines are the same as their counterparts in the system C library. In list

 context, the return values from the various get routines are as follows:

 # 0 1 2 3 4

 my ($name, $passwd, $gid, $members) = getgr*

 my ($name, $aliases, $addrtype, $net) = getnet*

 my ($name, $aliases, $port, $proto) = getserv*

 my ($name, $aliases, $proto) = getproto*

 my ($name, $aliases, $addrtype, $length, @addrs) = gethost*

 my ($name, $passwd, $uid, $gid, $quota,

 $comment, $gcos, $dir, $shell, $expire) = getpw*

 # 5 6 7 8 9

 (If the entry doesn't exist, the return value is a single meaningless true value.)

 The exact meaning of the $gcos field varies but it usually contains the real name of

 the user (as opposed to the login name) and other information pertaining to the user.

 Beware, however, that in many system users are able to change this information and

 therefore it cannot be trusted and therefore the $gcos is tainted (see perlsec). The

 $passwd and $shell, user's encrypted password and login shell, are also tainted, for

 the same reason.

 In scalar context, you get the name, unless the function was a lookup by name, in

 which case you get the other thing, whatever it is. (If the entry doesn't exist you

 get the undefined value.) For example:

 my $uid = getpwnam($name);

 my $name = getpwuid($num);

 my $name = getpwent();

 my $gid = getgrnam($name);

 my $name = getgrgid($num);

 my $name = getgrent();

 # etc.

 In getpw*() the fields $quota, $comment, and $expire are special in that they are

 unsupported on many systems. If the $quota is unsupported, it is an empty scalar. If

 it is supported, it usually encodes the disk quota. If the $comment field is

 unsupported, it is an empty scalar. If it is supported it usually encodes some Page 53/182

 administrative comment about the user. In some systems the $quota field may be

 $change or $age, fields that have to do with password aging. In some systems the

 $comment field may be $class. The $expire field, if present, encodes the expiration

 period of the account or the password. For the availability and the exact meaning of

 these fields in your system, please consult getpwnam(3) and your system's pwd.h file.

 You can also find out from within Perl what your $quota and $comment fields mean and

 whether you have the $expire field by using the "Config" module and the values

 "d_pwquota", "d_pwage", "d_pwchange", "d_pwcomment", and "d_pwexpire". Shadow

 password files are supported only if your vendor has implemented them in the intuitive

 fashion that calling the regular C library routines gets the shadow versions if you're

 running under privilege or if there exists the shadow(3) functions as found in System

 V (this includes Solaris and Linux). Those systems that implement a proprietary

 shadow password facility are unlikely to be supported.

 The $members value returned by getgr*() is a space-separated list of the login names

 of the members of the group.

 For the gethost*() functions, if the "h_errno" variable is supported in C, it will be

 returned to you via $? if the function call fails. The @addrs value returned by a

 successful call is a list of raw addresses returned by the corresponding library call.

 In the Internet domain, each address is four bytes long; you can unpack it by saying

 something like:

 my ($w,$x,$y,$z) = unpack('W4',$addr[0]);

 The Socket library makes this slightly easier:

 use Socket;

 my $iaddr = inet_aton("127.1"); # or whatever address

 my $name = gethostbyaddr($iaddr, AF_INET);

 # or going the other way

 my $straddr = inet_ntoa($iaddr);

 In the opposite way, to resolve a hostname to the IP address you can write this:

 use Socket;

 my $packed_ip = gethostbyname("www.perl.org");

 my $ip_address;

 if (defined $packed_ip) {

 $ip_address = inet_ntoa($packed_ip); Page 54/182

 }

 Make sure "gethostbyname" is called in SCALAR context and that its return value is

 checked for definedness.

 The "getprotobynumber" function, even though it only takes one argument, has the

 precedence of a list operator, so beware:

 getprotobynumber $number eq 'icmp' # WRONG

 getprotobynumber($number eq 'icmp') # actually means this

 getprotobynumber($number) eq 'icmp' # better this way

 If you get tired of remembering which element of the return list contains which return

 value, by-name interfaces are provided in standard modules: "File::stat",

 "Net::hostent", "Net::netent", "Net::protoent", "Net::servent", "Time::gmtime",

 "Time::localtime", and "User::grent". These override the normal built-ins, supplying

 versions that return objects with the appropriate names for each field. For example:

 use File::stat;

 use User::pwent;

 my $is_his = (stat($filename)->uid == pwent($whoever)->uid);

 Even though it looks as though they're the same method calls (uid), they aren't,

 because a "File::stat" object is different from a "User::pwent" object.

 Many of these functions are not safe in a multi-threaded environment where more than

 one thread can be using them. In particular, functions like "getpwent()" iterate per-

 process and not per-thread, so if two threads are simultaneously iterating, neither

 will get all the records.

 Some systems have thread-safe versions of some of the functions, such as

 "getpwnam_r()" instead of "getpwnam()". There, Perl automatically and invisibly

 substitutes the thread-safe version, without notice. This means that code that safely

 runs on some systems can fail on others that lack the thread-safe versions.

 Portability issues: "getpwnam" in perlport to "endservent" in perlport.

 getsockname SOCKET

 Returns the packed sockaddr address of this end of the SOCKET connection, in case you

 don't know the address because you have several different IPs that the connection

 might have come in on.

 use Socket;

 my $mysockaddr = getsockname($sock); Page 55/182

 my ($port, $myaddr) = sockaddr_in($mysockaddr);

 printf "Connect to %s [%s]\n",

 scalar gethostbyaddr($myaddr, AF_INET),

 inet_ntoa($myaddr);

 getsockopt SOCKET,LEVEL,OPTNAME

 Queries the option named OPTNAME associated with SOCKET at a given LEVEL. Options may

 exist at multiple protocol levels depending on the socket type, but at least the

 uppermost socket level SOL_SOCKET (defined in the "Socket" module) will exist. To

 query options at another level the protocol number of the appropriate protocol

 controlling the option should be supplied. For example, to indicate that an option is

 to be interpreted by the TCP protocol, LEVEL should be set to the protocol number of

 TCP, which you can get using "getprotobyname".

 The function returns a packed string representing the requested socket option, or

 "undef" on error, with the reason for the error placed in $!. Just what is in the

 packed string depends on LEVEL and OPTNAME; consult getsockopt(2) for details. A

 common case is that the option is an integer, in which case the result is a packed

 integer, which you can decode using "unpack" with the "i" (or "I") format.

 Here's an example to test whether Nagle's algorithm is enabled on a socket:

 use Socket qw(:all);

 defined(my $tcp = getprotobyname("tcp"))

 or die "Could not determine the protocol number for tcp";

 # my $tcp = IPPROTO_TCP; # Alternative

 my $packed = getsockopt($socket, $tcp, TCP_NODELAY)

 or die "getsockopt TCP_NODELAY: $!";

 my $nodelay = unpack("I", $packed);

 print "Nagle's algorithm is turned ",

 $nodelay ? "off\n" : "on\n";

 Portability issues: "getsockopt" in perlport.

 glob EXPR

 glob

 In list context, returns a (possibly empty) list of filename expansions on the value

 of EXPR such as the standard Unix shell /bin/csh would do. In scalar context, glob

 iterates through such filename expansions, returning undef when the list is exhausted. Page 56/182

 This is the internal function implementing the "<*.c>" operator, but you can use it

 directly. If EXPR is omitted, $_ is used. The "<*.c>" operator is discussed in more

 detail in "I/O Operators" in perlop.

 Note that "glob" splits its arguments on whitespace and treats each segment as

 separate pattern. As such, "glob("*.c *.h")" matches all files with a .c or .h

 extension. The expression "glob(".* *")" matches all files in the current working

 directory. If you want to glob filenames that might contain whitespace, you'll have

 to use extra quotes around the spacey filename to protect it. For example, to glob

 filenames that have an "e" followed by a space followed by an "f", use one of:

 my @spacies = <"*e f*">;

 my @spacies = glob '"*e f*"';

 my @spacies = glob q("*e f*");

 If you had to get a variable through, you could do this:

 my @spacies = glob "'*${var}e f*'";

 my @spacies = glob qq("*${var}e f*");

 If non-empty braces are the only wildcard characters used in the "glob", no filenames

 are matched, but potentially many strings are returned. For example, this produces

 nine strings, one for each pairing of fruits and colors:

 my @many = glob "{apple,tomato,cherry}={green,yellow,red}";

 This operator is implemented using the standard "File::Glob" extension. See

 File::Glob for details, including "bsd_glob", which does not treat whitespace as a

 pattern separator.

 If a "glob" expression is used as the condition of a "while" or "for" loop, then it

 will be implicitly assigned to $_. If either a "glob" expression or an explicit

 assignment of a "glob" expression to a scalar is used as a "while"/"for" condition,

 then the condition actually tests for definedness of the expression's value, not for

 its regular truth value.

 Portability issues: "glob" in perlport.

 gmtime EXPR

 gmtime

 Works just like "localtime", but the returned values are localized for the standard

 Greenwich time zone.

 Note: When called in list context, $isdst, the last value returned by gmtime, is Page 57/182

 always 0. There is no Daylight Saving Time in GMT.

 Portability issues: "gmtime" in perlport.

 goto LABEL

 goto EXPR

 goto &NAME

 The "goto LABEL" form finds the statement labeled with LABEL and resumes execution

 there. It can't be used to get out of a block or subroutine given to "sort". It can

 be used to go almost anywhere else within the dynamic scope, including out of

 subroutines, but it's usually better to use some other construct such as "last" or

 "die". The author of Perl has never felt the need to use this form of "goto" (in

 Perl, that is; C is another matter). (The difference is that C does not offer named

 loops combined with loop control. Perl does, and this replaces most structured uses

 of "goto" in other languages.)

 The "goto EXPR" form expects to evaluate "EXPR" to a code reference or a label name.

 If it evaluates to a code reference, it will be handled like "goto &NAME", below.

 This is especially useful for implementing tail recursion via "goto __SUB__".

 If the expression evaluates to a label name, its scope will be resolved dynamically.

 This allows for computed "goto"s per FORTRAN, but isn't necessarily recommended if

 you're optimizing for maintainability:

 goto ("FOO", "BAR", "GLARCH")[$i];

 As shown in this example, "goto EXPR" is exempt from the "looks like a function" rule.

 A pair of parentheses following it does not (necessarily) delimit its argument.

 "goto("NE")."XT"" is equivalent to "goto NEXT". Also, unlike most named operators,

 this has the same precedence as assignment.

 Use of "goto LABEL" or "goto EXPR" to jump into a construct is deprecated and will

 issue a warning. Even then, it may not be used to go into any construct that requires

 initialization, such as a subroutine, a "foreach" loop, or a "given" block. In

 general, it may not be used to jump into the parameter of a binary or list operator,

 but it may be used to jump into the first parameter of a binary operator. (The "="

 assignment operator's "first" operand is its right-hand operand.) It also can't be

 used to go into a construct that is optimized away.

 The "goto &NAME" form is quite different from the other forms of "goto". In fact, it

 isn't a goto in the normal sense at all, and doesn't have the stigma associated with Page 58/182

 other gotos. Instead, it exits the current subroutine (losing any changes set by

 "local") and immediately calls in its place the named subroutine using the current

 value of @_. This is used by "AUTOLOAD" subroutines that wish to load another

 subroutine and then pretend that the other subroutine had been called in the first

 place (except that any modifications to @_ in the current subroutine are propagated to

 the other subroutine.) After the "goto", not even "caller" will be able to tell that

 this routine was called first.

 NAME needn't be the name of a subroutine; it can be a scalar variable containing a

 code reference or a block that evaluates to a code reference.

 grep BLOCK LIST

 grep EXPR,LIST

 This is similar in spirit to, but not the same as, grep(1) and its relatives. In

 particular, it is not limited to using regular expressions.

 Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each

 element) and returns the list value consisting of those elements for which the

 expression evaluated to true. In scalar context, returns the number of times the

 expression was true.

 my @foo = grep(!/^#/, @bar); # weed out comments

 or equivalently,

 my @foo = grep {!/^#/} @bar; # weed out comments

 Note that $_ is an alias to the list value, so it can be used to modify the elements

 of the LIST. While this is useful and supported, it can cause bizarre results if the

 elements of LIST are not variables. Similarly, grep returns aliases into the original

 list, much as a for loop's index variable aliases the list elements. That is,

 modifying an element of a list returned by grep (for example, in a "foreach", "map" or

 another "grep") actually modifies the element in the original list. This is usually

 something to be avoided when writing clear code.

 See also "map" for a list composed of the results of the BLOCK or EXPR.

 hex EXPR

 hex Interprets EXPR as a hex string and returns the corresponding numeric value. If EXPR

 is omitted, uses $_.

 print hex '0xAf'; # prints '175'

 print hex 'aF'; # same Page 59/182

 $valid_input =~ /\A(?:0?[xX])?(?:_?[0-9a-fA-F])*\z/

 A hex string consists of hex digits and an optional "0x" or "x" prefix. Each hex

 digit may be preceded by a single underscore, which will be ignored. Any other

 character triggers a warning and causes the rest of the string to be ignored (even

 leading whitespace, unlike "oct"). Only integers can be represented, and integer

 overflow triggers a warning.

 To convert strings that might start with any of 0, "0x", or "0b", see "oct". To

 present something as hex, look into "printf", "sprintf", and "unpack".

 import LIST

 There is no builtin "import" function. It is just an ordinary method (subroutine)

 defined (or inherited) by modules that wish to export names to another module. The

 "use" function calls the "import" method for the package used. See also "use",

 perlmod, and Exporter.

 index STR,SUBSTR,POSITION

 index STR,SUBSTR

 The index function searches for one string within another, but without the wildcard-

 like behavior of a full regular-expression pattern match. It returns the position of

 the first occurrence of SUBSTR in STR at or after POSITION. If POSITION is omitted,

 starts searching from the beginning of the string. POSITION before the beginning of

 the string or after its end is treated as if it were the beginning or the end,

 respectively. POSITION and the return value are based at zero. If the substring is

 not found, "index" returns -1.

 Find characters or strings:

 index("Perl is great", "P"); # Returns 0

 index("Perl is great", "g"); # Returns 8

 index("Perl is great", "great"); # Also returns 8

 Attempting to find something not there:

 index("Perl is great", "Z"); # Returns -1 (not found)

 Using an offset to find the second occurrence:

 index("Perl is great", "e", 5); # Returns 10

 int EXPR

 int Returns the integer portion of EXPR. If EXPR is omitted, uses $_. You should not use

 this function for rounding: one because it truncates towards 0, and two because Page 60/182

 machine representations of floating-point numbers can sometimes produce

 counterintuitive results. For example, "int(-6.725/0.025)" produces -268 rather than

 the correct -269; that's because it's really more like -268.99999999999994315658

 instead. Usually, the "sprintf", "printf", or the "POSIX::floor" and "POSIX::ceil"

 functions will serve you better than will "int".

 ioctl FILEHANDLE,FUNCTION,SCALAR

 Implements the ioctl(2) function. You'll probably first have to say

 require "sys/ioctl.ph"; # probably in

 # $Config{archlib}/sys/ioctl.ph

 to get the correct function definitions. If sys/ioctl.ph doesn't exist or doesn't

 have the correct definitions you'll have to roll your own, based on your C header

 files such as <sys/ioctl.h>. (There is a Perl script called h2ph that comes with the

 Perl kit that may help you in this, but it's nontrivial.) SCALAR will be read and/or

 written depending on the FUNCTION; a C pointer to the string value of SCALAR will be

 passed as the third argument of the actual "ioctl" call. (If SCALAR has no string

 value but does have a numeric value, that value will be passed rather than a pointer

 to the string value. To guarantee this to be true, add a 0 to the scalar before using

 it.) The "pack" and "unpack" functions may be needed to manipulate the values of

 structures used by "ioctl".

 The return value of "ioctl" (and "fcntl") is as follows:

 if OS returns: then Perl returns:

 -1 undefined value

 0 string "0 but true"

 anything else that number

 Thus Perl returns true on success and false on failure, yet you can still easily

 determine the actual value returned by the operating system:

 my $retval = ioctl(...) || -1;

 printf "System returned %d\n", $retval;

 The special string "0 but true" is exempt from "Argument "..." isn't numeric" warnings

 on improper numeric conversions.

 Portability issues: "ioctl" in perlport.

 join EXPR,LIST

 Joins the separate strings of LIST into a single string with fields separated by the Page 61/182

 value of EXPR, and returns that new string. Example:

 my $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);

 Beware that unlike "split", "join" doesn't take a pattern as its first argument.

 Compare "split".

 keys HASH

 keys ARRAY

 Called in list context, returns a list consisting of all the keys of the named hash,

 or in Perl 5.12 or later only, the indices of an array. Perl releases prior to 5.12

 will produce a syntax error if you try to use an array argument. In scalar context,

 returns the number of keys or indices.

 Hash entries are returned in an apparently random order. The actual random order is

 specific to a given hash; the exact same series of operations on two hashes may result

 in a different order for each hash. Any insertion into the hash may change the order,

 as will any deletion, with the exception that the most recent key returned by "each"

 or "keys" may be deleted without changing the order. So long as a given hash is

 unmodified you may rely on "keys", "values" and "each" to repeatedly return the same

 order as each other. See "Algorithmic Complexity Attacks" in perlsec for details on

 why hash order is randomized. Aside from the guarantees provided here the exact

 details of Perl's hash algorithm and the hash traversal order are subject to change in

 any release of Perl. Tied hashes may behave differently to Perl's hashes with respect

 to changes in order on insertion and deletion of items.

 As a side effect, calling "keys" resets the internal iterator of the HASH or ARRAY

 (see "each") before yielding the keys. In particular, calling "keys" in void context

 resets the iterator with no other overhead.

 Here is yet another way to print your environment:

 my @keys = keys %ENV;

 my @values = values %ENV;

 while (@keys) {

 print pop(@keys), '=', pop(@values), "\n";

 }

 or how about sorted by key:

 foreach my $key (sort(keys %ENV)) {

 print $key, '=', $ENV{$key}, "\n"; Page 62/182

 }

 The returned values are copies of the original keys in the hash, so modifying them

 will not affect the original hash. Compare "values".

 To sort a hash by value, you'll need to use a "sort" function. Here's a descending

 numeric sort of a hash by its values:

 foreach my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {

 printf "%4d %s\n", $hash{$key}, $key;

 }

 Used as an lvalue, "keys" allows you to increase the number of hash buckets allocated

 for the given hash. This can gain you a measure of efficiency if you know the hash is

 going to get big. (This is similar to pre-extending an array by assigning a larger

 number to $#array.) If you say

 keys %hash = 200;

 then %hash will have at least 200 buckets allocated for it--256 of them, in fact,

 since it rounds up to the next power of two. These buckets will be retained even if

 you do "%hash = ()", use "undef %hash" if you want to free the storage while %hash is

 still in scope. You can't shrink the number of buckets allocated for the hash using

 "keys" in this way (but you needn't worry about doing this by accident, as trying has

 no effect). "keys @array" in an lvalue context is a syntax error.

 Starting with Perl 5.14, an experimental feature allowed "keys" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 To avoid confusing would-be users of your code who are running earlier versions of

 Perl with mysterious syntax errors, put this sort of thing at the top of your file to

 signal that your code will work only on Perls of a recent vintage:

 use 5.012; # so keys/values/each work on arrays

 See also "each", "values", and "sort".

 kill SIGNAL, LIST

 kill SIGNAL

 Sends a signal to a list of processes. Returns the number of arguments that were

 successfully used to signal (which is not necessarily the same as the number of

 processes actually killed, e.g. where a process group is killed).

 my $cnt = kill 'HUP', $child1, $child2; Page 63/182

 kill 'KILL', @goners;

 SIGNAL may be either a signal name (a string) or a signal number. A signal name may

 start with a "SIG" prefix, thus "FOO" and "SIGFOO" refer to the same signal. The

 string form of SIGNAL is recommended for portability because the same signal may have

 different numbers in different operating systems.

 A list of signal names supported by the current platform can be found in

 $Config{sig_name}, which is provided by the "Config" module. See Config for more

 details.

 A negative signal name is the same as a negative signal number, killing process groups

 instead of processes. For example, "kill '-KILL', $pgrp" and "kill -9, $pgrp" will

 send "SIGKILL" to the entire process group specified. That means you usually want to

 use positive not negative signals.

 If SIGNAL is either the number 0 or the string "ZERO" (or "SIGZERO"), no signal is

 sent to the process, but "kill" checks whether it's possible to send a signal to it

 (that means, to be brief, that the process is owned by the same user, or we are the

 super-user). This is useful to check that a child process is still alive (even if

 only as a zombie) and hasn't changed its UID. See perlport for notes on the

 portability of this construct.

 The behavior of kill when a PROCESS number is zero or negative depends on the

 operating system. For example, on POSIX-conforming systems, zero will signal the

 current process group, -1 will signal all processes, and any other negative PROCESS

 number will act as a negative signal number and kill the entire process group

 specified.

 If both the SIGNAL and the PROCESS are negative, the results are undefined. A warning

 may be produced in a future version.

 See "Signals" in perlipc for more details.

 On some platforms such as Windows where the fork(2) system call is not available, Perl

 can be built to emulate "fork" at the interpreter level. This emulation has

 limitations related to kill that have to be considered, for code running on Windows

 and in code intended to be portable.

 See perlfork for more details.

 If there is no LIST of processes, no signal is sent, and the return value is 0. This

 form is sometimes used, however, because it causes tainting checks to be run. But see Page 64/182

 "Laundering and Detecting Tainted Data" in perlsec.

 Portability issues: "kill" in perlport.

 last LABEL

 last EXPR

 last

 The "last" command is like the "break" statement in C (as used in loops); it

 immediately exits the loop in question. If the LABEL is omitted, the command refers

 to the innermost enclosing loop. The "last EXPR" form, available starting in Perl

 5.18.0, allows a label name to be computed at run time, and is otherwise identical to

 "last LABEL". The "continue" block, if any, is not executed:

 LINE: while (<STDIN>) {

 last LINE if /^$/; # exit when done with header

 #...

 }

 "last" cannot return a value from a block that typically returns a value, such as

 "eval {}", "sub {}", or "do {}". It will perform its flow control behavior, which

 precludes any return value. It should not be used to exit a "grep" or "map" operation.

 Note that a block by itself is semantically identical to a loop that executes once.

 Thus "last" can be used to effect an early exit out of such a block.

 See also "continue" for an illustration of how "last", "next", and "redo" work.

 Unlike most named operators, this has the same precedence as assignment. It is also

 exempt from the looks-like-a-function rule, so "last ("foo")."bar"" will cause "bar"

 to be part of the argument to "last".

 lc EXPR

 lc Returns a lowercased version of EXPR. This is the internal function implementing the

 "\L" escape in double-quoted strings.

 If EXPR is omitted, uses $_.

 What gets returned depends on several factors:

 If "use bytes" is in effect:

 The results follow ASCII rules. Only the characters "A-Z" change, to "a-z"

 respectively.

 Otherwise, if "use locale" for "LC_CTYPE" is in effect:

 Respects current "LC_CTYPE" locale for code points < 256; and uses Unicode rules Page 65/182

 for the remaining code points (this last can only happen if the UTF8 flag is also

 set). See perllocale.

 Starting in v5.20, Perl uses full Unicode rules if the locale is UTF-8.

 Otherwise, there is a deficiency in this scheme, which is that case changes that

 cross the 255/256 boundary are not well-defined. For example, the lower case of

 LATIN CAPITAL LETTER SHARP S (U+1E9E) in Unicode rules is U+00DF (on ASCII

 platforms). But under "use locale" (prior to v5.20 or not a UTF-8 locale), the

 lower case of U+1E9E is itself, because 0xDF may not be LATIN SMALL LETTER SHARP S

 in the current locale, and Perl has no way of knowing if that character even

 exists in the locale, much less what code point it is. Perl returns a result that

 is above 255 (almost always the input character unchanged), for all instances (and

 there aren't many) where the 255/256 boundary would otherwise be crossed; and

 starting in v5.22, it raises a locale warning.

 Otherwise, If EXPR has the UTF8 flag set:

 Unicode rules are used for the case change.

 Otherwise, if "use feature 'unicode_strings'" or "use locale ':not_characters'" is in

 effect:

 Unicode rules are used for the case change.

 Otherwise:

 ASCII rules are used for the case change. The lowercase of any character outside

 the ASCII range is the character itself.

 lcfirst EXPR

 lcfirst

 Returns the value of EXPR with the first character lowercased. This is the internal

 function implementing the "\l" escape in double-quoted strings.

 If EXPR is omitted, uses $_.

 This function behaves the same way under various pragmas, such as in a locale, as "lc"

 does.

 length EXPR

 length

 Returns the length in characters of the value of EXPR. If EXPR is omitted, returns

 the length of $_. If EXPR is undefined, returns "undef".

 This function cannot be used on an entire array or hash to find out how many elements Page 66/182

 these have. For that, use "scalar @array" and "scalar keys %hash", respectively.

 Like all Perl character operations, "length" normally deals in logical characters, not

 physical bytes. For how many bytes a string encoded as UTF-8 would take up, use

 "length(Encode::encode('UTF-8', EXPR))" (you'll have to "use Encode" first). See

 Encode and perlunicode.

 __LINE__

 A special token that compiles to the current line number. It can be altered by the

 mechanism described at "Plain Old Comments (Not!)" in perlsyn.

 link OLDFILE,NEWFILE

 Creates a new filename linked to the old filename. Returns true for success, false

 otherwise.

 Portability issues: "link" in perlport.

 listen SOCKET,QUEUESIZE

 Does the same thing that the listen(2) system call does. Returns true if it

 succeeded, false otherwise. See the example in "Sockets: Client/Server Communication"

 in perlipc.

 local EXPR

 You really probably want to be using "my" instead, because "local" isn't what most

 people think of as "local". See "Private Variables via my()" in perlsub for details.

 A local modifies the listed variables to be local to the enclosing block, file, or

 eval. If more than one value is listed, the list must be placed in parentheses. See

 "Temporary Values via local()" in perlsub for details, including issues with tied

 arrays and hashes.

 The "delete local EXPR" construct can also be used to localize the deletion of

 array/hash elements to the current block. See "Localized deletion of elements of

 composite types" in perlsub.

 localtime EXPR

 localtime

 Converts a time as returned by the time function to a 9-element list with the time

 analyzed for the local time zone. Typically used as follows:

 # 0 1 2 3 4 5 6 7 8

 my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =

 localtime(time); Page 67/182

 All list elements are numeric and come straight out of the C `struct tm'. $sec, $min,

 and $hour are the seconds, minutes, and hours of the specified time.

 $mday is the day of the month and $mon the month in the range 0..11, with 0 indicating

 January and 11 indicating December. This makes it easy to get a month name from a

 list:

 my @abbr = qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec);

 print "$abbr[$mon] $mday";

 # $mon=9, $mday=18 gives "Oct 18"

 $year contains the number of years since 1900. To get a 4-digit year write:

 $year += 1900;

 To get the last two digits of the year (e.g., "01" in 2001) do:

 $year = sprintf("%02d", $year % 100);

 $wday is the day of the week, with 0 indicating Sunday and 3 indicating Wednesday.

 $yday is the day of the year, in the range 0..364 (or 0..365 in leap years.)

 $isdst is true if the specified time occurs when Daylight Saving Time is in effect,

 false otherwise.

 If EXPR is omitted, "localtime" uses the current time (as returned by "time").

 In scalar context, "localtime" returns the ctime(3) value:

 my $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"

 This scalar value is always in English, and is not locale-dependent. To get similar

 but locale-dependent date strings, try for example:

 use POSIX qw(strftime);

 my $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;

 # or for GMT formatted appropriately for your locale:

 my $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

 C$now_string> will be formatted according to the current LC_TIME locale the program or

 thread is running in. See perllocale for how to set up and change that locale. Note

 that %a and %b, the short forms of the day of the week and the month of the year, may

 not necessarily be three characters wide.

 The Time::gmtime and Time::localtime modules provide a convenient, by-name access

 mechanism to the "gmtime" and "localtime" functions, respectively.

 For a comprehensive date and time representation look at the DateTime module on CPAN.

 For GMT instead of local time use the "gmtime" builtin. Page 68/182

 See also the "Time::Local" module (for converting seconds, minutes, hours, and such

 back to the integer value returned by "time"), and the POSIX module's "mktime"

 function.

 Portability issues: "localtime" in perlport.

 lock THING

 This function places an advisory lock on a shared variable or referenced object

 contained in THING until the lock goes out of scope.

 The value returned is the scalar itself, if the argument is a scalar, or a reference,

 if the argument is a hash, array or subroutine.

 "lock" is a "weak keyword"; this means that if you've defined a function by this name

 (before any calls to it), that function will be called instead. If you are not under

 "use threads::shared" this does nothing. See threads::shared.

 log EXPR

 log Returns the natural logarithm (base e) of EXPR. If EXPR is omitted, returns the log

 of $_. To get the log of another base, use basic algebra: The base-N log of a number

 is equal to the natural log of that number divided by the natural log of N. For

 example:

 sub log10 {

 my $n = shift;

 return log($n)/log(10);

 }

 See also "exp" for the inverse operation.

 lstat FILEHANDLE

 lstat EXPR

 lstat DIRHANDLE

 lstat

 Does the same thing as the "stat" function (including setting the special "_"

 filehandle) but stats a symbolic link instead of the file the symbolic link points to.

 If symbolic links are unimplemented on your system, a normal "stat" is done. For much

 more detailed information, please see the documentation for "stat".

 If EXPR is omitted, stats $_.

 Portability issues: "lstat" in perlport.

 m// The match operator. See "Regexp Quote-Like Operators" in perlop. Page 69/182

 map BLOCK LIST

 map EXPR,LIST

 Evaluates the BLOCK or EXPR for each element of LIST (locally setting $_ to each

 element) and composes a list of the results of each such evaluation. Each element of

 LIST may produce zero, one, or more elements in the generated list, so the number of

 elements in the generated list may differ from that in LIST. In scalar context,

 returns the total number of elements so generated. In list context, returns the

 generated list.

 my @chars = map(chr, @numbers);

 translates a list of numbers to the corresponding characters.

 my @squares = map { $_ * $_ } @numbers;

 translates a list of numbers to their squared values.

 my @squares = map { $_ > 5 ? ($_ * $_) : () } @numbers;

 shows that number of returned elements can differ from the number of input elements.

 To omit an element, return an empty list (). This could also be achieved by writing

 my @squares = map { $_ * $_ } grep { $_ > 5 } @numbers;

 which makes the intention more clear.

 Map always returns a list, which can be assigned to a hash such that the elements

 become key/value pairs. See perldata for more details.

 my %hash = map { get_a_key_for($_) => $_ } @array;

 is just a funny way to write

 my %hash;

 foreach (@array) {

 $hash{get_a_key_for($_)} = $_;

 }

 Note that $_ is an alias to the list value, so it can be used to modify the elements

 of the LIST. While this is useful and supported, it can cause bizarre results if the

 elements of LIST are not variables. Using a regular "foreach" loop for this purpose

 would be clearer in most cases. See also "grep" for a list composed of those items of

 the original list for which the BLOCK or EXPR evaluates to true.

 "{" starts both hash references and blocks, so "map { ..." could be either the start

 of map BLOCK LIST or map EXPR, LIST. Because Perl doesn't look ahead for the closing

 "}" it has to take a guess at which it's dealing with based on what it finds just Page 70/182

 after the "{". Usually it gets it right, but if it doesn't it won't realize something

 is wrong until it gets to the "}" and encounters the missing (or unexpected) comma.

 The syntax error will be reported close to the "}", but you'll need to change

 something near the "{" such as using a unary "+" or semicolon to give Perl some help:

 my %hash = map { "\L$_" => 1 } @array # perl guesses EXPR. wrong

 my %hash = map { +"\L$_" => 1 } @array # perl guesses BLOCK. right

 my %hash = map {; "\L$_" => 1 } @array # this also works

 my %hash = map { ("\L$_" => 1) } @array # as does this

 my %hash = map { lc($_) => 1 } @array # and this.

 my %hash = map +(lc($_) => 1), @array # this is EXPR and works!

 my %hash = map (lc($_), 1), @array # evaluates to (1, @array)

 or to force an anon hash constructor use "+{":

 my @hashes = map +{ lc($_) => 1 }, @array # EXPR, so needs

 # comma at end

 to get a list of anonymous hashes each with only one entry apiece.

 mkdir FILENAME,MODE

 mkdir FILENAME

 mkdir

 Creates the directory specified by FILENAME, with permissions specified by MODE (as

 modified by "umask"). If it succeeds it returns true; otherwise it returns false and

 sets $! (errno). MODE defaults to 0777 if omitted, and FILENAME defaults to $_ if

 omitted.

 In general, it is better to create directories with a permissive MODE and let the user

 modify that with their "umask" than it is to supply a restrictive MODE and give the

 user no way to be more permissive. The exceptions to this rule are when the file or

 directory should be kept private (mail files, for instance). The documentation for

 "umask" discusses the choice of MODE in more detail.

 Note that according to the POSIX 1003.1-1996 the FILENAME may have any number of

 trailing slashes. Some operating and filesystems do not get this right, so Perl

 automatically removes all trailing slashes to keep everyone happy.

 To recursively create a directory structure, look at the "make_path" function of the

 File::Path module.

 msgctl ID,CMD,ARG Page 71/182

 Calls the System V IPC function msgctl(2). You'll probably have to say

 use IPC::SysV;

 first to get the correct constant definitions. If CMD is "IPC_STAT", then ARG must be

 a variable that will hold the returned "msqid_ds" structure. Returns like "ioctl":

 the undefined value for error, "0 but true" for zero, or the actual return value

 otherwise. See also "SysV IPC" in perlipc and the documentation for "IPC::SysV" and

 "IPC::Semaphore".

 Portability issues: "msgctl" in perlport.

 msgget KEY,FLAGS

 Calls the System V IPC function msgget(2). Returns the message queue id, or "undef"

 on error. See also "SysV IPC" in perlipc and the documentation for "IPC::SysV" and

 "IPC::Msg".

 Portability issues: "msgget" in perlport.

 msgrcv ID,VAR,SIZE,TYPE,FLAGS

 Calls the System V IPC function msgrcv to receive a message from message queue ID into

 variable VAR with a maximum message size of SIZE. Note that when a message is

 received, the message type as a native long integer will be the first thing in VAR,

 followed by the actual message. This packing may be opened with "unpack("l! a*")".

 Taints the variable. Returns true if successful, false on error. See also "SysV IPC"

 in perlipc and the documentation for "IPC::SysV" and "IPC::Msg".

 Portability issues: "msgrcv" in perlport.

 msgsnd ID,MSG,FLAGS

 Calls the System V IPC function msgsnd to send the message MSG to the message queue

 ID. MSG must begin with the native long integer message type, followed by the message

 itself. This kind of packing can be achieved with "pack("l! a*", $type, $message)".

 Returns true if successful, false on error. See also "SysV IPC" in perlipc and the

 documentation for "IPC::SysV" and "IPC::Msg".

 Portability issues: "msgsnd" in perlport.

 my VARLIST

 my TYPE VARLIST

 my VARLIST : ATTRS

 my TYPE VARLIST : ATTRS

 A "my" declares the listed variables to be local (lexically) to the enclosing block, Page 72/182

 file, or "eval". If more than one variable is listed, the list must be placed in

 parentheses.

 Note that with a parenthesised list, "undef" can be used as a dummy placeholder, for

 example to skip assignment of initial values:

 my (undef, $min, $hour) = localtime;

 Redeclaring a variable in the same scope or statement will "shadow" the previous

 declaration, creating a new instance and preventing access to the previous one. This

 is usually undesired and, if warnings are enabled, will result in a warning in the

 "shadow" category.

 The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE may be a

 bareword, a constant declared with "use constant", or "__PACKAGE__". It is currently

 bound to the use of the fields pragma, and attributes are handled using the attributes

 pragma, or starting from Perl 5.8.0 also via the Attribute::Handlers module. See

 "Private Variables via my()" in perlsub for details.

 next LABEL

 next EXPR

 next

 The "next" command is like the "continue" statement in C; it starts the next iteration

 of the loop:

 LINE: while (<STDIN>) {

 next LINE if /^#/; # discard comments

 #...

 }

 Note that if there were a "continue" block on the above, it would get executed even on

 discarded lines. If LABEL is omitted, the command refers to the innermost enclosing

 loop. The "next EXPR" form, available as of Perl 5.18.0, allows a label name to be

 computed at run time, being otherwise identical to "next LABEL".

 "next" cannot return a value from a block that typically returns a value, such as

 "eval {}", "sub {}", or "do {}". It will perform its flow control behavior, which

 precludes any return value. It should not be used to exit a "grep" or "map" operation.

 Note that a block by itself is semantically identical to a loop that executes once.

 Thus "next" will exit such a block early.

 See also "continue" for an illustration of how "last", "next", and "redo" work. Page 73/182

 Unlike most named operators, this has the same precedence as assignment. It is also

 exempt from the looks-like-a-function rule, so "next ("foo")."bar"" will cause "bar"

 to be part of the argument to "next".

 no MODULE VERSION LIST

 no MODULE VERSION

 no MODULE LIST

 no MODULE

 no VERSION

 See the "use" function, of which "no" is the opposite.

 oct EXPR

 oct Interprets EXPR as an octal string and returns the corresponding value. An octal

 string consists of octal digits and, as of Perl 5.33.5, an optional "0o" or "o"

 prefix. Each octal digit may be preceded by a single underscore, which will be

 ignored. (If EXPR happens to start off with "0x" or "x", interprets it as a hex

 string. If EXPR starts off with "0b" or "b", it is interpreted as a binary string.

 Leading whitespace is ignored in all three cases.) The following will handle decimal,

 binary, octal, and hex in standard Perl notation:

 $val = oct($val) if $val =~ /^0/;

 If EXPR is omitted, uses $_. To go the other way (produce a number in octal), use

 "sprintf" or "printf":

 my $dec_perms = (stat("filename"))[2] & 07777;

 my $oct_perm_str = sprintf "%o", $perms;

 The "oct" function is commonly used when a string such as 644 needs to be converted

 into a file mode, for example. Although Perl automatically converts strings into

 numbers as needed, this automatic conversion assumes base 10.

 Leading white space is ignored without warning, as too are any trailing non-digits,

 such as a decimal point ("oct" only handles non-negative integers, not negative

 integers or floating point).

 open FILEHANDLE,MODE,EXPR

 open FILEHANDLE,MODE,EXPR,LIST

 open FILEHANDLE,MODE,REFERENCE

 open FILEHANDLE,EXPR

 open FILEHANDLE Page 74/182

 Associates an internal FILEHANDLE with the external file specified by EXPR. That

 filehandle will subsequently allow you to perform I/O operations on that file, such as

 reading from it or writing to it.

 Instead of a filename, you may specify an external command (plus an optional argument

 list) or a scalar reference, in order to open filehandles on commands or in-memory

 scalars, respectively.

 A thorough reference to "open" follows. For a gentler introduction to the basics of

 "open", see also the perlopentut manual page.

 Working with files

 Most often, "open" gets invoked with three arguments: the required FILEHANDLE

 (usually an empty scalar variable), followed by MODE (usually a literal describing

 the I/O mode the filehandle will use), and then the filename that the new

 filehandle will refer to.

 Simple examples

 Reading from a file:

 open(my $fh, "<", "input.txt")

 or die "Can't open < input.txt: $!";

 # Process every line in input.txt

 while (my $line = <$fh>) {

 #

 # ... do something interesting with $line here ...

 #

 }

 or writing to one:

 open(my $fh, ">", "output.txt")

 or die "Can't open > output.txt: $!";

 print $fh "This line gets printed into output.txt.\n";

 For a summary of common filehandle operations such as these, see "Files and

 I/O" in perlintro.

 About filehandles

 The first argument to "open", labeled FILEHANDLE in this reference, is usually

 a scalar variable. (Exceptions exist, described in "Other considerations",

 below.) If the call to "open" succeeds, then the expression provided as Page 75/182

 FILEHANDLE will get assigned an open filehandle. That filehandle provides an

 internal reference to the specified external file, conveniently stored in a

 Perl variable, and ready for I/O operations such as reading and writing.

 About modes

 When calling "open" with three or more arguments, the second argument --

 labeled MODE here -- defines the open mode. MODE is usually a literal string

 comprising special characters that define the intended I/O role of the

 filehandle being created: whether it's read-only, or read-and-write, and so

 on.

 If MODE is "<", the file is opened for input (read-only). If MODE is ">", the

 file is opened for output, with existing files first being truncated

 ("clobbered") and nonexisting files newly created. If MODE is ">>", the file

 is opened for appending, again being created if necessary.

 You can put a "+" in front of the ">" or "<" to indicate that you want both

 read and write access to the file; thus "+<" is almost always preferred for

 read/write updates--the "+>" mode would clobber the file first. You can't

 usually use either read-write mode for updating textfiles, since they have

 variable-length records. See the -i switch in perlrun for a better approach.

 The file is created with permissions of 0666 modified by the process's "umask"

 value.

 These various prefixes correspond to the fopen(3) modes of "r", "r+", "w",

 "w+", "a", and "a+".

 More examples of different modes in action:

 # Open a file for concatenation

 open(my $log, ">>", "/usr/spool/news/twitlog")

 or warn "Couldn't open log file; discarding input";

 # Open a file for reading and writing

 open(my $dbase, "+<", "dbase.mine")

 or die "Can't open 'dbase.mine' for update: $!";

 Checking the return value

 Open returns nonzero on success, the undefined value otherwise. If the "open"

 involved a pipe, the return value happens to be the pid of the subprocess.

 When opening a file, it's seldom a good idea to continue if the request Page 76/182

 failed, so "open" is frequently used with "die". Even if you want your code to

 do something other than "die" on a failed open, you should still always check

 the return value from opening a file.

 Specifying I/O layers in MODE

 You can use the three-argument form of open to specify I/O layers (sometimes

 referred to as "disciplines") to apply to the new filehandle. These affect how the

 input and output are processed (see open and PerlIO for more details). For

 example:

 open(my $fh, "<:encoding(UTF-8)", $filename)

 || die "Can't open UTF-8 encoded $filename: $!";

 This opens the UTF8-encoded file containing Unicode characters; see perluniintro.

 Note that if layers are specified in the three-argument form, then default layers

 stored in "${^OPEN}" (usually set by the open pragma or the switch "-CioD") are

 ignored. Those layers will also be ignored if you specify a colon with no name

 following it. In that case the default layer for the operating system (:raw on

 Unix, :crlf on Windows) is used.

 On some systems (in general, DOS- and Windows-based systems) "binmode" is

 necessary when you're not working with a text file. For the sake of portability

 it is a good idea always to use it when appropriate, and never to use it when it

 isn't appropriate. Also, people can set their I/O to be by default UTF8-encoded

 Unicode, not bytes.

 Using "undef" for temporary files

 As a special case the three-argument form with a read/write mode and the third

 argument being "undef":

 open(my $tmp, "+>", undef) or die ...

 opens a filehandle to a newly created empty anonymous temporary file. (This

 happens under any mode, which makes "+>" the only useful and sensible mode to

 use.) You will need to "seek" to do the reading.

 Opening a filehandle into an in-memory scalar

 You can open filehandles directly to Perl scalars instead of a file or other

 resource external to the program. To do so, provide a reference to that scalar as

 the third argument to "open", like so:

 open(my $memory, ">", \$var) Page 77/182

 or die "Can't open memory file: $!";

 print $memory "foo!\n"; # output will appear in $var

 To (re)open "STDOUT" or "STDERR" as an in-memory file, close it first:

 close STDOUT;

 open(STDOUT, ">", \$variable)

 or die "Can't open STDOUT: $!";

 The scalars for in-memory files are treated as octet strings: unless the file is

 being opened with truncation the scalar may not contain any code points over 0xFF.

 Opening in-memory files can fail for a variety of reasons. As with any other

 "open", check the return value for success.

 Technical note: This feature works only when Perl is built with PerlIO -- the

 default, except with older (pre-5.16) Perl installations that were configured to

 not include it (e.g. via "Configure -Uuseperlio"). You can see whether your Perl

 was built with PerlIO by running "perl -V:useperlio". If it says 'define', you

 have PerlIO; otherwise you don't.

 See perliol for detailed info on PerlIO.

 Opening a filehandle into a command

 If MODE is "|-", then the filename is interpreted as a command to which output is

 to be piped, and if MODE is "-|", the filename is interpreted as a command that

 pipes output to us. In the two-argument (and one-argument) form, one should

 replace dash ("-") with the command. See "Using open() for IPC" in perlipc for

 more examples of this. (You are not allowed to "open" to a command that pipes

 both in and out, but see IPC::Open2, IPC::Open3, and "Bidirectional Communication

 with Another Process" in perlipc for alternatives.)

 open(my $article_fh, "-|", "caesar <$article") # decrypt

 # article

 or die "Can't start caesar: $!";

 open(my $article_fh, "caesar <$article |") # ditto

 or die "Can't start caesar: $!";

 open(my $out_fh, "|-", "sort >Tmp$$") # $$ is our process id

 or die "Can't start sort: $!";

 In the form of pipe opens taking three or more arguments, if LIST is specified

 (extra arguments after the command name) then LIST becomes arguments to the Page 78/182

 command invoked if the platform supports it. The meaning of "open" with more than

 three arguments for non-pipe modes is not yet defined, but experimental "layers"

 may give extra LIST arguments meaning.

 If you open a pipe on the command "-" (that is, specify either "|-" or "-|" with

 the one- or two-argument forms of "open"), an implicit "fork" is done, so "open"

 returns twice: in the parent process it returns the pid of the child process, and

 in the child process it returns (a defined) 0. Use "defined($pid)" or "//" to

 determine whether the open was successful.

 For example, use either

 my $child_pid = open(my $from_kid, "-|")

 // die "Can't fork: $!";

 or

 my $child_pid = open(my $to_kid, "|-")

 // die "Can't fork: $!";

 followed by

 if ($child_pid) {

 # am the parent:

 # either write $to_kid or else read $from_kid

 ...

 waitpid $child_pid, 0;

 } else {

 # am the child; use STDIN/STDOUT normally

 ...

 exit;

 }

 The filehandle behaves normally for the parent, but I/O to that filehandle is

 piped from/to the STDOUT/STDIN of the child process. In the child process, the

 filehandle isn't opened--I/O happens from/to the new STDOUT/STDIN. Typically this

 is used like the normal piped open when you want to exercise more control over

 just how the pipe command gets executed, such as when running setuid and you don't

 want to have to scan shell commands for metacharacters.

 The following blocks are more or less equivalent:

 open(my $fh, "|tr '[a-z]' '[A-Z]'"); Page 79/182

 open(my $fh, "|-", "tr '[a-z]' '[A-Z]'");

 open(my $fh, "|-") || exec 'tr', '[a-z]', '[A-Z]';

 open(my $fh, "|-", "tr", '[a-z]', '[A-Z]');

 open(my $fh, "cat -n '$file'|");

 open(my $fh, "-|", "cat -n '$file'");

 open(my $fh, "-|") || exec "cat", "-n", $file;

 open(my $fh, "-|", "cat", "-n", $file);

 The last two examples in each block show the pipe as "list form", which is not yet

 supported on all platforms. (If your platform has a real "fork", such as Linux and

 macOS, you can use the list form; it also works on Windows with Perl 5.22 or

 later.) You would want to use the list form of the pipe so you can pass literal

 arguments to the command without risk of the shell interpreting any shell

 metacharacters in them. However, this also bars you from opening pipes to commands

 that intentionally contain shell metacharacters, such as:

 open(my $fh, "|cat -n | expand -4 | lpr")

 || die "Can't open pipeline to lpr: $!";

 See "Safe Pipe Opens" in perlipc for more examples of this.

 Duping filehandles

 You may also, in the Bourne shell tradition, specify an EXPR beginning with ">&",

 in which case the rest of the string is interpreted as the name of a filehandle

 (or file descriptor, if numeric) to be duped (as in dup(2)) and opened. You may

 use "&" after ">", ">>", "<", "+>", "+>>", and "+<". The mode you specify should

 match the mode of the original filehandle. (Duping a filehandle does not take

 into account any existing contents of IO buffers.) If you use the three-argument

 form, then you can pass either a number, the name of a filehandle, or the normal

 "reference to a glob".

 Here is a script that saves, redirects, and restores "STDOUT" and "STDERR" using

 various methods:

 #!/usr/bin/perl

 open(my $oldout, ">&STDOUT")

 or die "Can't dup STDOUT: $!";

 open(OLDERR, ">&", *STDERR)

 or die "Can't dup STDERR: $!"; Page 80/182

 open(STDOUT, '>', "foo.out")

 or die "Can't redirect STDOUT: $!";

 open(STDERR, ">&STDOUT")

 or die "Can't dup STDOUT: $!";

 select STDERR; $| = 1; # make unbuffered

 select STDOUT; $| = 1; # make unbuffered

 print STDOUT "stdout 1\n"; # this works for

 print STDERR "stderr 1\n"; # subprocesses too

 open(STDOUT, ">&", $oldout)

 or die "Can't dup \$oldout: $!";

 open(STDERR, ">&OLDERR")

 or die "Can't dup OLDERR: $!";

 print STDOUT "stdout 2\n";

 print STDERR "stderr 2\n";

 If you specify '<&=X', where "X" is a file descriptor number or a filehandle, then

 Perl will do an equivalent of C's fdopen(3) of that file descriptor (and not call

 dup(2)); this is more parsimonious of file descriptors. For example:

 # open for input, reusing the fileno of $fd

 open(my $fh, "<&=", $fd)

 or

 open(my $fh, "<&=$fd")

 or

 # open for append, using the fileno of $oldfh

 open(my $fh, ">>&=", $oldfh)

 Being parsimonious on filehandles is also useful (besides being parsimonious) for

 example when something is dependent on file descriptors, like for example locking

 using "flock". If you do just "open(my $A, ">>&", $B)", the filehandle $A will

 not have the same file descriptor as $B, and therefore "flock($A)" will not

 "flock($B)" nor vice versa. But with "open(my $A, ">>&=", $B)", the filehandles

 will share the same underlying system file descriptor.

 Note that under Perls older than 5.8.0, Perl uses the standard C library's'

 fdopen(3) to implement the "=" functionality. On many Unix systems, fdopen(3)

 fails when file descriptors exceed a certain value, typically 255. For Perls Page 81/182

 5.8.0 and later, PerlIO is (most often) the default.

 Legacy usage

 This section describes ways to call "open" outside of best practices; you may

 encounter these uses in older code. Perl does not consider their use deprecated,

 exactly, but neither is it recommended in new code, for the sake of clarity and

 readability.

 Specifying mode and filename as a single argument

 In the one- and two-argument forms of the call, the mode and filename should

 be concatenated (in that order), preferably separated by white space. You

 can--but shouldn't--omit the mode in these forms when that mode is "<". It is

 safe to use the two-argument form of "open" if the filename argument is a

 known literal.

 open(my $dbase, "+<dbase.mine") # ditto

 or die "Can't open 'dbase.mine' for update: $!";

 In the two-argument (and one-argument) form, opening "<-" or "-" opens STDIN

 and opening ">-" opens STDOUT.

 New code should favor the three-argument form of "open" over this older form.

 Declaring the mode and the filename as two distinct arguments avoids any

 confusion between the two.

 Calling "open" with one argument via global variables

 As a shortcut, a one-argument call takes the filename from the global scalar

 variable of the same name as the filehandle:

 $ARTICLE = 100;

 open(ARTICLE)

 or die "Can't find article $ARTICLE: $!\n";

 Here $ARTICLE must be a global (package) scalar variable - not one declared

 with "my" or "state".

 Assigning a filehandle to a bareword

 An older style is to use a bareword as the filehandle, as

 open(FH, "<", "input.txt")

 or die "Can't open < input.txt: $!";

 Then you can use "FH" as the filehandle, in "close FH" and "<FH>" and so on.

 Note that it's a global variable, so this form is not recommended when dealing Page 82/182

 with filehandles other than Perl's built-in ones (e.g. STDOUT and STDIN).

 Other considerations

 Automatic filehandle closure

 The filehandle will be closed when its reference count reaches zero. If it is

 a lexically scoped variable declared with "my", that usually means the end of

 the enclosing scope. However, this automatic close does not check for errors,

 so it is better to explicitly close filehandles, especially those used for

 writing:

 close($handle)

 || warn "close failed: $!";

 Automatic pipe flushing

 Perl will attempt to flush all files opened for output before any operation

 that may do a fork, but this may not be supported on some platforms (see

 perlport). To be safe, you may need to set $| ($AUTOFLUSH in English) or call

 the "autoflush" method of "IO::Handle" on any open handles.

 On systems that support a close-on-exec flag on files, the flag will be set

 for the newly opened file descriptor as determined by the value of $^F. See

 "$^F" in perlvar.

 Closing any piped filehandle causes the parent process to wait for the child

 to finish, then returns the status value in $? and "${^CHILD_ERROR_NATIVE}".

 Direct versus by-reference assignment of filehandles

 If FILEHANDLE -- the first argument in a call to "open" -- is an undefined

 scalar variable (or array or hash element), a new filehandle is autovivified,

 meaning that the variable is assigned a reference to a newly allocated

 anonymous filehandle. Otherwise if FILEHANDLE is an expression, its value is

 the real filehandle. (This is considered a symbolic reference, so "use strict

 "refs"" should not be in effect.)

 Whitespace and special characters in the filename argument

 The filename passed to the one- and two-argument forms of "open" will have

 leading and trailing whitespace deleted and normal redirection characters

 honored. This property, known as "magic open", can often be used to good

 effect. A user could specify a filename of "rsh cat file |", or you could

 change certain filenames as needed: Page 83/182

 $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;

 open(my $fh, $filename)

 or die "Can't open $filename: $!";

 Use the three-argument form to open a file with arbitrary weird characters in

 it,

 open(my $fh, "<", $file)

 || die "Can't open $file: $!";

 otherwise it's necessary to protect any leading and trailing whitespace:

 $file =~ s#^(\s)#./$1#;

 open(my $fh, "< $file\0")

 || die "Can't open $file: $!";

 (this may not work on some bizarre filesystems). One should conscientiously

 choose between the magic and three-argument form of "open":

 open(my $in, $ARGV[0]) || die "Can't open $ARGV[0]: $!";

 will allow the user to specify an argument of the form "rsh cat file |", but

 will not work on a filename that happens to have a trailing space, while

 open(my $in, "<", $ARGV[0])

 || die "Can't open $ARGV[0]: $!";

 will have exactly the opposite restrictions. (However, some shells support the

 syntax "perl your_program.pl <(rsh cat file)", which produces a filename

 that can be opened normally.)

 Invoking C-style "open"

 If you want a "real" C open(2), then you should use the "sysopen" function,

 which involves no such magic (but uses different filemodes than Perl "open",

 which corresponds to C fopen(3)). This is another way to protect your

 filenames from interpretation. For example:

 use IO::Handle;

 sysopen(my $fh, $path, O_RDWR|O_CREAT|O_EXCL)

 or die "Can't open $path: $!";

 $fh->autoflush(1);

 print $fh "stuff $$\n";

 seek($fh, 0, 0);

 print "File contains: ", readline($fh); Page 84/182

 See "seek" for some details about mixing reading and writing.

 Portability issues

 See "open" in perlport.

 opendir DIRHANDLE,EXPR

 Opens a directory named EXPR for processing by "readdir", "telldir", "seekdir",

 "rewinddir", and "closedir". Returns true if successful. DIRHANDLE may be an

 expression whose value can be used as an indirect dirhandle, usually the real

 dirhandle name. If DIRHANDLE is an undefined scalar variable (or array or hash

 element), the variable is assigned a reference to a new anonymous dirhandle; that is,

 it's autovivified. Dirhandles are the same objects as filehandles; an I/O object can

 only be open as one of these handle types at once.

 See the example at "readdir".

 ord EXPR

 ord Returns the numeric value of the first character of EXPR. If EXPR is an empty string,

 returns 0. If EXPR is omitted, uses $_. (Note character, not byte.)

 For the reverse, see "chr". See perlunicode for more about Unicode.

 our VARLIST

 our TYPE VARLIST

 our VARLIST : ATTRS

 our TYPE VARLIST : ATTRS

 "our" makes a lexical alias to a package (i.e. global) variable of the same name in

 the current package for use within the current lexical scope.

 "our" has the same scoping rules as "my" or "state", meaning that it is only valid

 within a lexical scope. Unlike "my" and "state", which both declare new (lexical)

 variables, "our" only creates an alias to an existing variable: a package variable of

 the same name.

 This means that when "use strict 'vars'" is in effect, "our" lets you use a package

 variable without qualifying it with the package name, but only within the lexical

 scope of the "our" declaration. This applies immediately--even within the same

 statement.

 package Foo;

 use strict;

 $Foo::foo = 23; Page 85/182

 {

 our $foo; # alias to $Foo::foo

 print $foo; # prints 23

 }

 print $Foo::foo; # prints 23

 print $foo; # ERROR: requires explicit package name

 This works even if the package variable has not been used before, as package variables

 spring into existence when first used.

 package Foo;

 use strict;

 our $foo = 23; # just like $Foo::foo = 23

 print $Foo::foo; # prints 23

 Because the variable becomes legal immediately under "use strict 'vars'", so long as

 there is no variable with that name is already in scope, you can then reference the

 package variable again even within the same statement.

 package Foo;

 use strict;

 my $foo = $foo; # error, undeclared $foo on right-hand side

 our $foo = $foo; # no errors

 If more than one variable is listed, the list must be placed in parentheses.

 our($bar, $baz);

 An "our" declaration declares an alias for a package variable that will be visible

 across its entire lexical scope, even across package boundaries. The package in which

 the variable is entered is determined at the point of the declaration, not at the

 point of use. This means the following behavior holds:

 package Foo;

 our $bar; # declares $Foo::bar for rest of lexical scope

 $bar = 20;

 package Bar;

 print $bar; # prints 20, as it refers to $Foo::bar

 Multiple "our" declarations with the same name in the same lexical scope are allowed

 if they are in different packages. If they happen to be in the same package, Perl

 will emit warnings if you have asked for them, just like multiple "my" declarations. Page 86/182

 Unlike a second "my" declaration, which will bind the name to a fresh variable, a

 second "our" declaration in the same package, in the same scope, is merely redundant.

 use warnings;

 package Foo;

 our $bar; # declares $Foo::bar for rest of lexical scope

 $bar = 20;

 package Bar;

 our $bar = 30; # declares $Bar::bar for rest of lexical scope

 print $bar; # prints 30

 our $bar; # emits warning but has no other effect

 print $bar; # still prints 30

 An "our" declaration may also have a list of attributes associated with it.

 The exact semantics and interface of TYPE and ATTRS are still evolving. TYPE is

 currently bound to the use of the fields pragma, and attributes are handled using the

 attributes pragma, or, starting from Perl 5.8.0, also via the Attribute::Handlers

 module. See "Private Variables via my()" in perlsub for details.

 Note that with a parenthesised list, "undef" can be used as a dummy placeholder, for

 example to skip assignment of initial values:

 our (undef, $min, $hour) = localtime;

 "our" differs from "use vars", which allows use of an unqualified name only within the

 affected package, but across scopes.

 pack TEMPLATE,LIST

 Takes a LIST of values and converts it into a string using the rules given by the

 TEMPLATE. The resulting string is the concatenation of the converted values.

 Typically, each converted value looks like its machine-level representation. For

 example, on 32-bit machines an integer may be represented by a sequence of 4 bytes,

 which will in Perl be presented as a string that's 4 characters long.

 See perlpacktut for an introduction to this function.

 The TEMPLATE is a sequence of characters that give the order and type of values, as

 follows:

 a A string with arbitrary binary data, will be null padded.

 A A text (ASCII) string, will be space padded.

 Z A null-terminated (ASCIZ) string, will be null padded. Page 87/182

 b A bit string (ascending bit order inside each byte,

 like vec()).

 B A bit string (descending bit order inside each byte).

 h A hex string (low nybble first).

 H A hex string (high nybble first).

 c A signed char (8-bit) value.

 C An unsigned char (octet) value.

 W An unsigned char value (can be greater than 255).

 s A signed short (16-bit) value.

 S An unsigned short value.

 l A signed long (32-bit) value.

 L An unsigned long value.

 q A signed quad (64-bit) value.

 Q An unsigned quad value.

 (Quads are available only if your system supports 64-bit

 integer values _and_ if Perl has been compiled to support

 those. Raises an exception otherwise.)

 i A signed integer value.

 I An unsigned integer value.

 (This 'integer' is _at_least_ 32 bits wide. Its exact

 size depends on what a local C compiler calls 'int'.)

 n An unsigned short (16-bit) in "network" (big-endian) order.

 N An unsigned long (32-bit) in "network" (big-endian) order.

 v An unsigned short (16-bit) in "VAX" (little-endian) order.

 V An unsigned long (32-bit) in "VAX" (little-endian) order.

 j A Perl internal signed integer value (IV).

 J A Perl internal unsigned integer value (UV).

 f A single-precision float in native format.

 d A double-precision float in native format.

 F A Perl internal floating-point value (NV) in native format

 D A float of long-double precision in native format.

 (Long doubles are available only if your system supports

 long double values. Raises an exception otherwise. Page 88/182

 Note that there are different long double formats.)

 p A pointer to a null-terminated string.

 P A pointer to a structure (fixed-length string).

 u A uuencoded string.

 U A Unicode character number. Encodes to a character in char-

 acter mode and UTF-8 (or UTF-EBCDIC in EBCDIC platforms) in

 byte mode.

 w A BER compressed integer (not an ASN.1 BER, see perlpacktut

 for details). Its bytes represent an unsigned integer in

 base 128, most significant digit first, with as few digits

 as possible. Bit eight (the high bit) is set on each byte

 except the last.

 x A null byte (a.k.a ASCII NUL, "\000", chr(0))

 X Back up a byte.

 @ Null-fill or truncate to absolute position, counted from the

 start of the innermost ()-group.

 . Null-fill or truncate to absolute position specified by

 the value.

 (Start of a ()-group.

 One or more modifiers below may optionally follow certain letters in the TEMPLATE (the

 second column lists letters for which the modifier is valid):

 ! sSlLiI Forces native (short, long, int) sizes instead

 of fixed (16-/32-bit) sizes.

 ! xX Make x and X act as alignment commands.

 ! nNvV Treat integers as signed instead of unsigned.

 ! @. Specify position as byte offset in the internal

 representation of the packed string. Efficient

 but dangerous.

 > sSiIlLqQ Force big-endian byte-order on the type.

 jJfFdDpP (The "big end" touches the construct.)

 < sSiIlLqQ Force little-endian byte-order on the type.

 jJfFdDpP (The "little end" touches the construct.)

 The ">" and "<" modifiers can also be used on "()" groups to force a particular byte- Page 89/182

 order on all components in that group, including all its subgroups.

 The following rules apply:

 ? Each letter may optionally be followed by a number indicating the repeat count. A

 numeric repeat count may optionally be enclosed in brackets, as in "pack("C[80]",

 @arr)". The repeat count gobbles that many values from the LIST when used with

 all format types other than "a", "A", "Z", "b", "B", "h", "H", "@", ".", "x", "X",

 and "P", where it means something else, described below. Supplying a "*" for the

 repeat count instead of a number means to use however many items are left, except

 for:

 ? "@", "x", and "X", where it is equivalent to 0.

 ? <.>, where it means relative to the start of the string.

 ? "u", where it is equivalent to 1 (or 45, which here is equivalent).

 One can replace a numeric repeat count with a template letter enclosed in brackets

 to use the packed byte length of the bracketed template for the repeat count.

 For example, the template "x[L]" skips as many bytes as in a packed long, and the

 template "$t X[$t] $t" unpacks twice whatever $t (when variable-expanded) unpacks.

 If the template in brackets contains alignment commands (such as "x![d]"), its

 packed length is calculated as if the start of the template had the maximal

 possible alignment.

 When used with "Z", a "*" as the repeat count is guaranteed to add a trailing null

 byte, so the resulting string is always one byte longer than the byte length of

 the item itself.

 When used with "@", the repeat count represents an offset from the start of the

 innermost "()" group.

 When used with ".", the repeat count determines the starting position to calculate

 the value offset as follows:

 ? If the repeat count is 0, it's relative to the current position.

 ? If the repeat count is "*", the offset is relative to the start of the packed

 string.

 ? And if it's an integer n, the offset is relative to the start of the nth

 innermost "()" group, or to the start of the string if n is bigger then the

 group level.

 The repeat count for "u" is interpreted as the maximal number of bytes to encode Page 90/182

 per line of output, with 0, 1 and 2 replaced by 45. The repeat count should not

 be more than 65.

 ? The "a", "A", and "Z" types gobble just one value, but pack it as a string of

 length count, padding with nulls or spaces as needed. When unpacking, "A" strips

 trailing whitespace and nulls, "Z" strips everything after the first null, and "a"

 returns data with no stripping at all.

 If the value to pack is too long, the result is truncated. If it's too long and

 an explicit count is provided, "Z" packs only "$count-1" bytes, followed by a null

 byte. Thus "Z" always packs a trailing null, except when the count is 0.

 ? Likewise, the "b" and "B" formats pack a string that's that many bits long. Each

 such format generates 1 bit of the result. These are typically followed by a

 repeat count like "B8" or "B64".

 Each result bit is based on the least-significant bit of the corresponding input

 character, i.e., on "ord($char)%2". In particular, characters "0" and "1"

 generate bits 0 and 1, as do characters "\000" and "\001".

 Starting from the beginning of the input string, each 8-tuple of characters is

 converted to 1 character of output. With format "b", the first character of the

 8-tuple determines the least-significant bit of a character; with format "B", it

 determines the most-significant bit of a character.

 If the length of the input string is not evenly divisible by 8, the remainder is

 packed as if the input string were padded by null characters at the end.

 Similarly during unpacking, "extra" bits are ignored.

 If the input string is longer than needed, remaining characters are ignored.

 A "*" for the repeat count uses all characters of the input field. On unpacking,

 bits are converted to a string of 0s and 1s.

 ? The "h" and "H" formats pack a string that many nybbles (4-bit groups,

 representable as hexadecimal digits, "0".."9" "a".."f") long.

 For each such format, "pack" generates 4 bits of result. With non-alphabetical

 characters, the result is based on the 4 least-significant bits of the input

 character, i.e., on "ord($char)%16". In particular, characters "0" and "1"

 generate nybbles 0 and 1, as do bytes "\000" and "\001". For characters "a".."f"

 and "A".."F", the result is compatible with the usual hexadecimal digits, so that

 "a" and "A" both generate the nybble "0xA==10". Use only these specific hex Page 91/182

 characters with this format.

 Starting from the beginning of the template to "pack", each pair of characters is

 converted to 1 character of output. With format "h", the first character of the

 pair determines the least-significant nybble of the output character; with format

 "H", it determines the most-significant nybble.

 If the length of the input string is not even, it behaves as if padded by a null

 character at the end. Similarly, "extra" nybbles are ignored during unpacking.

 If the input string is longer than needed, extra characters are ignored.

 A "*" for the repeat count uses all characters of the input field. For "unpack",

 nybbles are converted to a string of hexadecimal digits.

 ? The "p" format packs a pointer to a null-terminated string. You are responsible

 for ensuring that the string is not a temporary value, as that could potentially

 get deallocated before you got around to using the packed result. The "P" format

 packs a pointer to a structure of the size indicated by the length. A null

 pointer is created if the corresponding value for "p" or "P" is "undef"; similarly

 with "unpack", where a null pointer unpacks into "undef".

 If your system has a strange pointer size--meaning a pointer is neither as big as

 an int nor as big as a long--it may not be possible to pack or unpack pointers in

 big- or little-endian byte order. Attempting to do so raises an exception.

 ? The "/" template character allows packing and unpacking of a sequence of items

 where the packed structure contains a packed item count followed by the packed

 items themselves. This is useful when the structure you're unpacking has encoded

 the sizes or repeat counts for some of its fields within the structure itself as

 separate fields.

 For "pack", you write length-item"/"sequence-item, and the length-item describes

 how the length value is packed. Formats likely to be of most use are integer-

 packing ones like "n" for Java strings, "w" for ASN.1 or SNMP, and "N" for Sun

 XDR.

 For "pack", sequence-item may have a repeat count, in which case the minimum of

 that and the number of available items is used as the argument for length-item.

 If it has no repeat count or uses a '*', the number of available items is used.

 For "unpack", an internal stack of integer arguments unpacked so far is used. You

 write "/"sequence-item and the repeat count is obtained by popping off the last Page 92/182

 element from the stack. The sequence-item must not have a repeat count.

 If sequence-item refers to a string type ("A", "a", or "Z"), the length-item is

 the string length, not the number of strings. With an explicit repeat count for

 pack, the packed string is adjusted to that length. For example:

 This code: gives this result:

 unpack("W/a", "\004Gurusamy") ("Guru")

 unpack("a3/A A*", "007 Bond J ") (" Bond", "J")

 unpack("a3 x2 /A A*", "007: Bond, J.") ("Bond, J", ".")

 pack("n/a* w/a","hello,","world") "\000\006hello,\005world"

 pack("a/W2", ord("a") .. ord("z")) "2ab"

 The length-item is not returned explicitly from "unpack".

 Supplying a count to the length-item format letter is only useful with "A", "a",

 or "Z". Packing with a length-item of "a" or "Z" may introduce "\000" characters,

 which Perl does not regard as legal in numeric strings.

 ? The integer types "s", "S", "l", and "L" may be followed by a "!" modifier to

 specify native shorts or longs. As shown in the example above, a bare "l" means

 exactly 32 bits, although the native "long" as seen by the local C compiler may be

 larger. This is mainly an issue on 64-bit platforms. You can see whether using

 "!" makes any difference this way:

 printf "format s is %d, s! is %d\n",

 length pack("s"), length pack("s!");

 printf "format l is %d, l! is %d\n",

 length pack("l"), length pack("l!");

 "i!" and "I!" are also allowed, but only for completeness' sake: they are

 identical to "i" and "I".

 The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the

 platform where Perl was built are also available from the command line:

 $ perl -V:{short,int,long{,long}}size

 shortsize='2';

 intsize='4';

 longsize='4';

 longlongsize='8';

 or programmatically via the "Config" module: Page 93/182

 use Config;

 print $Config{shortsize}, "\n";

 print $Config{intsize}, "\n";

 print $Config{longsize}, "\n";

 print $Config{longlongsize}, "\n";

 $Config{longlongsize} is undefined on systems without long long support.

 ? The integer formats "s", "S", "i", "I", "l", "L", "j", and "J" are inherently non-

 portable between processors and operating systems because they obey native

 byteorder and endianness. For example, a 4-byte integer 0x12345678 (305419896

 decimal) would be ordered natively (arranged in and handled by the CPU registers)

 into bytes as

 0x12 0x34 0x56 0x78 # big-endian

 0x78 0x56 0x34 0x12 # little-endian

 Basically, Intel and VAX CPUs are little-endian, while everybody else, including

 Motorola m68k/88k, PPC, Sparc, HP PA, Power, and Cray, are big-endian. Alpha and

 MIPS can be either: Digital/Compaq uses (well, used) them in little-endian mode,

 but SGI/Cray uses them in big-endian mode.

 The names big-endian and little-endian are comic references to the egg-eating

 habits of the little-endian Lilliputians and the big-endian Blefuscudians from the

 classic Jonathan Swift satire, Gulliver's Travels. This entered computer lingo

 via the paper "On Holy Wars and a Plea for Peace" by Danny Cohen, USC/ISI IEN 137,

 April 1, 1980.

 Some systems may have even weirder byte orders such as

 0x56 0x78 0x12 0x34

 0x34 0x12 0x78 0x56

 These are called mid-endian, middle-endian, mixed-endian, or just weird.

 You can determine your system endianness with this incantation:

 printf("%#02x ", $_) for unpack("W*", pack L=>0x12345678);

 The byteorder on the platform where Perl was built is also available via Config:

 use Config;

 print "$Config{byteorder}\n";

 or from the command line:

 $ perl -V:byteorder Page 94/182

 Byteorders "1234" and "12345678" are little-endian; "4321" and "87654321" are big-

 endian. Systems with multiarchitecture binaries will have "ffff", signifying that

 static information doesn't work, one must use runtime probing.

 For portably packed integers, either use the formats "n", "N", "v", and "V" or

 else use the ">" and "<" modifiers described immediately below. See also

 perlport.

 ? Also floating point numbers have endianness. Usually (but not always) this agrees

 with the integer endianness. Even though most platforms these days use the IEEE

 754 binary format, there are differences, especially if the long doubles are

 involved. You can see the "Config" variables "doublekind" and "longdblkind" (also

 "doublesize", "longdblsize"): the "kind" values are enums, unlike "byteorder".

 Portability-wise the best option is probably to keep to the IEEE 754 64-bit

 doubles, and of agreed-upon endianness. Another possibility is the "%a") format

 of "printf".

 ? Starting with Perl 5.10.0, integer and floating-point formats, along with the "p"

 and "P" formats and "()" groups, may all be followed by the ">" or "<" endianness

 modifiers to respectively enforce big- or little-endian byte-order. These

 modifiers are especially useful given how "n", "N", "v", and "V" don't cover

 signed integers, 64-bit integers, or floating-point values.

 Here are some concerns to keep in mind when using an endianness modifier:

 ? Exchanging signed integers between different platforms works only when all

 platforms store them in the same format. Most platforms store signed integers

 in two's-complement notation, so usually this is not an issue.

 ? The ">" or "<" modifiers can only be used on floating-point formats on big- or

 little-endian machines. Otherwise, attempting to use them raises an

 exception.

 ? Forcing big- or little-endian byte-order on floating-point values for data

 exchange can work only if all platforms use the same binary representation

 such as IEEE floating-point. Even if all platforms are using IEEE, there may

 still be subtle differences. Being able to use ">" or "<" on floating-point

 values can be useful, but also dangerous if you don't know exactly what you're

 doing. It is not a general way to portably store floating-point values.

 ? When using ">" or "<" on a "()" group, this affects all types inside the group Page 95/182

 that accept byte-order modifiers, including all subgroups. It is silently

 ignored for all other types. You are not allowed to override the byte-order

 within a group that already has a byte-order modifier suffix.

 ? Real numbers (floats and doubles) are in native machine format only. Due to the

 multiplicity of floating-point formats and the lack of a standard "network"

 representation for them, no facility for interchange has been made. This means

 that packed floating-point data written on one machine may not be readable on

 another, even if both use IEEE floating-point arithmetic (because the endianness

 of the memory representation is not part of the IEEE spec). See also perlport.

 If you know exactly what you're doing, you can use the ">" or "<" modifiers to

 force big- or little-endian byte-order on floating-point values.

 Because Perl uses doubles (or long doubles, if configured) internally for all

 numeric calculation, converting from double into float and thence to double again

 loses precision, so "unpack("f", pack("f", $foo)") will not in general equal $foo.

 ? Pack and unpack can operate in two modes: character mode ("C0" mode) where the

 packed string is processed per character, and UTF-8 byte mode ("U0" mode) where

 the packed string is processed in its UTF-8-encoded Unicode form on a byte-by-byte

 basis. Character mode is the default unless the format string starts with "U".

 You can always switch mode mid-format with an explicit "C0" or "U0" in the format.

 This mode remains in effect until the next mode change, or until the end of the

 "()" group it (directly) applies to.

 Using "C0" to get Unicode characters while using "U0" to get non-Unicode bytes is

 not necessarily obvious. Probably only the first of these is what you want:

 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |

 perl -CS -ne 'printf "%v04X\n", $_ for unpack("C0A*", $_)'

 03B1.03C9

 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |

 perl -CS -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'

 CE.B1.CF.89

 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' |

 perl -C0 -ne 'printf "%v02X\n", $_ for unpack("C0A*", $_)'

 CE.B1.CF.89

 $ perl -CS -E 'say "\x{3B1}\x{3C9}"' | Page 96/182

 perl -C0 -ne 'printf "%v02X\n", $_ for unpack("U0A*", $_)'

 C3.8E.C2.B1.C3.8F.C2.89

 Those examples also illustrate that you should not try to use "pack"/"unpack" as a

 substitute for the Encode module.

 ? You must yourself do any alignment or padding by inserting, for example, enough

 "x"es while packing. There is no way for "pack" and "unpack" to know where

 characters are going to or coming from, so they handle their output and input as

 flat sequences of characters.

 ? A "()" group is a sub-TEMPLATE enclosed in parentheses. A group may take a repeat

 count either as postfix, or for "unpack", also via the "/" template character.

 Within each repetition of a group, positioning with "@" starts over at 0.

 Therefore, the result of

 pack("@1A((@2A)@3A)", qw[X Y Z])

 is the string "\0X\0\0YZ".

 ? "x" and "X" accept the "!" modifier to act as alignment commands: they jump

 forward or back to the closest position aligned at a multiple of "count"

 characters. For example, to "pack" or "unpack" a C structure like

 struct {

 char c; /* one signed, 8-bit character */

 double d;

 char cc[2];

 }

 one may need to use the template "c x![d] d c[2]". This assumes that doubles must

 be aligned to the size of double.

 For alignment commands, a "count" of 0 is equivalent to a "count" of 1; both are

 no-ops.

 ? "n", "N", "v" and "V" accept the "!" modifier to represent signed 16-/32-bit

 integers in big-/little-endian order. This is portable only when all platforms

 sharing packed data use the same binary representation for signed integers; for

 example, when all platforms use two's-complement representation.

 ? Comments can be embedded in a TEMPLATE using "#" through the end of line. White

 space can separate pack codes from each other, but modifiers and repeat counts

 must follow immediately. Breaking complex templates into individual line-by-line Page 97/182

 components, suitably annotated, can do as much to improve legibility and

 maintainability of pack/unpack formats as "/x" can for complicated pattern

 matches.

 ? If TEMPLATE requires more arguments than "pack" is given, "pack" assumes

 additional "" arguments. If TEMPLATE requires fewer arguments than given, extra

 arguments are ignored.

 ? Attempting to pack the special floating point values "Inf" and "NaN" (infinity,

 also in negative, and not-a-number) into packed integer values (like "L") is a

 fatal error. The reason for this is that there simply isn't any sensible mapping

 for these special values into integers.

 Examples:

 $foo = pack("WWWW",65,66,67,68);

 # foo eq "ABCD"

 $foo = pack("W4",65,66,67,68);

 # same thing

 $foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);

 # same thing with Unicode circled letters.

 $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);

 # same thing with Unicode circled letters. You don't get the

 # UTF-8 bytes because the U at the start of the format caused

 # a switch to U0-mode, so the UTF-8 bytes get joined into

 # characters

 $foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);

 # foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"

 # This is the UTF-8 encoding of the string in the

 # previous example

 $foo = pack("ccxxcc",65,66,67,68);

 # foo eq "AB\0\0CD"

 # NOTE: The examples above featuring "W" and "c" are true

 # only on ASCII and ASCII-derived systems such as ISO Latin 1

 # and UTF-8. On EBCDIC systems, the first example would be

 # $foo = pack("WWWW",193,194,195,196);

 $foo = pack("s2",1,2); Page 98/182

 # "\001\000\002\000" on little-endian

 # "\000\001\000\002" on big-endian

 $foo = pack("a4","abcd","x","y","z");

 # "abcd"

 $foo = pack("aaaa","abcd","x","y","z");

 # "axyz"

 $foo = pack("a14","abcdefg");

 # "abcdefg\0\0\0\0\0\0\0"

 $foo = pack("i9pl", gmtime);

 # a real struct tm (on my system anyway)

 $utmp_template = "Z8 Z8 Z16 L";

 $utmp = pack($utmp_template, @utmp1);

 # a struct utmp (BSDish)

 @utmp2 = unpack($utmp_template, $utmp);

 # "@utmp1" eq "@utmp2"

 sub bintodec {

 unpack("N", pack("B32", substr("0" x 32 . shift, -32)));

 }

 $foo = pack('sx2l', 12, 34);

 # short 12, two zero bytes padding, long 34

 $bar = pack('s@4l', 12, 34);

 # short 12, zero fill to position 4, long 34

 # $foo eq $bar

 $baz = pack('s.l', 12, 4, 34);

 # short 12, zero fill to position 4, long 34

 $foo = pack('nN', 42, 4711);

 # pack big-endian 16- and 32-bit unsigned integers

 $foo = pack('S>L>', 42, 4711);

 # exactly the same

 $foo = pack('s<l<', -42, 4711);

 # pack little-endian 16- and 32-bit signed integers

 $foo = pack('(sl)<', -42, 4711);

 # exactly the same Page 99/182

 The same template may generally also be used in "unpack".

 package NAMESPACE

 package NAMESPACE VERSION

 package NAMESPACE BLOCK

 package NAMESPACE VERSION BLOCK

 Declares the BLOCK or the rest of the compilation unit as being in the given

 namespace. The scope of the package declaration is either the supplied code BLOCK or,

 in the absence of a BLOCK, from the declaration itself through the end of current

 scope (the enclosing block, file, or "eval"). That is, the forms without a BLOCK are

 operative through the end of the current scope, just like the "my", "state", and "our"

 operators. All unqualified dynamic identifiers in this scope will be in the given

 namespace, except where overridden by another "package" declaration or when they're

 one of the special identifiers that qualify into "main::", like "STDOUT", "ARGV",

 "ENV", and the punctuation variables.

 A package statement affects dynamic variables only, including those you've used

 "local" on, but not lexically-scoped variables, which are created with "my", "state",

 or "our". Typically it would be the first declaration in a file included by "require"

 or "use". You can switch into a package in more than one place, since this only

 determines which default symbol table the compiler uses for the rest of that block.

 You can refer to identifiers in other packages than the current one by prefixing the

 identifier with the package name and a double colon, as in $SomePack::var or

 "ThatPack::INPUT_HANDLE". If package name is omitted, the "main" package is assumed.

 That is, $::sail is equivalent to $main::sail (as well as to "$main'sail", still seen

 in ancient code, mostly from Perl 4).

 If VERSION is provided, "package" sets the $VERSION variable in the given namespace to

 a version object with the VERSION provided. VERSION must be a "strict" style version

 number as defined by the version module: a positive decimal number (integer or

 decimal-fraction) without exponentiation or else a dotted-decimal v-string with a

 leading 'v' character and at least three components. You should set $VERSION only

 once per package.

 See "Packages" in perlmod for more information about packages, modules, and classes.

 See perlsub for other scoping issues.

 __PACKAGE__ Page 100/182

 A special token that returns the name of the package in which it occurs.

 pipe READHANDLE,WRITEHANDLE

 Opens a pair of connected pipes like the corresponding system call. Note that if you

 set up a loop of piped processes, deadlock can occur unless you are very careful. In

 addition, note that Perl's pipes use IO buffering, so you may need to set $| to flush

 your WRITEHANDLE after each command, depending on the application.

 Returns true on success.

 See IPC::Open2, IPC::Open3, and "Bidirectional Communication with Another Process" in

 perlipc for examples of such things.

 On systems that support a close-on-exec flag on files, that flag is set on all newly

 opened file descriptors whose "fileno"s are higher than the current value of $^F (by

 default 2 for "STDERR"). See "$^F" in perlvar.

 pop ARRAY

 pop Pops and returns the last value of the array, shortening the array by one element.

 Returns the undefined value if the array is empty, although this may also happen at

 other times. If ARRAY is omitted, pops the @ARGV array in the main program, but the

 @_ array in subroutines, just like "shift".

 Starting with Perl 5.14, an experimental feature allowed "pop" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 pos SCALAR

 pos Returns the offset of where the last "m//g" search left off for the variable in

 question ($_ is used when the variable is not specified). This offset is in

 characters unless the (no-longer-recommended) "use bytes" pragma is in effect, in

 which case the offset is in bytes. Note that 0 is a valid match offset. "undef"

 indicates that the search position is reset (usually due to match failure, but can

 also be because no match has yet been run on the scalar).

 "pos" directly accesses the location used by the regexp engine to store the offset, so

 assigning to "pos" will change that offset, and so will also influence the "\G" zero-

 width assertion in regular expressions. Both of these effects take place for the next

 match, so you can't affect the position with "pos" during the current match, such as

 in "(?{pos() = 5})" or "s//pos() = 5/e".

 Setting "pos" also resets the matched with zero-length flag, described under "Repeated Page 101/182

 Patterns Matching a Zero-length Substring" in perlre.

 Because a failed "m//gc" match doesn't reset the offset, the return from "pos" won't

 change either in this case. See perlre and perlop.

 print FILEHANDLE LIST

 print FILEHANDLE

 print LIST

 print

 Prints a string or a list of strings. Returns true if successful. FILEHANDLE may be

 a scalar variable containing the name of or a reference to the filehandle, thus

 introducing one level of indirection. (NOTE: If FILEHANDLE is a variable and the next

 token is a term, it may be misinterpreted as an operator unless you interpose a "+" or

 put parentheses around the arguments.) If FILEHANDLE is omitted, prints to the last

 selected (see "select") output handle. If LIST is omitted, prints $_ to the currently

 selected output handle. To use FILEHANDLE alone to print the content of $_ to it, you

 must use a bareword filehandle like "FH", not an indirect one like $fh. To set the

 default output handle to something other than STDOUT, use the select operation.

 The current value of $, (if any) is printed between each LIST item. The current value

 of "$\" (if any) is printed after the entire LIST has been printed. Because print

 takes a LIST, anything in the LIST is evaluated in list context, including any

 subroutines whose return lists you pass to "print". Be careful not to follow the

 print keyword with a left parenthesis unless you want the corresponding right

 parenthesis to terminate the arguments to the print; put parentheses around all

 arguments (or interpose a "+", but that doesn't look as good).

 If you're storing handles in an array or hash, or in general whenever you're using any

 expression more complex than a bareword handle or a plain, unsubscripted scalar

 variable to retrieve it, you will have to use a block returning the filehandle value

 instead, in which case the LIST may not be omitted:

 print { $files[$i] } "stuff\n";

 print { $OK ? *STDOUT : *STDERR } "stuff\n";

 Printing to a closed pipe or socket will generate a SIGPIPE signal. See perlipc for

 more on signal handling.

 printf FILEHANDLE FORMAT, LIST

 printf FILEHANDLE Page 102/182

 printf FORMAT, LIST

 printf

 Equivalent to "print FILEHANDLE sprintf(FORMAT, LIST)", except that "$\" (the output

 record separator) is not appended. The FORMAT and the LIST are actually parsed as a

 single list. The first argument of the list will be interpreted as the "printf"

 format. This means that "printf(@_)" will use $_[0] as the format. See sprintf for

 an explanation of the format argument. If "use locale" (including "use locale

 ':not_characters'") is in effect and "POSIX::setlocale" has been called, the character

 used for the decimal separator in formatted floating-point numbers is affected by the

 "LC_NUMERIC" locale setting. See perllocale and POSIX.

 For historical reasons, if you omit the list, $_ is used as the format; to use

 FILEHANDLE without a list, you must use a bareword filehandle like "FH", not an

 indirect one like $fh. However, this will rarely do what you want; if $_ contains

 formatting codes, they will be replaced with the empty string and a warning will be

 emitted if warnings are enabled. Just use "print" if you want to print the contents

 of $_.

 Don't fall into the trap of using a "printf" when a simple "print" would do. The

 "print" is more efficient and less error prone.

 prototype FUNCTION

 prototype

 Returns the prototype of a function as a string (or "undef" if the function has no

 prototype). FUNCTION is a reference to, or the name of, the function whose prototype

 you want to retrieve. If FUNCTION is omitted, $_ is used.

 If FUNCTION is a string starting with "CORE::", the rest is taken as a name for a Perl

 builtin. If the builtin's arguments cannot be adequately expressed by a prototype

 (such as "system"), "prototype" returns "undef", because the builtin does not really

 behave like a Perl function. Otherwise, the string describing the equivalent

 prototype is returned.

 push ARRAY,LIST

 Treats ARRAY as a stack by appending the values of LIST to the end of ARRAY. The

 length of ARRAY increases by the length of LIST. Has the same effect as

 for my $value (LIST) {

 $ARRAY[++$#ARRAY] = $value; Page 103/182

 }

 but is more efficient. Returns the number of elements in the array following the

 completed "push".

 Starting with Perl 5.14, an experimental feature allowed "push" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 q/STRING/

 qq/STRING/

 qw/STRING/

 qx/STRING/

 Generalized quotes. See "Quote-Like Operators" in perlop.

 qr/STRING/

 Regexp-like quote. See "Regexp Quote-Like Operators" in perlop.

 quotemeta EXPR

 quotemeta

 Returns the value of EXPR with all the ASCII non-"word" characters backslashed. (That

 is, all ASCII characters not matching "/[A-Za-z_0-9]/" will be preceded by a backslash

 in the returned string, regardless of any locale settings.) This is the internal

 function implementing the "\Q" escape in double-quoted strings. (See below for the

 behavior on non-ASCII code points.)

 If EXPR is omitted, uses $_.

 quotemeta (and "\Q" ... "\E") are useful when interpolating strings into regular

 expressions, because by default an interpolated variable will be considered a mini-

 regular expression. For example:

 my $sentence = 'The quick brown fox jumped over the lazy dog';

 my $substring = 'quick.*?fox';

 $sentence =~ s{$substring}{big bad wolf};

 Will cause $sentence to become 'The big bad wolf jumped over...'.

 On the other hand:

 my $sentence = 'The quick brown fox jumped over the lazy dog';

 my $substring = 'quick.*?fox';

 $sentence =~ s{\Q$substring\E}{big bad wolf};

 Or: Page 104/182

 my $sentence = 'The quick brown fox jumped over the lazy dog';

 my $substring = 'quick.*?fox';

 my $quoted_substring = quotemeta($substring);

 $sentence =~ s{$quoted_substring}{big bad wolf};

 Will both leave the sentence as is. Normally, when accepting literal string input

 from the user, "quotemeta" or "\Q" must be used.

 Beware that if you put literal backslashes (those not inside interpolated variables)

 between "\Q" and "\E", double-quotish backslash interpolation may lead to confusing

 results. If you need to use literal backslashes within "\Q...\E", consult "Gory

 details of parsing quoted constructs" in perlop.

 Because the result of "\Q?STRING?\E" has all metacharacters quoted, there is no way to

 insert a literal "$" or "@" inside a "\Q\E" pair. If protected by "\", "$" will be

 quoted to become "\\\$"; if not, it is interpreted as the start of an interpolated

 scalar.

 In Perl v5.14, all non-ASCII characters are quoted in non-UTF-8-encoded strings, but

 not quoted in UTF-8 strings.

 Starting in Perl v5.16, Perl adopted a Unicode-defined strategy for quoting non-ASCII

 characters; the quoting of ASCII characters is unchanged.

 Also unchanged is the quoting of non-UTF-8 strings when outside the scope of a "use

 feature 'unicode_strings'", which is to quote all characters in the upper Latin1

 range. This provides complete backwards compatibility for old programs which do not

 use Unicode. (Note that "unicode_strings" is automatically enabled within the scope

 of a "use?v5.12" or greater.)

 Within the scope of "use locale", all non-ASCII Latin1 code points are quoted whether

 the string is encoded as UTF-8 or not. As mentioned above, locale does not affect the

 quoting of ASCII-range characters. This protects against those locales where

 characters such as "|" are considered to be word characters.

 Otherwise, Perl quotes non-ASCII characters using an adaptation from Unicode (see

 <https://www.unicode.org/reports/tr31/>). The only code points that are quoted are

 those that have any of the Unicode properties: Pattern_Syntax, Pattern_White_Space,

 White_Space, Default_Ignorable_Code_Point, or General_Category=Control.

 Of these properties, the two important ones are Pattern_Syntax and

 Pattern_White_Space. They have been set up by Unicode for exactly this purpose of Page 105/182

 deciding which characters in a regular expression pattern should be quoted. No

 character that can be in an identifier has these properties.

 Perl promises, that if we ever add regular expression pattern metacharacters to the

 dozen already defined ("\ | () [{ ^ $ * + ? ."), that we will only use ones that

 have the Pattern_Syntax property. Perl also promises, that if we ever add characters

 that are considered to be white space in regular expressions (currently mostly

 affected by "/x"), they will all have the Pattern_White_Space property.

 Unicode promises that the set of code points that have these two properties will never

 change, so something that is not quoted in v5.16 will never need to be quoted in any

 future Perl release. (Not all the code points that match Pattern_Syntax have actually

 had characters assigned to them; so there is room to grow, but they are quoted whether

 assigned or not. Perl, of course, would never use an unassigned code point as an

 actual metacharacter.)

 Quoting characters that have the other 3 properties is done to enhance the readability

 of the regular expression and not because they actually need to be quoted for regular

 expression purposes (characters with the White_Space property are likely to be

 indistinguishable on the page or screen from those with the Pattern_White_Space

 property; and the other two properties contain non-printing characters).

 rand EXPR

 rand

 Returns a random fractional number greater than or equal to 0 and less than the value

 of EXPR. (EXPR should be positive.) If EXPR is omitted, the value 1 is used.

 Currently EXPR with the value 0 is also special-cased as 1 (this was undocumented

 before Perl 5.8.0 and is subject to change in future versions of Perl). Automatically

 calls "srand" unless "srand" has already been called. See also "srand".

 Apply "int" to the value returned by "rand" if you want random integers instead of

 random fractional numbers. For example,

 int(rand(10))

 returns a random integer between 0 and 9, inclusive.

 (Note: If your rand function consistently returns numbers that are too large or too

 small, then your version of Perl was probably compiled with the wrong number of

 RANDBITS.)

 "rand" is not cryptographically secure. You should not rely on it in security- Page 106/182

 sensitive situations. As of this writing, a number of third-party CPAN modules offer

 random number generators intended by their authors to be cryptographically secure,

 including: Data::Entropy, Crypt::Random, Math::Random::Secure, and Math::TrulyRandom.

 read FILEHANDLE,SCALAR,LENGTH,OFFSET

 read FILEHANDLE,SCALAR,LENGTH

 Attempts to read LENGTH characters of data into variable SCALAR from the specified

 FILEHANDLE. Returns the number of characters actually read, 0 at end of file, or

 undef if there was an error (in the latter case $! is also set). SCALAR will be grown

 or shrunk so that the last character actually read is the last character of the scalar

 after the read.

 An OFFSET may be specified to place the read data at some place in the string other

 than the beginning. A negative OFFSET specifies placement at that many characters

 counting backwards from the end of the string. A positive OFFSET greater than the

 length of SCALAR results in the string being padded to the required size with "\0"

 bytes before the result of the read is appended.

 The call is implemented in terms of either Perl's or your system's native fread(3)

 library function, via the PerlIO layers applied to the handle. To get a true read(2)

 system call, see sysread.

 Note the characters: depending on the status of the filehandle, either (8-bit) bytes

 or characters are read. By default, all filehandles operate on bytes, but for example

 if the filehandle has been opened with the ":utf8" I/O layer (see "open", and the open

 pragma), the I/O will operate on UTF8-encoded Unicode characters, not bytes.

 Similarly for the ":encoding" layer: in that case pretty much any characters can be

 read.

 readdir DIRHANDLE

 Returns the next directory entry for a directory opened by "opendir". If used in list

 context, returns all the rest of the entries in the directory. If there are no more

 entries, returns the undefined value in scalar context and the empty list in list

 context.

 If you're planning to filetest the return values out of a "readdir", you'd better

 prepend the directory in question. Otherwise, because we didn't "chdir" there, it

 would have been testing the wrong file.

 opendir(my $dh, $some_dir) || die "Can't opendir $some_dir: $!"; Page 107/182

 my @dots = grep { /^\./ && -f "$some_dir/$_" } readdir($dh);

 closedir $dh;

 As of Perl 5.12 you can use a bare "readdir" in a "while" loop, which will set $_ on

 every iteration. If either a "readdir" expression or an explicit assignment of a

 "readdir" expression to a scalar is used as a "while"/"for" condition, then the

 condition actually tests for definedness of the expression's value, not for its

 regular truth value.

 opendir(my $dh, $some_dir) || die "Can't open $some_dir: $!";

 while (readdir $dh) {

 print "$some_dir/$_\n";

 }

 closedir $dh;

 To avoid confusing would-be users of your code who are running earlier versions of

 Perl with mysterious failures, put this sort of thing at the top of your file to

 signal that your code will work only on Perls of a recent vintage:

 use 5.012; # so readdir assigns to $_ in a lone while test

 readline EXPR

 readline

 Reads from the filehandle whose typeglob is contained in EXPR (or from *ARGV if EXPR

 is not provided). In scalar context, each call reads and returns the next line until

 end-of-file is reached, whereupon the subsequent call returns "undef". In list

 context, reads until end-of-file is reached and returns a list of lines. Note that

 the notion of "line" used here is whatever you may have defined with $/ (or

 $INPUT_RECORD_SEPARATOR in English). See "$/" in perlvar.

 When $/ is set to "undef", when "readline" is in scalar context (i.e., file slurp

 mode), and when an empty file is read, it returns '' the first time, followed by

 "undef" subsequently.

 This is the internal function implementing the "<EXPR>" operator, but you can use it

 directly. The "<EXPR>" operator is discussed in more detail in "I/O Operators" in

 perlop.

 my $line = <STDIN>;

 my $line = readline(STDIN); # same thing

 If "readline" encounters an operating system error, $! will be set with the Page 108/182

 corresponding error message. It can be helpful to check $! when you are reading from

 filehandles you don't trust, such as a tty or a socket. The following example uses

 the operator form of "readline" and dies if the result is not defined.

 while (! eof($fh)) {

 defined($_ = readline $fh) or die "readline failed: $!";

 ...

 }

 Note that you have can't handle "readline" errors that way with the "ARGV" filehandle.

 In that case, you have to open each element of @ARGV yourself since "eof" handles

 "ARGV" differently.

 foreach my $arg (@ARGV) {

 open(my $fh, $arg) or warn "Can't open $arg: $!";

 while (! eof($fh)) {

 defined($_ = readline $fh)

 or die "readline failed for $arg: $!";

 ...

 }

 }

 Like the "<EXPR>" operator, if a "readline" expression is used as the condition of a

 "while" or "for" loop, then it will be implicitly assigned to $_. If either a

 "readline" expression or an explicit assignment of a "readline" expression to a scalar

 is used as a "while"/"for" condition, then the condition actually tests for

 definedness of the expression's value, not for its regular truth value.

 readlink EXPR

 readlink

 Returns the value of a symbolic link, if symbolic links are implemented. If not,

 raises an exception. If there is a system error, returns the undefined value and sets

 $! (errno). If EXPR is omitted, uses $_.

 Portability issues: "readlink" in perlport.

 readpipe EXPR

 readpipe

 EXPR is executed as a system command. The collected standard output of the command is

 returned. In scalar context, it comes back as a single (potentially multi-line) Page 109/182

 string. In list context, returns a list of lines (however you've defined lines with

 $/ (or $INPUT_RECORD_SEPARATOR in English)). This is the internal function

 implementing the "qx/EXPR/" operator, but you can use it directly. The "qx/EXPR/"

 operator is discussed in more detail in ""qx/STRING/"" in perlop. If EXPR is omitted,

 uses $_.

 recv SOCKET,SCALAR,LENGTH,FLAGS

 Receives a message on a socket. Attempts to receive LENGTH characters of data into

 variable SCALAR from the specified SOCKET filehandle. SCALAR will be grown or shrunk

 to the length actually read. Takes the same flags as the system call of the same

 name. Returns the address of the sender if SOCKET's protocol supports this; returns

 an empty string otherwise. If there's an error, returns the undefined value. This

 call is actually implemented in terms of the recvfrom(2) system call. See "UDP:

 Message Passing" in perlipc for examples.

 Note that if the socket has been marked as ":utf8", "recv" will throw an exception.

 The ":encoding(...)" layer implicitly introduces the ":utf8" layer. See "binmode".

 redo LABEL

 redo EXPR

 redo

 The "redo" command restarts the loop block without evaluating the conditional again.

 The "continue" block, if any, is not executed. If the LABEL is omitted, the command

 refers to the innermost enclosing loop. The "redo EXPR" form, available starting in

 Perl 5.18.0, allows a label name to be computed at run time, and is otherwise

 identical to "redo LABEL". Programs that want to lie to themselves about what was

 just input normally use this command:

 # a simpleminded Pascal comment stripper

 # (warning: assumes no { or } in strings)

 LINE: while (<STDIN>) {

 while (s|({.*}.*){.*}|$1 |) {}

 s|{.*}| |;

 if (s|{.*| |) {

 my $front = $_;

 while (<STDIN>) {

 if (/}/) { # end of comment? Page 110/182

 s|^|$front\{|;

 redo LINE;

 }

 }

 }

 print;

 }

 "redo" cannot return a value from a block that typically returns a value, such as

 "eval {}", "sub {}", or "do {}". It will perform its flow control behavior, which

 precludes any return value. It should not be used to exit a "grep" or "map" operation.

 Note that a block by itself is semantically identical to a loop that executes once.

 Thus "redo" inside such a block will effectively turn it into a looping construct.

 See also "continue" for an illustration of how "last", "next", and "redo" work.

 Unlike most named operators, this has the same precedence as assignment. It is also

 exempt from the looks-like-a-function rule, so "redo ("foo")."bar"" will cause "bar"

 to be part of the argument to "redo".

 ref EXPR

 ref Examines the value of EXPR, expecting it to be a reference, and returns a string

 giving information about the reference and the type of referent. If EXPR is not

 specified, $_ will be used.

 If the operand is not a reference, then the empty string will be returned. An empty

 string will only be returned in this situation. "ref" is often useful to just test

 whether a value is a reference, which can be done by comparing the result to the empty

 string. It is a common mistake to use the result of "ref" directly as a truth value:

 this goes wrong because 0 (which is false) can be returned for a reference.

 If the operand is a reference to a blessed object, then the name of the class into

 which the referent is blessed will be returned. "ref" doesn't care what the physical

 type of the referent is; blessing takes precedence over such concerns. Beware that

 exact comparison of "ref" results against a class name doesn't perform a class

 membership test: a class's members also include objects blessed into subclasses, for

 which "ref" will return the name of the subclass. Also beware that class names can

 clash with the built-in type names (described below).

 If the operand is a reference to an unblessed object, then the return value indicates Page 111/182

 the type of object. If the unblessed referent is not a scalar, then the return value

 will be one of the strings "ARRAY", "HASH", "CODE", "FORMAT", or "IO", indicating only

 which kind of object it is. If the unblessed referent is a scalar, then the return

 value will be one of the strings "SCALAR", "VSTRING", "REF", "GLOB", "LVALUE", or

 "REGEXP", depending on the kind of value the scalar currently has. But note that

 "qr//" scalars are created already blessed, so "ref qr/.../" will likely return

 "Regexp". Beware that these built-in type names can also be used as class names, so

 "ref" returning one of these names doesn't unambiguously indicate that the referent is

 of the kind to which the name refers.

 The ambiguity between built-in type names and class names significantly limits the

 utility of "ref". For unambiguous information, use "Scalar::Util::blessed()" for

 information about blessing, and "Scalar::Util::reftype()" for information about

 physical types. Use the "isa" method for class membership tests, though one must be

 sure of blessedness before attempting a method call.

 See also perlref and perlobj.

 rename OLDNAME,NEWNAME

 Changes the name of a file; an existing file NEWNAME will be clobbered. Returns true

 for success; on failure returns false and sets $!.

 Behavior of this function varies wildly depending on your system implementation. For

 example, it will usually not work across file system boundaries, even though the

 system mv command sometimes compensates for this. Other restrictions include whether

 it works on directories, open files, or pre-existing files. Check perlport and either

 the rename(2) manpage or equivalent system documentation for details.

 For a platform independent "move" function look at the File::Copy module.

 Portability issues: "rename" in perlport.

 require VERSION

 require EXPR

 require

 Demands a version of Perl specified by VERSION, or demands some semantics specified by

 EXPR or by $_ if EXPR is not supplied.

 VERSION may be either a literal such as v5.24.1, which will be compared to $^V (or

 $PERL_VERSION in English), or a numeric argument of the form 5.024001, which will be

 compared to $]. An exception is raised if VERSION is greater than the version of the Page 112/182

 current Perl interpreter. Compare with "use", which can do a similar check at compile

 time.

 Specifying VERSION as a numeric argument of the form 5.024001 should generally be

 avoided as older less readable syntax compared to v5.24.1. Before perl 5.8.0 (released

 in 2002), the more verbose numeric form was the only supported syntax, which is why

 you might see it in older code.

 require v5.24.1; # run time version check

 require 5.24.1; # ditto

 require 5.024_001; # ditto; older syntax compatible

 with perl 5.6

 Otherwise, "require" demands that a library file be included if it hasn't already been

 included. The file is included via the do-FILE mechanism, which is essentially just a

 variety of "eval" with the caveat that lexical variables in the invoking script will

 be invisible to the included code. If it were implemented in pure Perl, it would have

 semantics similar to the following:

 use Carp 'croak';

 use version;

 sub require {

 my ($filename) = @_;

 if (my $version = eval { version->parse($filename) }) {

 if ($version > $^V) {

 my $vn = $version->normal;

 croak "Perl $vn required--this is only $^V, stopped";

 }

 return 1;

 }

 if (exists $INC{$filename}) {

 return 1 if $INC{$filename};

 croak "Compilation failed in require";

 }

 foreach $prefix (@INC) {

 if (ref($prefix)) {

 #... do other stuff - see text below Page 113/182

 }

 # (see text below about possible appending of .pmc

 # suffix to $filename)

 my $realfilename = "$prefix/$filename";

 next if ! -e $realfilename || -d _ || -b _;

 $INC{$filename} = $realfilename;

 my $result = do($realfilename);

 # but run in caller's namespace

 if (!defined $result) {

 $INC{$filename} = undef;

 croak $@ ? "$@Compilation failed in require"

 : "Can't locate $filename: $!\n";

 }

 if (!$result) {

 delete $INC{$filename};

 croak "$filename did not return true value";

 }

 $! = 0;

 return $result;

 }

 croak "Can't locate $filename in \@INC ...";

 }

 Note that the file will not be included twice under the same specified name.

 The file must return true as the last statement to indicate successful execution of

 any initialization code, so it's customary to end such a file with "1;" unless you're

 sure it'll return true otherwise. But it's better just to put the "1;", in case you

 add more statements.

 If EXPR is a bareword, "require" assumes a .pm extension and replaces "::" with "/" in

 the filename for you, to make it easy to load standard modules. This form of loading

 of modules does not risk altering your namespace, however it will autovivify the stash

 for the required module.

 In other words, if you try this:

 require Foo::Bar; # a splendid bareword Page 114/182

 The require function will actually look for the Foo/Bar.pm file in the directories

 specified in the @INC array, and it will autovivify the "Foo::Bar::" stash at compile

 time.

 But if you try this:

 my $class = 'Foo::Bar';

 require $class; # $class is not a bareword

 #or

 require "Foo::Bar"; # not a bareword because of the ""

 The require function will look for the Foo::Bar file in the @INC array and will

 complain about not finding Foo::Bar there. In this case you can do:

 eval "require $class";

 or you could do

 require "Foo/Bar.pm";

 Neither of these forms will autovivify any stashes at compile time and only have run

 time effects.

 Now that you understand how "require" looks for files with a bareword argument, there

 is a little extra functionality going on behind the scenes. Before "require" looks

 for a .pm extension, it will first look for a similar filename with a .pmc extension.

 If this file is found, it will be loaded in place of any file ending in a .pm

 extension. This applies to both the explicit "require "Foo/Bar.pm";" form and the

 "require Foo::Bar;" form.

 You can also insert hooks into the import facility by putting Perl code directly into

 the @INC array. There are three forms of hooks: subroutine references, array

 references, and blessed objects.

 Subroutine references are the simplest case. When the inclusion system walks through

 @INC and encounters a subroutine, this subroutine gets called with two parameters, the

 first a reference to itself, and the second the name of the file to be included (e.g.,

 Foo/Bar.pm). The subroutine should return either nothing or else a list of up to four

 values in the following order:

 1. A reference to a scalar, containing any initial source code to prepend to the file

 or generator output.

 2. A filehandle, from which the file will be read.

 3. A reference to a subroutine. If there is no filehandle (previous item), then this Page 115/182

 subroutine is expected to generate one line of source code per call, writing the

 line into $_ and returning 1, then finally at end of file returning 0. If there

 is a filehandle, then the subroutine will be called to act as a simple source

 filter, with the line as read in $_. Again, return 1 for each valid line, and 0

 after all lines have been returned. For historical reasons the subroutine will

 receive a meaningless argument (in fact always the numeric value zero) as $_[0].

 4. Optional state for the subroutine. The state is passed in as $_[1].

 If an empty list, "undef", or nothing that matches the first 3 values above is

 returned, then "require" looks at the remaining elements of @INC. Note that this

 filehandle must be a real filehandle (strictly a typeglob or reference to a typeglob,

 whether blessed or unblessed); tied filehandles will be ignored and processing will

 stop there.

 If the hook is an array reference, its first element must be a subroutine reference.

 This subroutine is called as above, but the first parameter is the array reference.

 This lets you indirectly pass arguments to the subroutine.

 In other words, you can write:

 push @INC, \&my_sub;

 sub my_sub {

 my ($coderef, $filename) = @_; # $coderef is \&my_sub

 ...

 }

 or:

 push @INC, [\&my_sub, $x, $y, ...];

 sub my_sub {

 my ($arrayref, $filename) = @_;

 # Retrieve $x, $y, ...

 my (undef, @parameters) = @$arrayref;

 ...

 }

 If the hook is an object, it must provide an "INC" method that will be called as

 above, the first parameter being the object itself. (Note that you must fully qualify

 the sub's name, as unqualified "INC" is always forced into package "main".) Here is a

 typical code layout: Page 116/182

 # In Foo.pm

 package Foo;

 sub new { ... }

 sub Foo::INC {

 my ($self, $filename) = @_;

 ...

 }

 # In the main program

 push @INC, Foo->new(...);

 These hooks are also permitted to set the %INC entry corresponding to the files they

 have loaded. See "%INC" in perlvar.

 For a yet-more-powerful import facility, see "use" and perlmod.

 reset EXPR

 reset

 Generally used in a "continue" block at the end of a loop to clear variables and reset

 "m?pattern?" searches so that they work again. The expression is interpreted as a

 list of single characters (hyphens allowed for ranges). All variables (scalars,

 arrays, and hashes) in the current package beginning with one of those letters are

 reset to their pristine state. If the expression is omitted, one-match searches

 ("m?pattern?") are reset to match again. Only resets variables or searches in the

 current package. Always returns 1. Examples:

 reset 'X'; # reset all X variables

 reset 'a-z'; # reset lower case variables

 reset; # just reset m?one-time? searches

 Resetting "A-Z" is not recommended because you'll wipe out your @ARGV and @INC arrays

 and your %ENV hash.

 Resets only package variables; lexical variables are unaffected, but they clean

 themselves up on scope exit anyway, so you'll probably want to use them instead. See

 "my".

 return EXPR

 return

 Returns from a subroutine, "eval", "do FILE", "sort" block or regex eval block (but

 not a "grep", "map", or "do BLOCK" block) with the value given in EXPR. Evaluation of Page 117/182

 EXPR may be in list, scalar, or void context, depending on how the return value will

 be used, and the context may vary from one execution to the next (see "wantarray").

 If no EXPR is given, returns an empty list in list context, the undefined value in

 scalar context, and (of course) nothing at all in void context.

 (In the absence of an explicit "return", a subroutine, "eval", or "do FILE"

 automatically returns the value of the last expression evaluated.)

 Unlike most named operators, this is also exempt from the looks-like-a-function rule,

 so "return ("foo")."bar"" will cause "bar" to be part of the argument to "return".

 reverse LIST

 In list context, returns a list value consisting of the elements of LIST in the

 opposite order. In scalar context, concatenates the elements of LIST and returns a

 string value with all characters in the opposite order.

 print join(", ", reverse "world", "Hello"); # Hello, world

 print scalar reverse "dlrow ,", "olleH"; # Hello, world

 Used without arguments in scalar context, "reverse" reverses $_.

 $_ = "dlrow ,olleH";

 print reverse; # No output, list context

 print scalar reverse; # Hello, world

 Note that reversing an array to itself (as in "@a = reverse @a") will preserve non-

 existent elements whenever possible; i.e., for non-magical arrays or for tied arrays

 with "EXISTS" and "DELETE" methods.

 This operator is also handy for inverting a hash, although there are some caveats. If

 a value is duplicated in the original hash, only one of those can be represented as a

 key in the inverted hash. Also, this has to unwind one hash and build a whole new

 one, which may take some time on a large hash, such as from a DBM file.

 my %by_name = reverse %by_address; # Invert the hash

 rewinddir DIRHANDLE

 Sets the current position to the beginning of the directory for the "readdir" routine

 on DIRHANDLE.

 Portability issues: "rewinddir" in perlport.

 rindex STR,SUBSTR,POSITION

 rindex STR,SUBSTR

 Works just like "index" except that it returns the position of the last occurrence of Page 118/182

 SUBSTR in STR. If POSITION is specified, returns the last occurrence beginning at or

 before that position.

 rmdir FILENAME

 rmdir

 Deletes the directory specified by FILENAME if that directory is empty. If it

 succeeds it returns true; otherwise it returns false and sets $! (errno). If FILENAME

 is omitted, uses $_.

 To remove a directory tree recursively ("rm -rf" on Unix) look at the "rmtree"

 function of the File::Path module.

 s///

 The substitution operator. See "Regexp Quote-Like Operators" in perlop.

 say FILEHANDLE LIST

 say FILEHANDLE

 say LIST

 say Just like "print", but implicitly appends a newline at the end of the LIST instead of

 any value "$\" might have. To use FILEHANDLE without a LIST to print the contents of

 $_ to it, you must use a bareword filehandle like "FH", not an indirect one like $fh.

 "say" is available only if the "say" feature is enabled or if it is prefixed with

 "CORE::". The "say" feature is enabled automatically with a "use v5.10" (or higher)

 declaration in the current scope.

 scalar EXPR

 Forces EXPR to be interpreted in scalar context and returns the value of EXPR.

 my @counts = (scalar @a, scalar @b, scalar @c);

 There is no equivalent operator to force an expression to be interpolated in list

 context because in practice, this is never needed. If you really wanted to do so,

 however, you could use the construction "@{[(some expression)]}", but usually a

 simple "(some expression)" suffices.

 Because "scalar" is a unary operator, if you accidentally use a parenthesized list for

 the EXPR, this behaves as a scalar comma expression, evaluating all but the last

 element in void context and returning the final element evaluated in scalar context.

 This is seldom what you want.

 The following single statement:

 print uc(scalar(foo(), $bar)), $baz; Page 119/182

 is the moral equivalent of these two:

 foo();

 print(uc($bar), $baz);

 See perlop for more details on unary operators and the comma operator, and perldata

 for details on evaluating a hash in scalar context.

 seek FILEHANDLE,POSITION,WHENCE

 Sets FILEHANDLE's position, just like the fseek(3) call of C "stdio". FILEHANDLE may

 be an expression whose value gives the name of the filehandle. The values for WHENCE

 are 0 to set the new position in bytes to POSITION; 1 to set it to the current

 position plus POSITION; and 2 to set it to EOF plus POSITION, typically negative. For

 WHENCE you may use the constants "SEEK_SET", "SEEK_CUR", and "SEEK_END" (start of the

 file, current position, end of the file) from the Fcntl module. Returns 1 on success,

 false otherwise.

 Note the emphasis on bytes: even if the filehandle has been set to operate on

 characters (for example using the ":encoding(UTF-8)" I/O layer), the "seek", "tell",

 and "sysseek" family of functions use byte offsets, not character offsets, because

 seeking to a character offset would be very slow in a UTF-8 file.

 If you want to position the file for "sysread" or "syswrite", don't use "seek",

 because buffering makes its effect on the file's read-write position unpredictable and

 non-portable. Use "sysseek" instead.

 Due to the rules and rigors of ANSI C, on some systems you have to do a seek whenever

 you switch between reading and writing. Amongst other things, this may have the

 effect of calling stdio's clearerr(3). A WHENCE of 1 ("SEEK_CUR") is useful for not

 moving the file position:

 seek($fh, 0, 1);

 This is also useful for applications emulating "tail -f". Once you hit EOF on your

 read and then sleep for a while, you (probably) have to stick in a dummy "seek" to

 reset things. The "seek" doesn't change the position, but it does clear the end-of-

 file condition on the handle, so that the next "readline FILE" makes Perl try again to

 read something. (We hope.)

 If that doesn't work (some I/O implementations are particularly cantankerous), you

 might need something like this:

 for (;;) { Page 120/182

 for ($curpos = tell($fh); $_ = readline($fh);

 $curpos = tell($fh)) {

 # search for some stuff and put it into files

 }

 sleep($for_a_while);

 seek($fh, $curpos, 0);

 }

 seekdir DIRHANDLE,POS

 Sets the current position for the "readdir" routine on DIRHANDLE. POS must be a value

 returned by "telldir". "seekdir" also has the same caveats about possible directory

 compaction as the corresponding system library routine.

 select FILEHANDLE

 select

 Returns the currently selected filehandle. If FILEHANDLE is supplied, sets the new

 current default filehandle for output. This has two effects: first, a "write" or a

 "print" without a filehandle default to this FILEHANDLE. Second, references to

 variables related to output will refer to this output channel.

 For example, to set the top-of-form format for more than one output channel, you might

 do the following:

 select(REPORT1);

 $^ = 'report1_top';

 select(REPORT2);

 $^ = 'report2_top';

 FILEHANDLE may be an expression whose value gives the name of the actual filehandle.

 Thus:

 my $oldfh = select(STDERR); $| = 1; select($oldfh);

 Some programmers may prefer to think of filehandles as objects with methods,

 preferring to write the last example as:

 STDERR->autoflush(1);

 (Prior to Perl version 5.14, you have to "use IO::Handle;" explicitly first.)

 Portability issues: "select" in perlport.

 select RBITS,WBITS,EBITS,TIMEOUT

 This calls the select(2) syscall with the bit masks specified, which can be Page 121/182

 constructed using "fileno" and "vec", along these lines:

 my $rin = my $win = my $ein = '';

 vec($rin, fileno(STDIN), 1) = 1;

 vec($win, fileno(STDOUT), 1) = 1;

 $ein = $rin | $win;

 If you want to select on many filehandles, you may wish to write a subroutine like

 this:

 sub fhbits {

 my @fhlist = @_;

 my $bits = "";

 for my $fh (@fhlist) {

 vec($bits, fileno($fh), 1) = 1;

 }

 return $bits;

 }

 my $rin = fhbits(*STDIN, $tty, $mysock);

 The usual idiom is:

 my ($nfound, $timeleft) =

 select(my $rout = $rin, my $wout = $win, my $eout = $ein,

 $timeout);

 or to block until something becomes ready just do this

 my $nfound =

 select(my $rout = $rin, my $wout = $win, my $eout = $ein, undef);

 Most systems do not bother to return anything useful in $timeleft, so calling "select"

 in scalar context just returns $nfound.

 Any of the bit masks can also be "undef". The timeout, if specified, is in seconds,

 which may be fractional. Note: not all implementations are capable of returning the

 $timeleft. If not, they always return $timeleft equal to the supplied $timeout.

 You can effect a sleep of 250 milliseconds this way:

 select(undef, undef, undef, 0.25);

 Note that whether "select" gets restarted after signals (say, SIGALRM) is

 implementation-dependent. See also perlport for notes on the portability of "select".

 On error, "select" behaves just like select(2): it returns "-1" and sets $!. Page 122/182

 On some Unixes, select(2) may report a socket file descriptor as "ready for reading"

 even when no data is available, and thus any subsequent "read" would block. This can

 be avoided if you always use "O_NONBLOCK" on the socket. See select(2) and fcntl(2)

 for further details.

 The standard "IO::Select" module provides a user-friendlier interface to "select",

 mostly because it does all the bit-mask work for you.

 WARNING: One should not attempt to mix buffered I/O (like "read" or "readline") with

 "select", except as permitted by POSIX, and even then only on POSIX systems. You have

 to use "sysread" instead.

 Portability issues: "select" in perlport.

 semctl ID,SEMNUM,CMD,ARG

 Calls the System V IPC function semctl(2). You'll probably have to say

 use IPC::SysV;

 first to get the correct constant definitions. If CMD is IPC_STAT or GETALL, then ARG

 must be a variable that will hold the returned semid_ds structure or semaphore value

 array. Returns like "ioctl": the undefined value for error, ""0 but true"" for zero,

 or the actual return value otherwise. The ARG must consist of a vector of native

 short integers, which may be created with "pack("s!",(0)x$nsem)". See also "SysV IPC"

 in perlipc and the documentation for "IPC::SysV" and "IPC::Semaphore".

 Portability issues: "semctl" in perlport.

 semget KEY,NSEMS,FLAGS

 Calls the System V IPC function semget(2). Returns the semaphore id, or the undefined

 value on error. See also "SysV IPC" in perlipc and the documentation for "IPC::SysV"

 and "IPC::Semaphore".

 Portability issues: "semget" in perlport.

 semop KEY,OPSTRING

 Calls the System V IPC function semop(2) for semaphore operations such as signalling

 and waiting. OPSTRING must be a packed array of semop structures. Each semop

 structure can be generated with "pack("s!3", $semnum, $semop, $semflag)". The length

 of OPSTRING implies the number of semaphore operations. Returns true if successful,

 false on error. As an example, the following code waits on semaphore $semnum of

 semaphore id $semid:

 my $semop = pack("s!3", $semnum, -1, 0); Page 123/182

 die "Semaphore trouble: $!\n" unless semop($semid, $semop);

 To signal the semaphore, replace "-1" with 1. See also "SysV IPC" in perlipc and the

 documentation for "IPC::SysV" and "IPC::Semaphore".

 Portability issues: "semop" in perlport.

 send SOCKET,MSG,FLAGS,TO

 send SOCKET,MSG,FLAGS

 Sends a message on a socket. Attempts to send the scalar MSG to the SOCKET

 filehandle. Takes the same flags as the system call of the same name. On unconnected

 sockets, you must specify a destination to send to, in which case it does a sendto(2)

 syscall. Returns the number of characters sent, or the undefined value on error. The

 sendmsg(2) syscall is currently unimplemented. See "UDP: Message Passing" in perlipc

 for examples.

 Note that if the socket has been marked as ":utf8", "send" will throw an exception.

 The ":encoding(...)" layer implicitly introduces the ":utf8" layer. See "binmode".

 setpgrp PID,PGRP

 Sets the current process group for the specified PID, 0 for the current process.

 Raises an exception when used on a machine that doesn't implement POSIX setpgid(2) or

 BSD setpgrp(2). If the arguments are omitted, it defaults to "0,0". Note that the

 BSD 4.2 version of "setpgrp" does not accept any arguments, so only "setpgrp(0,0)" is

 portable. See also "POSIX::setsid()".

 Portability issues: "setpgrp" in perlport.

 setpriority WHICH,WHO,PRIORITY

 Sets the current priority for a process, a process group, or a user. (See

 setpriority(2).) Raises an exception when used on a machine that doesn't implement

 setpriority(2).

 "WHICH" can be any of "PRIO_PROCESS", "PRIO_PGRP" or "PRIO_USER" imported from

 "RESOURCE CONSTANTS" in POSIX.

 Portability issues: "setpriority" in perlport.

 setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL

 Sets the socket option requested. Returns "undef" on error. Use integer constants

 provided by the "Socket" module for LEVEL and OPNAME. Values for LEVEL can also be

 obtained from getprotobyname. OPTVAL might either be a packed string or an integer.

 An integer OPTVAL is shorthand for pack("i", OPTVAL). Page 124/182

 An example disabling Nagle's algorithm on a socket:

 use Socket qw(IPPROTO_TCP TCP_NODELAY);

 setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

 Portability issues: "setsockopt" in perlport.

 shift ARRAY

 shift

 Shifts the first value of the array off and returns it, shortening the array by 1 and

 moving everything down. If there are no elements in the array, returns the undefined

 value. If ARRAY is omitted, shifts the @_ array within the lexical scope of

 subroutines and formats, and the @ARGV array outside a subroutine and also within the

 lexical scopes established by the "eval STRING", "BEGIN {}", "INIT {}", "CHECK {}",

 "UNITCHECK {}", and "END {}" constructs.

 Starting with Perl 5.14, an experimental feature allowed "shift" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 See also "unshift", "push", and "pop". "shift" and "unshift" do the same thing to the

 left end of an array that "pop" and "push" do to the right end.

 shmctl ID,CMD,ARG

 Calls the System V IPC function shmctl. You'll probably have to say

 use IPC::SysV;

 first to get the correct constant definitions. If CMD is "IPC_STAT", then ARG must be

 a variable that will hold the returned "shmid_ds" structure. Returns like ioctl:

 "undef" for error; "0 but true" for zero; and the actual return value otherwise. See

 also "SysV IPC" in perlipc and the documentation for "IPC::SysV".

 Portability issues: "shmctl" in perlport.

 shmget KEY,SIZE,FLAGS

 Calls the System V IPC function shmget. Returns the shared memory segment id, or

 "undef" on error. See also "SysV IPC" in perlipc and the documentation for

 "IPC::SysV".

 Portability issues: "shmget" in perlport.

 shmread ID,VAR,POS,SIZE

 shmwrite ID,STRING,POS,SIZE

 Reads or writes the System V shared memory segment ID starting at position POS for Page 125/182

 size SIZE by attaching to it, copying in/out, and detaching from it. When reading,

 VAR must be a variable that will hold the data read. When writing, if STRING is too

 long, only SIZE bytes are used; if STRING is too short, nulls are written to fill out

 SIZE bytes. Return true if successful, false on error. "shmread" taints the

 variable. See also "SysV IPC" in perlipc and the documentation for "IPC::SysV" and

 the "IPC::Shareable" module from CPAN.

 Portability issues: "shmread" in perlport and "shmwrite" in perlport.

 shutdown SOCKET,HOW

 Shuts down a socket connection in the manner indicated by HOW, which has the same

 interpretation as in the syscall of the same name.

 shutdown($socket, 0); # I/we have stopped reading data

 shutdown($socket, 1); # I/we have stopped writing data

 shutdown($socket, 2); # I/we have stopped using this socket

 This is useful with sockets when you want to tell the other side you're done writing

 but not done reading, or vice versa. It's also a more insistent form of close because

 it also disables the file descriptor in any forked copies in other processes.

 Returns 1 for success; on error, returns "undef" if the first argument is not a valid

 filehandle, or returns 0 and sets $! for any other failure.

 sin EXPR

 sin Returns the sine of EXPR (expressed in radians). If EXPR is omitted, returns sine of

 $_.

 For the inverse sine operation, you may use the "Math::Trig::asin" function, or use

 this relation:

 sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }

 sleep EXPR

 sleep

 Causes the script to sleep for (integer) EXPR seconds, or forever if no argument is

 given. Returns the integer number of seconds actually slept.

 EXPR should be a positive integer. If called with a negative integer, "sleep" does not

 sleep but instead emits a warning, sets $! ("errno"), and returns zero.

 "sleep 0" is permitted, but a function call to the underlying platform implementation

 still occurs, with any side effects that may have. "sleep 0" is therefore not exactly

 identical to not sleeping at all. Page 126/182

 May be interrupted if the process receives a signal such as "SIGALRM".

 eval {

 local $SIG{ALRM} = sub { die "Alarm!\n" };

 sleep;

 };

 die $@ unless $@ eq "Alarm!\n";

 You probably cannot mix "alarm" and "sleep" calls, because "sleep" is often

 implemented using "alarm".

 On some older systems, it may sleep up to a full second less than what you requested,

 depending on how it counts seconds. Most modern systems always sleep the full amount.

 They may appear to sleep longer than that, however, because your process might not be

 scheduled right away in a busy multitasking system.

 For delays of finer granularity than one second, the Time::HiRes module (from CPAN,

 and starting from Perl 5.8 part of the standard distribution) provides "usleep". You

 may also use Perl's four-argument version of "select" leaving the first three

 arguments undefined, or you might be able to use the "syscall" interface to access

 setitimer(2) if your system supports it. See perlfaq8 for details.

 See also the POSIX module's "pause" function.

 socket SOCKET,DOMAIN,TYPE,PROTOCOL

 Opens a socket of the specified kind and attaches it to filehandle SOCKET. DOMAIN,

 TYPE, and PROTOCOL are specified the same as for the syscall of the same name. You

 should "use Socket" first to get the proper definitions imported. See the examples in

 "Sockets: Client/Server Communication" in perlipc.

 On systems that support a close-on-exec flag on files, the flag will be set for the

 newly opened file descriptor, as determined by the value of $^F. See "$^F" in

 perlvar.

 socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL

 Creates an unnamed pair of sockets in the specified domain, of the specified type.

 DOMAIN, TYPE, and PROTOCOL are specified the same as for the syscall of the same name.

 If unimplemented, raises an exception. Returns true if successful.

 On systems that support a close-on-exec flag on files, the flag will be set for the

 newly opened file descriptors, as determined by the value of $^F. See "$^F" in

 perlvar. Page 127/182

 Some systems define "pipe" in terms of "socketpair", in which a call to "pipe($rdr,

 $wtr)" is essentially:

 use Socket;

 socketpair(my $rdr, my $wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);

 shutdown($rdr, 1); # no more writing for reader

 shutdown($wtr, 0); # no more reading for writer

 See perlipc for an example of socketpair use. Perl 5.8 and later will emulate

 socketpair using IP sockets to localhost if your system implements sockets but not

 socketpair.

 Portability issues: "socketpair" in perlport.

 sort SUBNAME LIST

 sort BLOCK LIST

 sort LIST

 In list context, this sorts the LIST and returns the sorted list value. In scalar

 context, the behaviour of "sort" is undefined.

 If SUBNAME or BLOCK is omitted, "sort"s in standard string comparison order. If

 SUBNAME is specified, it gives the name of a subroutine that returns an integer less

 than, equal to, or greater than 0, depending on how the elements of the list are to be

 ordered. (The "<=>" and "cmp" operators are extremely useful in such routines.)

 SUBNAME may be a scalar variable name (unsubscripted), in which case the value

 provides the name of (or a reference to) the actual subroutine to use. In place of a

 SUBNAME, you can provide a BLOCK as an anonymous, in-line sort subroutine.

 If the subroutine's prototype is "($$)", the elements to be compared are passed by

 reference in @_, as for a normal subroutine. This is slower than unprototyped

 subroutines, where the elements to be compared are passed into the subroutine as the

 package global variables $a and $b (see example below).

 If the subroutine is an XSUB, the elements to be compared are pushed on to the stack,

 the way arguments are usually passed to XSUBs. $a and $b are not set.

 The values to be compared are always passed by reference and should not be modified.

 You also cannot exit out of the sort block or subroutine using any of the loop control

 operators described in perlsyn or with "goto".

 When "use locale" (but not "use locale ':not_characters'") is in effect, "sort LIST"

 sorts LIST according to the current collation locale. See perllocale. Page 128/182

 "sort" returns aliases into the original list, much as a for loop's index variable

 aliases the list elements. That is, modifying an element of a list returned by "sort"

 (for example, in a "foreach", "map" or "grep") actually modifies the element in the

 original list. This is usually something to be avoided when writing clear code.

 Historically Perl has varied in whether sorting is stable by default. If stability

 matters, it can be controlled explicitly by using the sort pragma.

 Examples:

 # sort lexically

 my @articles = sort @files;

 # same thing, but with explicit sort routine

 my @articles = sort {$a cmp $b} @files;

 # now case-insensitively

 my @articles = sort {fc($a) cmp fc($b)} @files;

 # same thing in reversed order

 my @articles = sort {$b cmp $a} @files;

 # sort numerically ascending

 my @articles = sort {$a <=> $b} @files;

 # sort numerically descending

 my @articles = sort {$b <=> $a} @files;

 # this sorts the %age hash by value instead of key

 # using an in-line function

 my @eldest = sort { $age{$b} <=> $age{$a} } keys %age;

 # sort using explicit subroutine name

 sub byage {

 $age{$a} <=> $age{$b}; # presuming numeric

 }

 my @sortedclass = sort byage @class;

 sub backwards { $b cmp $a }

 my @harry = qw(dog cat x Cain Abel);

 my @george = qw(gone chased yz Punished Axed);

 print sort @harry;

 # prints AbelCaincatdogx

 print sort backwards @harry; Page 129/182

 # prints xdogcatCainAbel

 print sort @george, 'to', @harry;

 # prints AbelAxedCainPunishedcatchaseddoggonetoxyz

 # inefficiently sort by descending numeric compare using

 # the first integer after the first = sign, or the

 # whole record case-insensitively otherwise

 my @new = sort {

 ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]

 ||

 fc($a) cmp fc($b)

 } @old;

 # same thing, but much more efficiently;

 # we'll build auxiliary indices instead

 # for speed

 my (@nums, @caps);

 for (@old) {

 push @nums, (/=(\d+)/ ? $1 : undef);

 push @caps, fc($_);

 }

 my @new = @old[sort {

 $nums[$b] <=> $nums[$a]

 ||

 $caps[$a] cmp $caps[$b]

 } 0..$#old

];

 # same thing, but without any temps

 my @new = map { $_->[0] }

 sort { $b->[1] <=> $a->[1]

 ||

 $a->[2] cmp $b->[2]

 } map { [$_, /=(\d+)/, fc($_)] } @old;

 # using a prototype allows you to use any comparison subroutine

 # as a sort subroutine (including other package's subroutines) Page 130/182

 package Other;

 sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are

 # not set here

 package main;

 my @new = sort Other::backwards @old;

 # guarantee stability

 use sort 'stable';

 my @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;

 Warning: syntactical care is required when sorting the list returned from a function.

 If you want to sort the list returned by the function call "find_records(@key)", you

 can use:

 my @contact = sort { $a cmp $b } find_records @key;

 my @contact = sort +find_records(@key);

 my @contact = sort &find_records(@key);

 my @contact = sort(find_records(@key));

 If instead you want to sort the array @key with the comparison routine

 "find_records()" then you can use:

 my @contact = sort { find_records() } @key;

 my @contact = sort find_records(@key);

 my @contact = sort(find_records @key);

 my @contact = sort(find_records (@key));

 $a and $b are set as package globals in the package the sort() is called from. That

 means $main::a and $main::b (or $::a and $::b) in the "main" package, $FooPack::a and

 $FooPack::b in the "FooPack" package, etc. If the sort block is in scope of a "my" or

 "state" declaration of $a and/or $b, you must spell out the full name of the variables

 in the sort block :

 package main;

 my $a = "C"; # DANGER, Will Robinson, DANGER !!!

 print sort { $a cmp $b } qw(A C E G B D F H);

 # WRONG

 sub badlexi { $a cmp $b }

 print sort badlexi qw(A C E G B D F H);

 # WRONG Page 131/182

 # the above prints BACFEDGH or some other incorrect ordering

 print sort { $::a cmp $::b } qw(A C E G B D F H);

 # OK

 print sort { our $a cmp our $b } qw(A C E G B D F H);

 # also OK

 print sort { our ($a, $b); $a cmp $b } qw(A C E G B D F H);

 # also OK

 sub lexi { our $a cmp our $b }

 print sort lexi qw(A C E G B D F H);

 # also OK

 # the above print ABCDEFGH

 With proper care you may mix package and my (or state) $a and/or $b:

 my $a = {

 tiny => -2,

 small => -1,

 normal => 0,

 big => 1,

 huge => 2

 };

 say sort { $a->{our $a} <=> $a->{our $b} }

 qw{ huge normal tiny small big};

 # prints tinysmallnormalbighuge

 $a and $b are implicitly local to the sort() execution and regain their former values

 upon completing the sort.

 Sort subroutines written using $a and $b are bound to their calling package. It is

 possible, but of limited interest, to define them in a different package, since the

 subroutine must still refer to the calling package's $a and $b :

 package Foo;

 sub lexi { $Bar::a cmp $Bar::b }

 package Bar;

 ... sort Foo::lexi ...

 Use the prototyped versions (see above) for a more generic alternative.

 The comparison function is required to behave. If it returns inconsistent results Page 132/182

 (sometimes saying $x[1] is less than $x[2] and sometimes saying the opposite, for

 example) the results are not well-defined.

 Because "<=>" returns "undef" when either operand is "NaN" (not-a-number), be careful

 when sorting with a comparison function like "$a <=> $b" any lists that might contain

 a "NaN". The following example takes advantage that "NaN != NaN" to eliminate any

 "NaN"s from the input list.

 my @result = sort { $a <=> $b } grep { $_ == $_ } @input;

 In this version of perl, the "sort" function is implemented via the mergesort

 algorithm.

 splice ARRAY,OFFSET,LENGTH,LIST

 splice ARRAY,OFFSET,LENGTH

 splice ARRAY,OFFSET

 splice ARRAY

 Removes the elements designated by OFFSET and LENGTH from an array, and replaces them

 with the elements of LIST, if any. In list context, returns the elements removed from

 the array. In scalar context, returns the last element removed, or "undef" if no

 elements are removed. The array grows or shrinks as necessary. If OFFSET is negative

 then it starts that far from the end of the array. If LENGTH is omitted, removes

 everything from OFFSET onward. If LENGTH is negative, removes the elements from

 OFFSET onward except for -LENGTH elements at the end of the array. If both OFFSET and

 LENGTH are omitted, removes everything. If OFFSET is past the end of the array and a

 LENGTH was provided, Perl issues a warning, and splices at the end of the array.

 The following equivalences hold (assuming "$#a >= $i")

 push(@a,$x,$y) splice(@a,@a,0,$x,$y)

 pop(@a) splice(@a,-1)

 shift(@a) splice(@a,0,1)

 unshift(@a,$x,$y) splice(@a,0,0,$x,$y)

 $a[$i] = $y splice(@a,$i,1,$y)

 "splice" can be used, for example, to implement n-ary queue processing:

 sub nary_print {

 my $n = shift;

 while (my @next_n = splice @_, 0, $n) {

 say join q{ -- }, @next_n; Page 133/182

 }

 }

 nary_print(3, qw(a b c d e f g h));

 # prints:

 # a -- b -- c

 # d -- e -- f

 # g -- h

 Starting with Perl 5.14, an experimental feature allowed "splice" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 split /PATTERN/,EXPR,LIMIT

 split /PATTERN/,EXPR

 split /PATTERN/

 split

 Splits the string EXPR into a list of strings and returns the list in list context, or

 the size of the list in scalar context. (Prior to Perl 5.11, it also overwrote @_

 with the list in void and scalar context. If you target old perls, beware.)

 If only PATTERN is given, EXPR defaults to $_.

 Anything in EXPR that matches PATTERN is taken to be a separator that separates the

 EXPR into substrings (called "fields") that do not include the separator. Note that a

 separator may be longer than one character or even have no characters at all (the

 empty string, which is a zero-width match).

 The PATTERN need not be constant; an expression may be used to specify a pattern that

 varies at runtime.

 If PATTERN matches the empty string, the EXPR is split at the match position (between

 characters). As an example, the following:

 my @x = split(/b/, "abc"); # ("a", "c")

 uses the "b" in 'abc' as a separator to produce the list ("a", "c"). However, this:

 my @x = split(//, "abc"); # ("a", "b", "c")

 uses empty string matches as separators; thus, the empty string may be used to split

 EXPR into a list of its component characters.

 As a special case for "split", the empty pattern given in match operator syntax ("//")

 specifically matches the empty string, which is contrary to its usual interpretation Page 134/182

 as the last successful match.

 If PATTERN is "/^/", then it is treated as if it used the multiline modifier ("/^/m"),

 since it isn't much use otherwise.

 "/m" and any of the other pattern modifiers valid for "qr" (summarized in

 "qr/STRING/msixpodualn" in perlop) may be specified explicitly.

 As another special case, "split" emulates the default behavior of the command line

 tool awk when the PATTERN is either omitted or a string composed of a single space

 character (such as '?' or "\x20", but not e.g. "/?/"). In this case, any leading

 whitespace in EXPR is removed before splitting occurs, and the PATTERN is instead

 treated as if it were "/\s+/"; in particular, this means that any contiguous

 whitespace (not just a single space character) is used as a separator.

 my @x = split(" ", " Quick brown fox\n");

 # ("Quick", "brown", "fox")

 my @x = split(" ", "RED\tGREEN\tBLUE");

 # ("RED", "GREEN", "BLUE")

 Using split in this fashion is very similar to how "qw//" works.

 However, this special treatment can be avoided by specifying the pattern "/?/" instead

 of the string "?", thereby allowing only a single space character to be a separator.

 In earlier Perls this special case was restricted to the use of a plain "?" as the

 pattern argument to split; in Perl 5.18.0 and later this special case is triggered by

 any expression which evaluates to the simple string "?".

 As of Perl 5.28, this special-cased whitespace splitting works as expected in the

 scope of "use?feature?'unicode_strings'". In previous versions, and outside the scope

 of that feature, it exhibits "The "Unicode Bug"" in perlunicode: characters that are

 whitespace according to Unicode rules but not according to ASCII rules can be treated

 as part of fields rather than as field separators, depending on the string's internal

 encoding.

 If omitted, PATTERN defaults to a single space, "?", triggering the previously

 described awk emulation.

 If LIMIT is specified and positive, it represents the maximum number of fields into

 which the EXPR may be split; in other words, LIMIT is one greater than the maximum

 number of times EXPR may be split. Thus, the LIMIT value 1 means that EXPR may be

 split a maximum of zero times, producing a maximum of one field (namely, the entire Page 135/182

 value of EXPR). For instance:

 my @x = split(//, "abc", 1); # ("abc")

 my @x = split(//, "abc", 2); # ("a", "bc")

 my @x = split(//, "abc", 3); # ("a", "b", "c")

 my @x = split(//, "abc", 4); # ("a", "b", "c")

 If LIMIT is negative, it is treated as if it were instead arbitrarily large; as many

 fields as possible are produced.

 If LIMIT is omitted (or, equivalently, zero), then it is usually treated as if it were

 instead negative but with the exception that trailing empty fields are stripped (empty

 leading fields are always preserved); if all fields are empty, then all fields are

 considered to be trailing (and are thus stripped in this case). Thus, the following:

 my @x = split(/,/, "a,b,c,,,"); # ("a", "b", "c")

 produces only a three element list.

 my @x = split(/,/, "a,b,c,,,", -1); # ("a", "b", "c", "", "", "")

 produces a six element list.

 In time-critical applications, it is worthwhile to avoid splitting into more fields

 than necessary. Thus, when assigning to a list, if LIMIT is omitted (or zero), then

 LIMIT is treated as though it were one larger than the number of variables in the

 list; for the following, LIMIT is implicitly 3:

 my ($login, $passwd) = split(/:/);

 Note that splitting an EXPR that evaluates to the empty string always produces zero

 fields, regardless of the LIMIT specified.

 An empty leading field is produced when there is a positive-width match at the

 beginning of EXPR. For instance:

 my @x = split(/ /, " abc"); # ("", "abc")

 splits into two elements. However, a zero-width match at the beginning of EXPR never

 produces an empty field, so that:

 my @x = split(//, " abc"); # (" ", "a", "b", "c")

 splits into four elements instead of five.

 An empty trailing field, on the other hand, is produced when there is a match at the

 end of EXPR, regardless of the length of the match (of course, unless a non-zero LIMIT

 is given explicitly, such fields are removed, as in the last example). Thus:

 my @x = split(//, " abc", -1); # (" ", "a", "b", "c", "") Page 136/182

 If the PATTERN contains capturing groups, then for each separator, an additional field

 is produced for each substring captured by a group (in the order in which the groups

 are specified, as per backreferences); if any group does not match, then it captures

 the "undef" value instead of a substring. Also, note that any such additional field

 is produced whenever there is a separator (that is, whenever a split occurs), and such

 an additional field does not count towards the LIMIT. Consider the following

 expressions evaluated in list context (each returned list is provided in the

 associated comment):

 my @x = split(/-|,/ , "1-10,20", 3);

 # ("1", "10", "20")

 my @x = split(/(-|,)/ , "1-10,20", 3);

 # ("1", "-", "10", ",", "20")

 my @x = split(/-|(,)/ , "1-10,20", 3);

 # ("1", undef, "10", ",", "20")

 my @x = split(/(-)|,/ , "1-10,20", 3);

 # ("1", "-", "10", undef, "20")

 my @x = split(/(-)|(,)/, "1-10,20", 3);

 # ("1", "-", undef, "10", undef, ",", "20")

 sprintf FORMAT, LIST

 Returns a string formatted by the usual "printf" conventions of the C library function

 "sprintf". See below for more details and see sprintf(3) or printf(3) on your system

 for an explanation of the general principles.

 For example:

 # Format number with up to 8 leading zeroes

 my $result = sprintf("%08d", $number);

 # Round number to 3 digits after decimal point

 my $rounded = sprintf("%.3f", $number);

 Perl does its own "sprintf" formatting: it emulates the C function sprintf(3), but

 doesn't use it except for floating-point numbers, and even then only standard

 modifiers are allowed. Non-standard extensions in your local sprintf(3) are therefore

 unavailable from Perl.

 Unlike "printf", "sprintf" does not do what you probably mean when you pass it an

 array as your first argument. The array is given scalar context, and instead of using Page 137/182

 the 0th element of the array as the format, Perl will use the count of elements in the

 array as the format, which is almost never useful.

 Perl's "sprintf" permits the following universally-known conversions:

 %% a percent sign

 %c a character with the given number

 %s a string

 %d a signed integer, in decimal

 %u an unsigned integer, in decimal

 %o an unsigned integer, in octal

 %x an unsigned integer, in hexadecimal

 %e a floating-point number, in scientific notation

 %f a floating-point number, in fixed decimal notation

 %g a floating-point number, in %e or %f notation

 In addition, Perl permits the following widely-supported conversions:

 %X like %x, but using upper-case letters

 %E like %e, but using an upper-case "E"

 %G like %g, but with an upper-case "E" (if applicable)

 %b an unsigned integer, in binary

 %B like %b, but using an upper-case "B" with the # flag

 %p a pointer (outputs the Perl value's address in hexadecimal)

 %n special: *stores* the number of characters output so far

 into the next argument in the parameter list

 %a hexadecimal floating point

 %A like %a, but using upper-case letters

 Finally, for backward (and we do mean "backward") compatibility, Perl permits these

 unnecessary but widely-supported conversions:

 %i a synonym for %d

 %D a synonym for %ld

 %U a synonym for %lu

 %O a synonym for %lo

 %F a synonym for %f

 Note that the number of exponent digits in the scientific notation produced by %e, %E,

 %g and %G for numbers with the modulus of the exponent less than 100 is system- Page 138/182

 dependent: it may be three or less (zero-padded as necessary). In other words, 1.23

 times ten to the 99th may be either "1.23e99" or "1.23e099". Similarly for %a and %A:

 the exponent or the hexadecimal digits may float: especially the "long doubles" Perl

 configuration option may cause surprises.

 Between the "%" and the format letter, you may specify several additional attributes

 controlling the interpretation of the format. In order, these are:

 format parameter index

 An explicit format parameter index, such as "2$". By default sprintf will format

 the next unused argument in the list, but this allows you to take the arguments

 out of order:

 printf '%2$d %1$d', 12, 34; # prints "34 12"

 printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"

 flags

 one or more of:

 space prefix non-negative number with a space

 + prefix non-negative number with a plus sign

 - left-justify within the field

 0 use zeros, not spaces, to right-justify

 # ensure the leading "0" for any octal,

 prefix non-zero hexadecimal with "0x" or "0X",

 prefix non-zero binary with "0b" or "0B"

 For example:

 printf '<% d>', 12; # prints "< 12>"

 printf '<% d>', 0; # prints "< 0>"

 printf '<% d>', -12; # prints "<-12>"

 printf '<%+d>', 12; # prints "<+12>"

 printf '<%+d>', 0; # prints "<+0>"

 printf '<%+d>', -12; # prints "<-12>"

 printf '<%6s>', 12; # prints "< 12>"

 printf '<%-6s>', 12; # prints "<12 >"

 printf '<%06s>', 12; # prints "<000012>"

 printf '<%#o>', 12; # prints "<014>"

 printf '<%#x>', 12; # prints "<0xc>" Page 139/182

 printf '<%#X>', 12; # prints "<0XC>"

 printf '<%#b>', 12; # prints "<0b1100>"

 printf '<%#B>', 12; # prints "<0B1100>"

 When a space and a plus sign are given as the flags at once, the space is ignored.

 printf '<%+ d>', 12; # prints "<+12>"

 printf '<% +d>', 12; # prints "<+12>"

 When the # flag and a precision are given in the %o conversion, the precision is

 incremented if it's necessary for the leading "0".

 printf '<%#.5o>', 012; # prints "<00012>"

 printf '<%#.5o>', 012345; # prints "<012345>"

 printf '<%#.0o>', 0; # prints "<0>"

 vector flag

 This flag tells Perl to interpret the supplied string as a vector of integers, one

 for each character in the string. Perl applies the format to each integer in

 turn, then joins the resulting strings with a separator (a dot "." by default).

 This can be useful for displaying ordinal values of characters in arbitrary

 strings:

 printf "%vd", "AB\x{100}"; # prints "65.66.256"

 printf "version is v%vd\n", $^V; # Perl's version

 Put an asterisk "*" before the "v" to override the string to use to separate the

 numbers:

 printf "address is %*vX\n", ":", $addr; # IPv6 address

 printf "bits are %0*v8b\n", " ", $bits; # random bitstring

 You can also explicitly specify the argument number to use for the join string

 using something like "*2$v"; for example:

 printf '%*4$vX %*4$vX %*4$vX', # 3 IPv6 addresses

 @addr[1..3], ":";

 (minimum) width

 Arguments are usually formatted to be only as wide as required to display the

 given value. You can override the width by putting a number here, or get the

 width from the next argument (with "*") or from a specified argument (e.g., with

 "*2$"):

 printf "<%s>", "a"; # prints "<a>" Page 140/182

 printf "<%6s>", "a"; # prints "< a>"

 printf "<%*s>", 6, "a"; # prints "< a>"

 printf '<%*2$s>', "a", 6; # prints "< a>"

 printf "<%2s>", "long"; # prints "<long>" (does not truncate)

 If a field width obtained through "*" is negative, it has the same effect as the

 "-" flag: left-justification.

 precision, or maximum width

 You can specify a precision (for numeric conversions) or a maximum width (for

 string conversions) by specifying a "." followed by a number. For floating-point

 formats except "g" and "G", this specifies how many places right of the decimal

 point to show (the default being 6). For example:

 # these examples are subject to system-specific variation

 printf '<%f>', 1; # prints "<1.000000>"

 printf '<%.1f>', 1; # prints "<1.0>"

 printf '<%.0f>', 1; # prints "<1>"

 printf '<%e>', 10; # prints "<1.000000e+01>"

 printf '<%.1e>', 10; # prints "<1.0e+01>"

 For "g" and "G", this specifies the maximum number of significant digits to show;

 for example:

 # These examples are subject to system-specific variation.

 printf '<%g>', 1; # prints "<1>"

 printf '<%.10g>', 1; # prints "<1>"

 printf '<%g>', 100; # prints "<100>"

 printf '<%.1g>', 100; # prints "<1e+02>"

 printf '<%.2g>', 100.01; # prints "<1e+02>"

 printf '<%.5g>', 100.01; # prints "<100.01>"

 printf '<%.4g>', 100.01; # prints "<100>"

 printf '<%.1g>', 0.0111; # prints "<0.01>"

 printf '<%.2g>', 0.0111; # prints "<0.011>"

 printf '<%.3g>', 0.0111; # prints "<0.0111>"

 For integer conversions, specifying a precision implies that the output of the

 number itself should be zero-padded to this width, where the 0 flag is ignored:

 printf '<%.6d>', 1; # prints "<000001>" Page 141/182

 printf '<%+.6d>', 1; # prints "<+000001>"

 printf '<%-10.6d>', 1; # prints "<000001 >"

 printf '<%10.6d>', 1; # prints "< 000001>"

 printf '<%010.6d>', 1; # prints "< 000001>"

 printf '<%+10.6d>', 1; # prints "< +000001>"

 printf '<%.6x>', 1; # prints "<000001>"

 printf '<%#.6x>', 1; # prints "<0x000001>"

 printf '<%-10.6x>', 1; # prints "<000001 >"

 printf '<%10.6x>', 1; # prints "< 000001>"

 printf '<%010.6x>', 1; # prints "< 000001>"

 printf '<%#10.6x>', 1; # prints "< 0x000001>"

 For string conversions, specifying a precision truncates the string to fit the

 specified width:

 printf '<%.5s>', "truncated"; # prints "<trunc>"

 printf '<%10.5s>', "truncated"; # prints "< trunc>"

 You can also get the precision from the next argument using ".*", or from a

 specified argument (e.g., with ".*2$"):

 printf '<%.6x>', 1; # prints "<000001>"

 printf '<%.*x>', 6, 1; # prints "<000001>"

 printf '<%.*2$x>', 1, 6; # prints "<000001>"

 printf '<%6.*2$x>', 1, 4; # prints "< 0001>"

 If a precision obtained through "*" is negative, it counts as having no precision

 at all.

 printf '<%.*s>', 7, "string"; # prints "<string>"

 printf '<%.*s>', 3, "string"; # prints "<str>"

 printf '<%.*s>', 0, "string"; # prints "<>"

 printf '<%.*s>', -1, "string"; # prints "<string>"

 printf '<%.*d>', 1, 0; # prints "<0>"

 printf '<%.*d>', 0, 0; # prints "<>"

 printf '<%.*d>', -1, 0; # prints "<0>"

 size

 For numeric conversions, you can specify the size to interpret the number as using

 "l", "h", "V", "q", "L", or "ll". For integer conversions ("d u o x X b i D U Page 142/182

 O"), numbers are usually assumed to be whatever the default integer size is on

 your platform (usually 32 or 64 bits), but you can override this to use instead

 one of the standard C types, as supported by the compiler used to build Perl:

 hh interpret integer as C type "char" or "unsigned

 char" on Perl 5.14 or later

 h interpret integer as C type "short" or

 "unsigned short"

 j interpret integer as C type "intmax_t" on Perl

 5.14 or later; and prior to Perl 5.30, only with

 a C99 compiler (unportable)

 l interpret integer as C type "long" or

 "unsigned long"

 q, L, or ll interpret integer as C type "long long",

 "unsigned long long", or "quad" (typically

 64-bit integers)

 t interpret integer as C type "ptrdiff_t" on Perl

 5.14 or later

 z interpret integer as C types "size_t" or

 "ssize_t" on Perl 5.14 or later

 Note that, in general, using the "l" modifier (for example, when writing "%ld" or

 "%lu" instead of "%d" and "%u") is unnecessary when used from Perl code.

 Moreover, it may be harmful, for example on Windows 64-bit where a long is

 32-bits.

 As of 5.14, none of these raises an exception if they are not supported on your

 platform. However, if warnings are enabled, a warning of the "printf" warning

 class is issued on an unsupported conversion flag. Should you instead prefer an

 exception, do this:

 use warnings FATAL => "printf";

 If you would like to know about a version dependency before you start running the

 program, put something like this at its top:

 use 5.014; # for hh/j/t/z/ printf modifiers

 You can find out whether your Perl supports quads via Config:

 use Config; Page 143/182

 if ($Config{use64bitint} eq "define"

 || $Config{longsize} >= 8) {

 print "Nice quads!\n";

 }

 For floating-point conversions ("e f g E F G"), numbers are usually assumed to be

 the default floating-point size on your platform (double or long double), but you

 can force "long double" with "q", "L", or "ll" if your platform supports them.

 You can find out whether your Perl supports long doubles via Config:

 use Config;

 print "long doubles\n" if $Config{d_longdbl} eq "define";

 You can find out whether Perl considers "long double" to be the default floating-

 point size to use on your platform via Config:

 use Config;

 if ($Config{uselongdouble} eq "define") {

 print "long doubles by default\n";

 }

 It can also be that long doubles and doubles are the same thing:

 use Config;

 ($Config{doublesize} == $Config{longdblsize}) &&

 print "doubles are long doubles\n";

 The size specifier "V" has no effect for Perl code, but is supported for

 compatibility with XS code. It means "use the standard size for a Perl integer or

 floating-point number", which is the default.

 order of arguments

 Normally, "sprintf" takes the next unused argument as the value to format for each

 format specification. If the format specification uses "*" to require additional

 arguments, these are consumed from the argument list in the order they appear in

 the format specification before the value to format. Where an argument is

 specified by an explicit index, this does not affect the normal order for the

 arguments, even when the explicitly specified index would have been the next

 argument.

 So:

 printf "<%*.*s>", $a, $b, $c; Page 144/182

 uses $a for the width, $b for the precision, and $c as the value to format; while:

 printf '<%*1$.*s>', $a, $b;

 would use $a for the width and precision, and $b as the value to format.

 Here are some more examples; be aware that when using an explicit index, the "$"

 may need escaping:

 printf "%2\$d %d\n", 12, 34; # will print "34 12\n"

 printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"

 printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"

 printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"

 printf "%*1\$.*f\n", 4, 5, 10; # will print "5.0000\n"

 If "use locale" (including "use locale ':not_characters'") is in effect and

 "POSIX::setlocale" has been called, the character used for the decimal separator in

 formatted floating-point numbers is affected by the "LC_NUMERIC" locale. See

 perllocale and POSIX.

 sqrt EXPR

 sqrt

 Return the positive square root of EXPR. If EXPR is omitted, uses $_. Works only for

 non-negative operands unless you've loaded the "Math::Complex" module.

 use Math::Complex;

 print sqrt(-4); # prints 2i

 srand EXPR

 srand

 Sets and returns the random number seed for the "rand" operator.

 The point of the function is to "seed" the "rand" function so that "rand" can produce

 a different sequence each time you run your program. When called with a parameter,

 "srand" uses that for the seed; otherwise it (semi-)randomly chooses a seed. In

 either case, starting with Perl 5.14, it returns the seed. To signal that your code

 will work only on Perls of a recent vintage:

 use 5.014; # so srand returns the seed

 If "srand" is not called explicitly, it is called implicitly without a parameter at

 the first use of the "rand" operator. However, there are a few situations where

 programs are likely to want to call "srand". One is for generating predictable

 results, generally for testing or debugging. There, you use "srand($seed)", with the Page 145/182

 same $seed each time. Another case is that you may want to call "srand" after a

 "fork" to avoid child processes sharing the same seed value as the parent (and

 consequently each other).

 Do not call "srand()" (i.e., without an argument) more than once per process. The

 internal state of the random number generator should contain more entropy than can be

 provided by any seed, so calling "srand" again actually loses randomness.

 Most implementations of "srand" take an integer and will silently truncate decimal

 numbers. This means "srand(42)" will usually produce the same results as

 "srand(42.1)". To be safe, always pass "srand" an integer.

 A typical use of the returned seed is for a test program which has too many

 combinations to test comprehensively in the time available to it each run. It can

 test a random subset each time, and should there be a failure, log the seed used for

 that run so that it can later be used to reproduce the same results.

 "rand" is not cryptographically secure. You should not rely on it in security-

 sensitive situations. As of this writing, a number of third-party CPAN modules offer

 random number generators intended by their authors to be cryptographically secure,

 including: Data::Entropy, Crypt::Random, Math::Random::Secure, and Math::TrulyRandom.

 stat FILEHANDLE

 stat EXPR

 stat DIRHANDLE

 stat

 Returns a 13-element list giving the status info for a file, either the file opened

 via FILEHANDLE or DIRHANDLE, or named by EXPR. If EXPR is omitted, it stats $_ (not

 "_"!). Returns the empty list if "stat" fails. Typically used as follows:

 my ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,

 $atime,$mtime,$ctime,$blksize,$blocks)

 = stat($filename);

 Not all fields are supported on all filesystem types. Here are the meanings of the

 fields:

 0 dev device number of filesystem

 1 ino inode number

 2 mode file mode (type and permissions)

 3 nlink number of (hard) links to the file Page 146/182

 4 uid numeric user ID of file's owner

 5 gid numeric group ID of file's owner

 6 rdev the device identifier (special files only)

 7 size total size of file, in bytes

 8 atime last access time in seconds since the epoch

 9 mtime last modify time in seconds since the epoch

 10 ctime inode change time in seconds since the epoch (*)

 11 blksize preferred I/O size in bytes for interacting with the

 file (may vary from file to file)

 12 blocks actual number of system-specific blocks allocated

 on disk (often, but not always, 512 bytes each)

 (The epoch was at 00:00 January 1, 1970 GMT.)

 (*) Not all fields are supported on all filesystem types. Notably, the ctime field is

 non-portable. In particular, you cannot expect it to be a "creation time"; see "Files

 and Filesystems" in perlport for details.

 If "stat" is passed the special filehandle consisting of an underline, no stat is

 done, but the current contents of the stat structure from the last "stat", "lstat", or

 filetest are returned. Example:

 if (-x $file && (($d) = stat(_)) && $d < 0) {

 print "$file is executable NFS file\n";

 }

 (This works on machines only for which the device number is negative under NFS.)

 On some platforms inode numbers are of a type larger than perl knows how to handle as

 integer numerical values. If necessary, an inode number will be returned as a decimal

 string in order to preserve the entire value. If used in a numeric context, this will

 be converted to a floating-point numerical value, with rounding, a fate that is best

 avoided. Therefore, you should prefer to compare inode numbers using "eq" rather than

 "==". "eq" will work fine on inode numbers that are represented numerically, as well

 as those represented as strings.

 Because the mode contains both the file type and its permissions, you should mask off

 the file type portion and (s)printf using a "%o" if you want to see the real

 permissions.

 my $mode = (stat($filename))[2]; Page 147/182

 printf "Permissions are %04o\n", $mode & 07777;

 In scalar context, "stat" returns a boolean value indicating success or failure, and,

 if successful, sets the information associated with the special filehandle "_".

 The File::stat module provides a convenient, by-name access mechanism:

 use File::stat;

 my $sb = stat($filename);

 printf "File is %s, size is %s, perm %04o, mtime %s\n",

 $filename, $sb->size, $sb->mode & 07777,

 scalar localtime $sb->mtime;

 You can import symbolic mode constants ("S_IF*") and functions ("S_IS*") from the

 Fcntl module:

 use Fcntl ':mode';

 my $mode = (stat($filename))[2];

 my $user_rwx = ($mode & S_IRWXU) >> 6;

 my $group_read = ($mode & S_IRGRP) >> 3;

 my $other_execute = $mode & S_IXOTH;

 printf "Permissions are %04o\n", S_IMODE($mode), "\n";

 my $is_setuid = $mode & S_ISUID;

 my $is_directory = S_ISDIR($mode);

 You could write the last two using the "-u" and "-d" operators. Commonly available

 "S_IF*" constants are:

 # Permissions: read, write, execute, for user, group, others.

 S_IRWXU S_IRUSR S_IWUSR S_IXUSR

 S_IRWXG S_IRGRP S_IWGRP S_IXGRP

 S_IRWXO S_IROTH S_IWOTH S_IXOTH

 # Setuid/Setgid/Stickiness/SaveText.

 # Note that the exact meaning of these is system-dependent.

 S_ISUID S_ISGID S_ISVTX S_ISTXT

 # File types. Not all are necessarily available on

 # your system.

 S_IFREG S_IFDIR S_IFLNK S_IFBLK S_IFCHR

 S_IFIFO S_IFSOCK S_IFWHT S_ENFMT

 # The following are compatibility aliases for S_IRUSR, Page 148/182

 # S_IWUSR, and S_IXUSR.

 S_IREAD S_IWRITE S_IEXEC

 and the "S_IF*" functions are

 S_IMODE($mode) the part of $mode containing the permission

 bits and the setuid/setgid/sticky bits

 S_IFMT($mode) the part of $mode containing the file type

 which can be bit-anded with (for example)

 S_IFREG or with the following functions

 # The operators -f, -d, -l, -b, -c, -p, and -S.

 S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)

 S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)

 # No direct -X operator counterpart, but for the first one

 # the -g operator is often equivalent. The ENFMT stands for

 # record flocking enforcement, a platform-dependent feature.

 S_ISENFMT($mode) S_ISWHT($mode)

 See your native chmod(2) and stat(2) documentation for more details about the "S_*"

 constants. To get status info for a symbolic link instead of the target file behind

 the link, use the "lstat" function.

 Portability issues: "stat" in perlport.

 state VARLIST

 state TYPE VARLIST

 state VARLIST : ATTRS

 state TYPE VARLIST : ATTRS

 "state" declares a lexically scoped variable, just like "my". However, those

 variables will never be reinitialized, contrary to lexical variables that are

 reinitialized each time their enclosing block is entered. See "Persistent Private

 Variables" in perlsub for details.

 If more than one variable is listed, the list must be placed in parentheses. With a

 parenthesised list, "undef" can be used as a dummy placeholder. However, since

 initialization of state variables in such lists is currently not possible this would

 serve no purpose.

 Redeclaring a variable in the same scope or statement will "shadow" the previous

 declaration, creating a new instance and preventing access to the previous one. This Page 149/182

 is usually undesired and, if warnings are enabled, will result in a warning in the

 "shadow" category.

 "state" is available only if the "state" feature is enabled or if it is prefixed with

 "CORE::". The "state" feature is enabled automatically with a "use v5.10" (or higher)

 declaration in the current scope.

 study SCALAR

 study

 At this time, "study" does nothing. This may change in the future.

 Prior to Perl version 5.16, it would create an inverted index of all characters that

 occurred in the given SCALAR (or $_ if unspecified). When matching a pattern, the

 rarest character from the pattern would be looked up in this index. Rarity was based

 on some static frequency tables constructed from some C programs and English text.

 sub NAME BLOCK

 sub NAME (PROTO) BLOCK

 sub NAME : ATTRS BLOCK

 sub NAME (PROTO) : ATTRS BLOCK

 This is subroutine definition, not a real function per se. Without a BLOCK it's just

 a forward declaration. Without a NAME, it's an anonymous function declaration, so

 does return a value: the CODE ref of the closure just created.

 See perlsub and perlref for details about subroutines and references; see attributes

 and Attribute::Handlers for more information about attributes.

 __SUB__

 A special token that returns a reference to the current subroutine, or "undef" outside

 of a subroutine.

 The behaviour of "__SUB__" within a regex code block (such as "/(?{...})/") is subject

 to change.

 This token is only available under "use v5.16" or the "current_sub" feature. See

 feature.

 substr EXPR,OFFSET,LENGTH,REPLACEMENT

 substr EXPR,OFFSET,LENGTH

 substr EXPR,OFFSET

 Extracts a substring out of EXPR and returns it. First character is at offset zero.

 If OFFSET is negative, starts that far back from the end of the string. If LENGTH is Page 150/182

 omitted, returns everything through the end of the string. If LENGTH is negative,

 leaves that many characters off the end of the string.

 my $s = "The black cat climbed the green tree";

 my $color = substr $s, 4, 5; # black

 my $middle = substr $s, 4, -11; # black cat climbed the

 my $end = substr $s, 14; # climbed the green tree

 my $tail = substr $s, -4; # tree

 my $z = substr $s, -4, 2; # tr

 You can use the "substr" function as an lvalue, in which case EXPR must itself be an

 lvalue. If you assign something shorter than LENGTH, the string will shrink, and if

 you assign something longer than LENGTH, the string will grow to accommodate it. To

 keep the string the same length, you may need to pad or chop your value using

 "sprintf".

 If OFFSET and LENGTH specify a substring that is partly outside the string, only the

 part within the string is returned. If the substring is beyond either end of the

 string, "substr" returns the undefined value and produces a warning. When used as an

 lvalue, specifying a substring that is entirely outside the string raises an

 exception. Here's an example showing the behavior for boundary cases:

 my $name = 'fred';

 substr($name, 4) = 'dy'; # $name is now 'freddy'

 my $null = substr $name, 6, 2; # returns "" (no warning)

 my $oops = substr $name, 7; # returns undef, with warning

 substr($name, 7) = 'gap'; # raises an exception

 An alternative to using "substr" as an lvalue is to specify the replacement string as

 the 4th argument. This allows you to replace parts of the EXPR and return what was

 there before in one operation, just as you can with "splice".

 my $s = "The black cat climbed the green tree";

 my $z = substr $s, 14, 7, "jumped from"; # climbed

 # $s is now "The black cat jumped from the green tree"

 Note that the lvalue returned by the three-argument version of "substr" acts as a

 'magic bullet'; each time it is assigned to, it remembers which part of the original

 string is being modified; for example:

 my $x = '1234'; Page 151/182

 for (substr($x,1,2)) {

 $_ = 'a'; print $x,"\n"; # prints 1a4

 $_ = 'xyz'; print $x,"\n"; # prints 1xyz4

 $x = '56789';

 $_ = 'pq'; print $x,"\n"; # prints 5pq9

 }

 With negative offsets, it remembers its position from the end of the string when the

 target string is modified:

 my $x = '1234';

 for (substr($x, -3, 2)) {

 $_ = 'a'; print $x,"\n"; # prints 1a4, as above

 $x = 'abcdefg';

 print $_,"\n"; # prints f

 }

 Prior to Perl version 5.10, the result of using an lvalue multiple times was

 unspecified. Prior to 5.16, the result with negative offsets was unspecified.

 symlink OLDFILE,NEWFILE

 Creates a new filename symbolically linked to the old filename. Returns 1 for

 success, 0 otherwise. On systems that don't support symbolic links, raises an

 exception. To check for that, use eval:

 my $symlink_exists = eval { symlink("",""); 1 };

 Portability issues: "symlink" in perlport.

 syscall NUMBER, LIST

 Calls the system call specified as the first element of the list, passing the

 remaining elements as arguments to the system call. If unimplemented, raises an

 exception. The arguments are interpreted as follows: if a given argument is numeric,

 the argument is passed as an int. If not, the pointer to the string value is passed.

 You are responsible to make sure a string is pre-extended long enough to receive any

 result that might be written into a string. You can't use a string literal (or other

 read-only string) as an argument to "syscall" because Perl has to assume that any

 string pointer might be written through. If your integer arguments are not literals

 and have never been interpreted in a numeric context, you may need to add 0 to them to

 force them to look like numbers. This emulates the "syswrite" function (or vice Page 152/182

 versa):

 require 'syscall.ph'; # may need to run h2ph

 my $s = "hi there\n";

 syscall(SYS_write(), fileno(STDOUT), $s, length $s);

 Note that Perl supports passing of up to only 14 arguments to your syscall, which in

 practice should (usually) suffice.

 Syscall returns whatever value returned by the system call it calls. If the system

 call fails, "syscall" returns "-1" and sets $! (errno). Note that some system calls

 can legitimately return "-1". The proper way to handle such calls is to assign "$! =

 0" before the call, then check the value of $! if "syscall" returns "-1".

 There's a problem with "syscall(SYS_pipe())": it returns the file number of the read

 end of the pipe it creates, but there is no way to retrieve the file number of the

 other end. You can avoid this problem by using "pipe" instead.

 Portability issues: "syscall" in perlport.

 sysopen FILEHANDLE,FILENAME,MODE

 sysopen FILEHANDLE,FILENAME,MODE,PERMS

 Opens the file whose filename is given by FILENAME, and associates it with FILEHANDLE.

 If FILEHANDLE is an expression, its value is used as the real filehandle wanted; an

 undefined scalar will be suitably autovivified. This function calls the underlying

 operating system's open(2) function with the parameters FILENAME, MODE, and PERMS.

 Returns true on success and "undef" otherwise.

 PerlIO layers will be applied to the handle the same way they would in an "open" call

 that does not specify layers. That is, the current value of "${^OPEN}" as set by the

 open pragma in a lexical scope, or the "-C" commandline option or "PERL_UNICODE"

 environment variable in the main program scope, falling back to the platform defaults

 as described in "Defaults and how to override them" in PerlIO. If you want to remove

 any layers that may transform the byte stream, use "binmode" after opening it.

 The possible values and flag bits of the MODE parameter are system-dependent; they are

 available via the standard module "Fcntl". See the documentation of your operating

 system's open(2) syscall to see which values and flag bits are available. You may

 combine several flags using the "|"-operator.

 Some of the most common values are "O_RDONLY" for opening the file in read-only mode,

 "O_WRONLY" for opening the file in write-only mode, and "O_RDWR" for opening the file Page 153/182

 in read-write mode.

 For historical reasons, some values work on almost every system supported by Perl: 0

 means read-only, 1 means write-only, and 2 means read/write. We know that these

 values do not work under OS/390 and on the Macintosh; you probably don't want to use

 them in new code.

 If the file named by FILENAME does not exist and the "open" call creates it (typically

 because MODE includes the "O_CREAT" flag), then the value of PERMS specifies the

 permissions of the newly created file. If you omit the PERMS argument to "sysopen",

 Perl uses the octal value 0666. These permission values need to be in octal, and are

 modified by your process's current "umask".

 In many systems the "O_EXCL" flag is available for opening files in exclusive mode.

 This is not locking: exclusiveness means here that if the file already exists,

 "sysopen" fails. "O_EXCL" may not work on network filesystems, and has no effect

 unless the "O_CREAT" flag is set as well. Setting "O_CREAT|O_EXCL" prevents the file

 from being opened if it is a symbolic link. It does not protect against symbolic

 links in the file's path.

 Sometimes you may want to truncate an already-existing file. This can be done using

 the "O_TRUNC" flag. The behavior of "O_TRUNC" with "O_RDONLY" is undefined.

 You should seldom if ever use 0644 as argument to "sysopen", because that takes away

 the user's option to have a more permissive umask. Better to omit it. See "umask"

 for more on this.

 This function has no direct relation to the usage of "sysread", "syswrite", or

 "sysseek". A handle opened with this function can be used with buffered IO just as

 one opened with "open" can be used with unbuffered IO.

 Note that under Perls older than 5.8.0, "sysopen" depends on the fdopen(3) C library

 function. On many Unix systems, fdopen(3) is known to fail when file descriptors

 exceed a certain value, typically 255. If you need more file descriptors than that,

 consider using the "POSIX::open" function. For Perls 5.8.0 and later, PerlIO is (most

 often) the default.

 See perlopentut for a kinder, gentler explanation of opening files.

 Portability issues: "sysopen" in perlport.

 sysread FILEHANDLE,SCALAR,LENGTH,OFFSET

 sysread FILEHANDLE,SCALAR,LENGTH Page 154/182

 Attempts to read LENGTH bytes of data into variable SCALAR from the specified

 FILEHANDLE, using read(2). It bypasses any PerlIO layers including buffered IO (but

 is affected by the presence of the ":utf8" layer as described later), so mixing this

 with other kinds of reads, "print", "write", "seek", "tell", or "eof" can cause

 confusion because the ":perlio" or ":crlf" layers usually buffer data. Returns the

 number of bytes actually read, 0 at end of file, or undef if there was an error (in

 the latter case $! is also set). SCALAR will be grown or shrunk so that the last byte

 actually read is the last byte of the scalar after the read.

 An OFFSET may be specified to place the read data at some place in the string other

 than the beginning. A negative OFFSET specifies placement at that many characters

 counting backwards from the end of the string. A positive OFFSET greater than the

 length of SCALAR results in the string being padded to the required size with "\0"

 bytes before the result of the read is appended.

 There is no syseof() function, which is ok, since "eof" doesn't work well on device

 files (like ttys) anyway. Use "sysread" and check for a return value of 0 to decide

 whether you're done.

 Note that if the filehandle has been marked as ":utf8", "sysread" will throw an

 exception. The ":encoding(...)" layer implicitly introduces the ":utf8" layer. See

 "binmode", "open", and the open pragma.

 sysseek FILEHANDLE,POSITION,WHENCE

 Sets FILEHANDLE's system position in bytes using lseek(2). FILEHANDLE may be an

 expression whose value gives the name of the filehandle. The values for WHENCE are 0

 to set the new position to POSITION; 1 to set it to the current position plus

 POSITION; and 2 to set it to EOF plus POSITION, typically negative.

 Note the emphasis on bytes: even if the filehandle has been set to operate on

 characters (for example using the ":encoding(UTF-8)" I/O layer), the "seek", "tell",

 and "sysseek" family of functions use byte offsets, not character offsets, because

 seeking to a character offset would be very slow in a UTF-8 file.

 "sysseek" bypasses normal buffered IO, so mixing it with reads other than "sysread"

 (for example "readline" or "read"), "print", "write", "seek", "tell", or "eof" may

 cause confusion.

 For WHENCE, you may also use the constants "SEEK_SET", "SEEK_CUR", and "SEEK_END"

 (start of the file, current position, end of the file) from the Fcntl module. Use of Page 155/182

 the constants is also more portable than relying on 0, 1, and 2. For example to

 define a "systell" function:

 use Fcntl 'SEEK_CUR';

 sub systell { sysseek($_[0], 0, SEEK_CUR) }

 Returns the new position, or the undefined value on failure. A position of zero is

 returned as the string "0 but true"; thus "sysseek" returns true on success and false

 on failure, yet you can still easily determine the new position.

 system LIST

 system PROGRAM LIST

 Does exactly the same thing as "exec", except that a fork is done first and the parent

 process waits for the child process to exit. Note that argument processing varies

 depending on the number of arguments. If there is more than one argument in LIST, or

 if LIST is an array with more than one value, starts the program given by the first

 element of the list with arguments given by the rest of the list. If there is only

 one scalar argument, the argument is checked for shell metacharacters, and if there

 are any, the entire argument is passed to the system's command shell for parsing (this

 is "/bin/sh -c" on Unix platforms, but varies on other platforms). If there are no

 shell metacharacters in the argument, it is split into words and passed directly to

 "execvp", which is more efficient. On Windows, only the "system PROGRAM LIST" syntax

 will reliably avoid using the shell; "system LIST", even with more than one element,

 will fall back to the shell if the first spawn fails.

 Perl will attempt to flush all files opened for output before any operation that may

 do a fork, but this may not be supported on some platforms (see perlport). To be

 safe, you may need to set $| ($AUTOFLUSH in English) or call the "autoflush" method of

 "IO::Handle" on any open handles.

 The return value is the exit status of the program as returned by the "wait" call. To

 get the actual exit value, shift right by eight (see below). See also "exec". This

 is not what you want to use to capture the output from a command; for that you should

 use merely backticks or "qx//", as described in "`STRING`" in perlop. Return value of

 -1 indicates a failure to start the program or an error of the wait(2) system call

 (inspect $! for the reason).

 If you'd like to make "system" (and many other bits of Perl) die on error, have a look

 at the autodie pragma. Page 156/182

 Like "exec", "system" allows you to lie to a program about its name if you use the

 "system PROGRAM LIST" syntax. Again, see "exec".

 Since "SIGINT" and "SIGQUIT" are ignored during the execution of "system", if you

 expect your program to terminate on receipt of these signals you will need to arrange

 to do so yourself based on the return value.

 my @args = ("command", "arg1", "arg2");

 system(@args) == 0

 or die "system @args failed: $?";

 If you'd like to manually inspect "system"'s failure, you can check all possible

 failure modes by inspecting $? like this:

 if ($? == -1) {

 print "failed to execute: $!\n";

 }

 elsif ($? & 127) {

 printf "child died with signal %d, %s coredump\n",

 ($? & 127), ($? & 128) ? 'with' : 'without';

 }

 else {

 printf "child exited with value %d\n", $? >> 8;

 }

 Alternatively, you may inspect the value of "${^CHILD_ERROR_NATIVE}" with the "W*()"

 calls from the POSIX module.

 When "system"'s arguments are executed indirectly by the shell, results and return

 codes are subject to its quirks. See "`STRING`" in perlop and "exec" for details.

 Since "system" does a "fork" and "wait" it may affect a "SIGCHLD" handler. See

 perlipc for details.

 Portability issues: "system" in perlport.

 syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET

 syswrite FILEHANDLE,SCALAR,LENGTH

 syswrite FILEHANDLE,SCALAR

 Attempts to write LENGTH bytes of data from variable SCALAR to the specified

 FILEHANDLE, using write(2). If LENGTH is not specified, writes whole SCALAR. It

 bypasses any PerlIO layers including buffered IO (but is affected by the presence of Page 157/182

 the ":utf8" layer as described later), so mixing this with reads (other than

 "sysread)"), "print", "write", "seek", "tell", or "eof" may cause confusion because

 the ":perlio" and ":crlf" layers usually buffer data. Returns the number of bytes

 actually written, or "undef" if there was an error (in this case the errno variable $!

 is also set). If the LENGTH is greater than the data available in the SCALAR after

 the OFFSET, only as much data as is available will be written.

 An OFFSET may be specified to write the data from some part of the string other than

 the beginning. A negative OFFSET specifies writing that many characters counting

 backwards from the end of the string. If SCALAR is of length zero, you can only use

 an OFFSET of 0.

 WARNING: If the filehandle is marked ":utf8", "syswrite" will raise an exception. The

 ":encoding(...)" layer implicitly introduces the ":utf8" layer. Alternately, if the

 handle is not marked with an encoding but you attempt to write characters with code

 points over 255, raises an exception. See "binmode", "open", and the open pragma.

 tell FILEHANDLE

 tell

 Returns the current position in bytes for FILEHANDLE, or -1 on error. FILEHANDLE may

 be an expression whose value gives the name of the actual filehandle. If FILEHANDLE

 is omitted, assumes the file last read.

 Note the emphasis on bytes: even if the filehandle has been set to operate on

 characters (for example using the ":encoding(UTF-8)" I/O layer), the "seek", "tell",

 and "sysseek" family of functions use byte offsets, not character offsets, because

 seeking to a character offset would be very slow in a UTF-8 file.

 The return value of "tell" for the standard streams like the STDIN depends on the

 operating system: it may return -1 or something else. "tell" on pipes, fifos, and

 sockets usually returns -1.

 There is no "systell" function. Use "sysseek($fh, 0, 1)" for that.

 Do not use "tell" (or other buffered I/O operations) on a filehandle that has been

 manipulated by "sysread", "syswrite", or "sysseek". Those functions ignore the

 buffering, while "tell" does not.

 telldir DIRHANDLE

 Returns the current position of the "readdir" routines on DIRHANDLE. Value may be

 given to "seekdir" to access a particular location in a directory. "telldir" has the Page 158/182

 same caveats about possible directory compaction as the corresponding system library

 routine.

 tie VARIABLE,CLASSNAME,LIST

 This function binds a variable to a package class that will provide the implementation

 for the variable. VARIABLE is the name of the variable to be enchanted. CLASSNAME is

 the name of a class implementing objects of correct type. Any additional arguments

 are passed to the appropriate constructor method of the class (meaning "TIESCALAR",

 "TIEHANDLE", "TIEARRAY", or "TIEHASH"). Typically these are arguments such as might

 be passed to the dbm_open(3) function of C. The object returned by the constructor is

 also returned by the "tie" function, which would be useful if you want to access other

 methods in CLASSNAME.

 Note that functions such as "keys" and "values" may return huge lists when used on

 large objects, like DBM files. You may prefer to use the "each" function to iterate

 over such. Example:

 # print out history file offsets

 use NDBM_File;

 tie(my %HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);

 while (my ($key,$val) = each %HIST) {

 print $key, ' = ', unpack('L', $val), "\n";

 }

 A class implementing a hash should have the following methods:

 TIEHASH classname, LIST

 FETCH this, key

 STORE this, key, value

 DELETE this, key

 CLEAR this

 EXISTS this, key

 FIRSTKEY this

 NEXTKEY this, lastkey

 SCALAR this

 DESTROY this

 UNTIE this

 A class implementing an ordinary array should have the following methods: Page 159/182

 TIEARRAY classname, LIST

 FETCH this, key

 STORE this, key, value

 FETCHSIZE this

 STORESIZE this, count

 CLEAR this

 PUSH this, LIST

 POP this

 SHIFT this

 UNSHIFT this, LIST

 SPLICE this, offset, length, LIST

 EXTEND this, count

 DELETE this, key

 EXISTS this, key

 DESTROY this

 UNTIE this

 A class implementing a filehandle should have the following methods:

 TIEHANDLE classname, LIST

 READ this, scalar, length, offset

 READLINE this

 GETC this

 WRITE this, scalar, length, offset

 PRINT this, LIST

 PRINTF this, format, LIST

 BINMODE this

 EOF this

 FILENO this

 SEEK this, position, whence

 TELL this

 OPEN this, mode, LIST

 CLOSE this

 DESTROY this

 UNTIE this Page 160/182

 A class implementing a scalar should have the following methods:

 TIESCALAR classname, LIST

 FETCH this,

 STORE this, value

 DESTROY this

 UNTIE this

 Not all methods indicated above need be implemented. See perltie, Tie::Hash,

 Tie::Array, Tie::Scalar, and Tie::Handle.

 Unlike "dbmopen", the "tie" function will not "use" or "require" a module for you; you

 need to do that explicitly yourself. See DB_File or the Config module for interesting

 "tie" implementations.

 For further details see perltie, "tied".

 tied VARIABLE

 Returns a reference to the object underlying VARIABLE (the same value that was

 originally returned by the "tie" call that bound the variable to a package.) Returns

 the undefined value if VARIABLE isn't tied to a package.

 time

 Returns the number of non-leap seconds since whatever time the system considers to be

 the epoch, suitable for feeding to "gmtime" and "localtime". On most systems the

 epoch is 00:00:00 UTC, January 1, 1970; a prominent exception being Mac OS Classic

 which uses 00:00:00, January 1, 1904 in the current local time zone for its epoch.

 For measuring time in better granularity than one second, use the Time::HiRes module

 from Perl 5.8 onwards (or from CPAN before then), or, if you have gettimeofday(2), you

 may be able to use the "syscall" interface of Perl. See perlfaq8 for details.

 For date and time processing look at the many related modules on CPAN. For a

 comprehensive date and time representation look at the DateTime module.

 times

 Returns a four-element list giving the user and system times in seconds for this

 process and any exited children of this process.

 my ($user,$system,$cuser,$csystem) = times;

 In scalar context, "times" returns $user.

 Children's times are only included for terminated children.

 Portability issues: "times" in perlport. Page 161/182

 tr///

 The transliteration operator. Same as "y///". See "Quote-Like Operators" in perlop.

 truncate FILEHANDLE,LENGTH

 truncate EXPR,LENGTH

 Truncates the file opened on FILEHANDLE, or named by EXPR, to the specified length.

 Raises an exception if truncate isn't implemented on your system. Returns true if

 successful, "undef" on error.

 The behavior is undefined if LENGTH is greater than the length of the file.

 The position in the file of FILEHANDLE is left unchanged. You may want to call seek

 before writing to the file.

 Portability issues: "truncate" in perlport.

 uc EXPR

 uc Returns an uppercased version of EXPR. This is the internal function implementing the

 "\U" escape in double-quoted strings. It does not attempt to do titlecase mapping on

 initial letters. See "ucfirst" for that.

 If EXPR is omitted, uses $_.

 This function behaves the same way under various pragmas, such as in a locale, as "lc"

 does.

 ucfirst EXPR

 ucfirst

 Returns the value of EXPR with the first character in uppercase (titlecase in

 Unicode). This is the internal function implementing the "\u" escape in double-quoted

 strings.

 If EXPR is omitted, uses $_.

 This function behaves the same way under various pragmas, such as in a locale, as "lc"

 does.

 umask EXPR

 umask

 Sets the umask for the process to EXPR and returns the previous value. If EXPR is

 omitted, merely returns the current umask.

 The Unix permission "rwxr-x---" is represented as three sets of three bits, or three

 octal digits: 0750 (the leading 0 indicates octal and isn't one of the digits). The

 "umask" value is such a number representing disabled permissions bits. The permission Page 162/182

 (or "mode") values you pass "mkdir" or "sysopen" are modified by your umask, so even

 if you tell "sysopen" to create a file with permissions 0777, if your umask is 0022,

 then the file will actually be created with permissions 0755. If your "umask" were

 0027 (group can't write; others can't read, write, or execute), then passing "sysopen"

 0666 would create a file with mode 0640 (because "0666 &~ 027" is 0640).

 Here's some advice: supply a creation mode of 0666 for regular files (in "sysopen")

 and one of 0777 for directories (in "mkdir") and executable files. This gives users

 the freedom of choice: if they want protected files, they might choose process umasks

 of 022, 027, or even the particularly antisocial mask of 077. Programs should rarely

 if ever make policy decisions better left to the user. The exception to this is when

 writing files that should be kept private: mail files, web browser cookies, .rhosts

 files, and so on.

 If umask(2) is not implemented on your system and you are trying to restrict access

 for yourself (i.e., "(EXPR & 0700) > 0"), raises an exception. If umask(2) is not

 implemented and you are not trying to restrict access for yourself, returns "undef".

 Remember that a umask is a number, usually given in octal; it is not a string of octal

 digits. See also "oct", if all you have is a string.

 Portability issues: "umask" in perlport.

 undef EXPR

 undef

 Undefines the value of EXPR, which must be an lvalue. Use only on a scalar value, an

 array (using "@"), a hash (using "%"), a subroutine (using "&"), or a typeglob (using

 "*"). Saying "undef $hash{$key}" will probably not do what you expect on most

 predefined variables or DBM list values, so don't do that; see "delete". Always

 returns the undefined value. You can omit the EXPR, in which case nothing is

 undefined, but you still get an undefined value that you could, for instance, return

 from a subroutine, assign to a variable, or pass as a parameter. Examples:

 undef $foo;

 undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};

 undef @ary;

 undef %hash;

 undef &mysub;

 undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc. Page 163/182

 return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;

 select undef, undef, undef, 0.25;

 my ($x, $y, undef, $z) = foo(); # Ignore third value returned

 Note that this is a unary operator, not a list operator.

 unlink LIST

 unlink

 Deletes a list of files. On success, it returns the number of files it successfully

 deleted. On failure, it returns false and sets $! (errno):

 my $unlinked = unlink 'a', 'b', 'c';

 unlink @goners;

 unlink glob "*.bak";

 On error, "unlink" will not tell you which files it could not remove. If you want to

 know which files you could not remove, try them one at a time:

 foreach my $file (@goners) {

 unlink $file or warn "Could not unlink $file: $!";

 }

 Note: "unlink" will not attempt to delete directories unless you are superuser and the

 -U flag is supplied to Perl. Even if these conditions are met, be warned that

 unlinking a directory can inflict damage on your filesystem. Finally, using "unlink"

 on directories is not supported on many operating systems. Use "rmdir" instead.

 If LIST is omitted, "unlink" uses $_.

 unpack TEMPLATE,EXPR

 unpack TEMPLATE

 "unpack" does the reverse of "pack": it takes a string and expands it out into a list

 of values. (In scalar context, it returns merely the first value produced.)

 If EXPR is omitted, unpacks the $_ string. See perlpacktut for an introduction to

 this function.

 The string is broken into chunks described by the TEMPLATE. Each chunk is converted

 separately to a value. Typically, either the string is a result of "pack", or the

 characters of the string represent a C structure of some kind.

 The TEMPLATE has the same format as in the "pack" function. Here's a subroutine that

 does substring:

 sub substr { Page 164/182

 my ($what, $where, $howmuch) = @_;

 unpack("x$where a$howmuch", $what);

 }

 and then there's

 sub ordinal { unpack("W",$_[0]); } # same as ord()

 In addition to fields allowed in "pack", you may prefix a field with a %<number> to

 indicate that you want a <number>-bit checksum of the items instead of the items

 themselves. Default is a 16-bit checksum. The checksum is calculated by summing

 numeric values of expanded values (for string fields the sum of "ord($char)" is taken;

 for bit fields the sum of zeroes and ones).

 For example, the following computes the same number as the System V sum program:

 my $checksum = do {

 local $/; # slurp!

 unpack("%32W*", readline) % 65535;

 };

 The following efficiently counts the number of set bits in a bit vector:

 my $setbits = unpack("%32b*", $selectmask);

 The "p" and "P" formats should be used with care. Since Perl has no way of checking

 whether the value passed to "unpack" corresponds to a valid memory location, passing a

 pointer value that's not known to be valid is likely to have disastrous consequences.

 If there are more pack codes or if the repeat count of a field or a group is larger

 than what the remainder of the input string allows, the result is not well defined:

 the repeat count may be decreased, or "unpack" may produce empty strings or zeros, or

 it may raise an exception. If the input string is longer than one described by the

 TEMPLATE, the remainder of that input string is ignored.

 See "pack" for more examples and notes.

 unshift ARRAY,LIST

 Does the opposite of a "shift". Or the opposite of a "push", depending on how you

 look at it. Prepends list to the front of the array and returns the new number of

 elements in the array.

 unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;

 Note the LIST is prepended whole, not one element at a time, so the prepended elements

 stay in the same order. Use "reverse" to do the reverse. Page 165/182

 Starting with Perl 5.14, an experimental feature allowed "unshift" to take a scalar

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 untie VARIABLE

 Breaks the binding between a variable and a package. (See tie.) Has no effect if the

 variable is not tied.

 use Module VERSION LIST

 use Module VERSION

 use Module LIST

 use Module

 use VERSION

 Imports some semantics into the current package from the named module, generally by

 aliasing certain subroutine or variable names into your package. It is exactly

 equivalent to

 BEGIN { require Module; Module->import(LIST); }

 except that Module must be a bareword. The importation can be made conditional by

 using the if module.

 In the "use VERSION" form, VERSION may be either a v-string such as v5.24.1, which

 will be compared to $^V (aka $PERL_VERSION), or a numeric argument of the form

 5.024001, which will be compared to $]. An exception is raised if VERSION is greater

 than the version of the current Perl interpreter; Perl will not attempt to parse the

 rest of the file. Compare with "require", which can do a similar check at run time.

 Symmetrically, "no VERSION" allows you to specify that you want a version of Perl

 older than the specified one.

 Specifying VERSION as a numeric argument of the form 5.024001 should generally be

 avoided as older less readable syntax compared to v5.24.1. Before perl 5.8.0 released

 in 2002 the more verbose numeric form was the only supported syntax, which is why you

 might see it in

 use v5.24.1; # compile time version check

 use 5.24.1; # ditto

 use 5.024_001; # ditto; older syntax compatible with perl 5.6

 This is often useful if you need to check the current Perl version before "use"ing

 library modules that won't work with older versions of Perl. (We try not to do this Page 166/182

 more than we have to.)

 "use VERSION" also lexically enables all features available in the requested version

 as defined by the feature pragma, disabling any features not in the requested

 version's feature bundle. See feature. Similarly, if the specified Perl version is

 greater than or equal to 5.12.0, strictures are enabled lexically as with "use

 strict". Any explicit use of "use strict" or "no strict" overrides "use VERSION",

 even if it comes before it. Later use of "use VERSION" will override all behavior of

 a previous "use VERSION", possibly removing the "strict" and "feature" added by "use

 VERSION". "use VERSION" does not load the feature.pm or strict.pm files.

 The "BEGIN" forces the "require" and "import" to happen at compile time. The

 "require" makes sure the module is loaded into memory if it hasn't been yet. The

 "import" is not a builtin; it's just an ordinary static method call into the "Module"

 package to tell the module to import the list of features back into the current

 package. The module can implement its "import" method any way it likes, though most

 modules just choose to derive their "import" method via inheritance from the

 "Exporter" class that is defined in the "Exporter" module. See Exporter. If no

 "import" method can be found, then the call is skipped, even if there is an AUTOLOAD

 method.

 If you do not want to call the package's "import" method (for instance, to stop your

 namespace from being altered), explicitly supply the empty list:

 use Module ();

 That is exactly equivalent to

 BEGIN { require Module }

 If the VERSION argument is present between Module and LIST, then the "use" will call

 the "VERSION" method in class Module with the given version as an argument:

 use Module 12.34;

 is equivalent to:

 BEGIN { require Module; Module->VERSION(12.34) }

 The default "VERSION" method, inherited from the "UNIVERSAL" class, croaks if the

 given version is larger than the value of the variable $Module::VERSION.

 The VERSION argument cannot be an arbitrary expression. It only counts as a VERSION

 argument if it is a version number literal, starting with either a digit or "v"

 followed by a digit. Anything that doesn't look like a version literal will be parsed Page 167/182

 as the start of the LIST. Nevertheless, many attempts to use an arbitrary expression

 as a VERSION argument will appear to work, because Exporter's "import" method handles

 numeric arguments specially, performing version checks rather than treating them as

 things to export.

 Again, there is a distinction between omitting LIST ("import" called with no

 arguments) and an explicit empty LIST "()" ("import" not called). Note that there is

 no comma after VERSION!

 Because this is a wide-open interface, pragmas (compiler directives) are also

 implemented this way. Some of the currently implemented pragmas are:

 use constant;

 use diagnostics;

 use integer;

 use sigtrap qw(SEGV BUS);

 use strict qw(subs vars refs);

 use subs qw(afunc blurfl);

 use warnings qw(all);

 use sort qw(stable);

 Some of these pseudo-modules import semantics into the current block scope (like

 "strict" or "integer", unlike ordinary modules, which import symbols into the current

 package (which are effective through the end of the file).

 Because "use" takes effect at compile time, it doesn't respect the ordinary flow

 control of the code being compiled. In particular, putting a "use" inside the false

 branch of a conditional doesn't prevent it from being processed. If a module or

 pragma only needs to be loaded conditionally, this can be done using the if pragma:

 use if $] < 5.008, "utf8";

 use if WANT_WARNINGS, warnings => qw(all);

 There's a corresponding "no" declaration that unimports meanings imported by "use",

 i.e., it calls "Module->unimport(LIST)" instead of "import". It behaves just as

 "import" does with VERSION, an omitted or empty LIST, or no unimport method being

 found.

 no integer;

 no strict 'refs';

 no warnings; Page 168/182

 Care should be taken when using the "no VERSION" form of "no". It is only meant to be

 used to assert that the running Perl is of a earlier version than its argument and not

 to undo the feature-enabling side effects of "use VERSION".

 See perlmodlib for a list of standard modules and pragmas. See perlrun for the "-M"

 and "-m" command-line options to Perl that give "use" functionality from the command-

 line.

 utime LIST

 Changes the access and modification times on each file of a list of files. The first

 two elements of the list must be the NUMERIC access and modification times, in that

 order. Returns the number of files successfully changed. The inode change time of

 each file is set to the current time. For example, this code has the same effect as

 the Unix touch(1) command when the files already exist and belong to the user running

 the program:

 #!/usr/bin/perl

 my $atime = my $mtime = time;

 utime $atime, $mtime, @ARGV;

 Since Perl 5.8.0, if the first two elements of the list are "undef", the utime(2)

 syscall from your C library is called with a null second argument. On most systems,

 this will set the file's access and modification times to the current time (i.e.,

 equivalent to the example above) and will work even on files you don't own provided

 you have write permission:

 for my $file (@ARGV) {

 utime(undef, undef, $file)

 || warn "Couldn't touch $file: $!";

 }

 Under NFS this will use the time of the NFS server, not the time of the local machine.

 If there is a time synchronization problem, the NFS server and local machine will have

 different times. The Unix touch(1) command will in fact normally use this form

 instead of the one shown in the first example.

 Passing only one of the first two elements as "undef" is equivalent to passing a 0 and

 will not have the effect described when both are "undef". This also triggers an

 uninitialized warning.

 On systems that support futimes(2), you may pass filehandles among the files. On Page 169/182

 systems that don't support futimes(2), passing filehandles raises an exception.

 Filehandles must be passed as globs or glob references to be recognized; barewords are

 considered filenames.

 Portability issues: "utime" in perlport.

 values HASH

 values ARRAY

 In list context, returns a list consisting of all the values of the named hash. In

 Perl 5.12 or later only, will also return a list of the values of an array; prior to

 that release, attempting to use an array argument will produce a syntax error. In

 scalar context, returns the number of values.

 Hash entries are returned in an apparently random order. The actual random order is

 specific to a given hash; the exact same series of operations on two hashes may result

 in a different order for each hash. Any insertion into the hash may change the order,

 as will any deletion, with the exception that the most recent key returned by "each"

 or "keys" may be deleted without changing the order. So long as a given hash is

 unmodified you may rely on "keys", "values" and "each" to repeatedly return the same

 order as each other. See "Algorithmic Complexity Attacks" in perlsec for details on

 why hash order is randomized. Aside from the guarantees provided here the exact

 details of Perl's hash algorithm and the hash traversal order are subject to change in

 any release of Perl. Tied hashes may behave differently to Perl's hashes with respect

 to changes in order on insertion and deletion of items.

 As a side effect, calling "values" resets the HASH or ARRAY's internal iterator (see

 "each") before yielding the values. In particular, calling "values" in void context

 resets the iterator with no other overhead.

 Apart from resetting the iterator, "values @array" in list context is the same as

 plain @array. (We recommend that you use void context "keys @array" for this, but

 reasoned that taking "values @array" out would require more documentation than leaving

 it in.)

 Note that the values are not copied, which means modifying them will modify the

 contents of the hash:

 for (values %hash) { s/foo/bar/g } # modifies %hash values

 for (@hash{keys %hash}) { s/foo/bar/g } # same

 Starting with Perl 5.14, an experimental feature allowed "values" to take a scalar Page 170/182

 expression. This experiment has been deemed unsuccessful, and was removed as of Perl

 5.24.

 To avoid confusing would-be users of your code who are running earlier versions of

 Perl with mysterious syntax errors, put this sort of thing at the top of your file to

 signal that your code will work only on Perls of a recent vintage:

 use 5.012; # so keys/values/each work on arrays

 See also "keys", "each", and "sort".

 vec EXPR,OFFSET,BITS

 Treats the string in EXPR as a bit vector made up of elements of width BITS and

 returns the value of the element specified by OFFSET as an unsigned integer. BITS

 therefore specifies the number of bits that are reserved for each element in the bit

 vector. This must be a power of two from 1 to 32 (or 64, if your platform supports

 that).

 If BITS is 8, "elements" coincide with bytes of the input string.

 If BITS is 16 or more, bytes of the input string are grouped into chunks of size

 BITS/8, and each group is converted to a number as with "pack"/"unpack" with big-

 endian formats "n"/"N" (and analogously for BITS==64). See "pack" for details.

 If bits is 4 or less, the string is broken into bytes, then the bits of each byte are

 broken into 8/BITS groups. Bits of a byte are numbered in a little-endian-ish way, as

 in 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80. For example, breaking the single

 input byte "chr(0x36)" into two groups gives a list "(0x6, 0x3)"; breaking it into 4

 groups gives "(0x2, 0x1, 0x3, 0x0)".

 "vec" may also be assigned to, in which case parentheses are needed to give the

 expression the correct precedence as in

 vec($image, $max_x * $x + $y, 8) = 3;

 If the selected element is outside the string, the value 0 is returned. If an element

 off the end of the string is written to, Perl will first extend the string with

 sufficiently many zero bytes. It is an error to try to write off the beginning of

 the string (i.e., negative OFFSET).

 If the string happens to be encoded as UTF-8 internally (and thus has the UTF8 flag

 set), "vec" tries to convert it to use a one-byte-per-character internal

 representation. However, if the string contains characters with values of 256 or

 higher, a fatal error will occur. Page 171/182

 Strings created with "vec" can also be manipulated with the logical operators "|",

 "&", "^", and "~". These operators will assume a bit vector operation is desired when

 both operands are strings. See "Bitwise String Operators" in perlop.

 The following code will build up an ASCII string saying 'PerlPerlPerl'. The comments

 show the string after each step. Note that this code works in the same way on big-

 endian or little-endian machines.

 my $foo = '';

 vec($foo, 0, 32) = 0x5065726C; # 'Perl'

 # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits

 print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')

 vec($foo, 2, 16) = 0x5065; # 'PerlPe'

 vec($foo, 3, 16) = 0x726C; # 'PerlPerl'

 vec($foo, 8, 8) = 0x50; # 'PerlPerlP'

 vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'

 vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"

 vec($foo, 21, 4) = 7; # 'PerlPerlPer'

 # 'r' is "\x72"

 vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"

 vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"

 vec($foo, 94, 1) = 1; # 'PerlPerlPerl'

 # 'l' is "\x6c"

 To transform a bit vector into a string or list of 0's and 1's, use these:

 my $bits = unpack("b*", $vector);

 my @bits = split(//, unpack("b*", $vector));

 If you know the exact length in bits, it can be used in place of the "*".

 Here is an example to illustrate how the bits actually fall in place:

 #!/usr/bin/perl -wl

 print <<'EOT';

 0 1 2 3

 unpack("V",$_) 01234567890123456789012345678901

 --

 EOT

 for $w (0..3) { Page 172/182

 $width = 2**$w;

 for ($shift=0; $shift < $width; ++$shift) {

 for ($off=0; $off < 32/$width; ++$off) {

 $str = pack("B*", "0"x32);

 $bits = (1<<$shift);

 vec($str, $off, $width) = $bits;

 $res = unpack("b*",$str);

 $val = unpack("V", $str);

 write;

 }

 }

 }

 format STDOUT =

 vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

 $off, $width, $bits, $val, $res

 .

 __END__

 Regardless of the machine architecture on which it runs, the example above should

 print the following table:

 0 1 2 3

 unpack("V",$_) 01234567890123456789012345678901

 --

 vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000

 vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000

 vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000

 vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000

 vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000

 vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000

 vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000

 vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000

 vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000

 vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000

 vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000 Page 173/182

 vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000

 vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000

 vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000

 vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000

 vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000

 vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000

 vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000

 vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000

 vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000

 vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000

 vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000

 vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000

 vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000

 vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000

 vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000

 vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000

 vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000

 vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000

 vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100

 vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010

 vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001

 vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000

 vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000

 vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000

 vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000

 vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000

 vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000

 vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000

 vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000

 vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000

 vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000

 vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000

 vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000 Page 174/182

 vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000

 vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000

 vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000

 vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010

 vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000

 vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000

 vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000

 vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000

 vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000

 vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000

 vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000

 vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000

 vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000

 vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000

 vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000

 vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000

 vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000

 vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000

 vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100

 vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001

 vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000

 vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000

 vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000

 vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000

 vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000

 vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000

 vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000

 vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000

 vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000

 vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000

 vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000

 vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000

 vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000 Page 175/182

 vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000

 vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000

 vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100

 vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000

 vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000

 vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000

 vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000

 vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000

 vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000

 vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000

 vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010

 vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000

 vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000

 vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000

 vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000

 vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000

 vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000

 vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000

 vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001

 vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000

 vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000

 vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000

 vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000

 vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000

 vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000

 vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000

 vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000

 vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000

 vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000

 vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000

 vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000

 vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000

 vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000 Page 176/182

 vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000

 vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000

 vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000

 vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000

 vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000

 vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000

 vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000

 vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000

 vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000

 vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100

 vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000

 vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000

 vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000

 vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010

 vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000

 vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000

 vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000

 vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001

 wait

 Behaves like wait(2) on your system: it waits for a child process to terminate and

 returns the pid of the deceased process, or "-1" if there are no child processes. The

 status is returned in $? and "${^CHILD_ERROR_NATIVE}". Note that a return value of

 "-1" could mean that child processes are being automatically reaped, as described in

 perlipc.

 If you use "wait" in your handler for $SIG{CHLD}, it may accidentally wait for the

 child created by "qx" or "system". See perlipc for details.

 Portability issues: "wait" in perlport.

 waitpid PID,FLAGS

 Waits for a particular child process to terminate and returns the pid of the deceased

 process, or "-1" if there is no such child process. A non-blocking wait (with WNOHANG

 in FLAGS) can return 0 if there are child processes matching PID but none have

 terminated yet. The status is returned in $? and "${^CHILD_ERROR_NATIVE}".

 A PID of 0 indicates to wait for any child process whose process group ID is equal to Page 177/182

 that of the current process. A PID of less than "-1" indicates to wait for any child

 process whose process group ID is equal to -PID. A PID of "-1" indicates to wait for

 any child process.

 If you say

 use POSIX ":sys_wait_h";

 my $kid;

 do {

 $kid = waitpid(-1, WNOHANG);

 } while $kid > 0;

 or

 1 while waitpid(-1, WNOHANG) > 0;

 then you can do a non-blocking wait for all pending zombie processes (see "WAIT" in

 POSIX). Non-blocking wait is available on machines supporting either the waitpid(2)

 or wait4(2) syscalls. However, waiting for a particular pid with FLAGS of 0 is

 implemented everywhere. (Perl emulates the system call by remembering the status

 values of processes that have exited but have not been harvested by the Perl script

 yet.)

 Note that on some systems, a return value of "-1" could mean that child processes are

 being automatically reaped. See perlipc for details, and for other examples.

 Portability issues: "waitpid" in perlport.

 wantarray

 Returns true if the context of the currently executing subroutine or "eval" is looking

 for a list value. Returns false if the context is looking for a scalar. Returns the

 undefined value if the context is looking for no value (void context).

 return unless defined wantarray; # don't bother doing more

 my @a = complex_calculation();

 return wantarray ? @a : "@a";

 "wantarray"'s result is unspecified in the top level of a file, in a "BEGIN",

 "UNITCHECK", "CHECK", "INIT" or "END" block, or in a "DESTROY" method.

 This function should have been named wantlist() instead.

 warn LIST

 Emits a warning, usually by printing it to "STDERR". "warn" interprets its operand

 LIST in the same way as "die", but is slightly different in what it defaults to when Page 178/182

 LIST is empty or makes an empty string. If it is empty and $@ already contains an

 exception value then that value is used after appending "\t...caught". If it is empty

 and $@ is also empty then the string "Warning: Something's wrong" is used.

 By default, the exception derived from the operand LIST is stringified and printed to

 "STDERR". This behaviour can be altered by installing a $SIG{__WARN__} handler. If

 there is such a handler then no message is automatically printed; it is the handler's

 responsibility to deal with the exception as it sees fit (like, for instance,

 converting it into a "die"). Most handlers must therefore arrange to actually display

 the warnings that they are not prepared to deal with, by calling "warn" again in the

 handler. Note that this is quite safe and will not produce an endless loop, since

 "__WARN__" hooks are not called from inside one.

 You will find this behavior is slightly different from that of $SIG{__DIE__} handlers

 (which don't suppress the error text, but can instead call "die" again to change it).

 Using a "__WARN__" handler provides a powerful way to silence all warnings (even the

 so-called mandatory ones). An example:

 # wipe out *all* compile-time warnings

 BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }

 my $foo = 10;

 my $foo = 20; # no warning about duplicate my $foo,

 # but hey, you asked for it!

 # no compile-time or run-time warnings before here

 $DOWARN = 1;

 # run-time warnings enabled after here

 warn "\$foo is alive and $foo!"; # does show up

 See perlvar for details on setting %SIG entries and for more examples. See the Carp

 module for other kinds of warnings using its "carp" and "cluck" functions.

 write FILEHANDLE

 write EXPR

 write

 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE, using the

 format associated with that file. By default the format for a file is the one having

 the same name as the filehandle, but the format for the current output channel (see

 the "select" function) may be set explicitly by assigning the name of the format to Page 179/182

 the $~ variable.

 Top of form processing is handled automatically: if there is insufficient room on the

 current page for the formatted record, the page is advanced by writing a form feed and

 a special top-of-page format is used to format the new page header before the record

 is written. By default, the top-of-page format is the name of the filehandle with

 "_TOP" appended, or "top" in the current package if the former does not exist. This

 would be a problem with autovivified filehandles, but it may be dynamically set to the

 format of your choice by assigning the name to the $^ variable while that filehandle

 is selected. The number of lines remaining on the current page is in variable "$-",

 which can be set to 0 to force a new page.

 If FILEHANDLE is unspecified, output goes to the current default output channel, which

 starts out as STDOUT but may be changed by the "select" operator. If the FILEHANDLE

 is an EXPR, then the expression is evaluated and the resulting string is used to look

 up the name of the FILEHANDLE at run time. For more on formats, see perlform.

 Note that write is not the opposite of "read". Unfortunately.

 y///

 The transliteration operator. Same as "tr///". See "Quote-Like Operators" in perlop.

 Non-function Keywords by Cross-reference

 perldata

 __DATA__

 __END__

 These keywords are documented in "Special Literals" in perldata.

 perlmod

 BEGIN

 CHECK

 END

 INIT

 UNITCHECK

 These compile phase keywords are documented in "BEGIN, UNITCHECK, CHECK, INIT and END"

 in perlmod.

 perlobj

 DESTROY

 This method keyword is documented in "Destructors" in perlobj. Page 180/182

 perlop

 and

 cmp

 eq

 ge

 gt

 le

 lt

 ne

 not

 or

 x

 xor These operators are documented in perlop.

 perlsub

 AUTOLOAD

 This keyword is documented in "Autoloading" in perlsub.

 perlsyn

 else

 elsif

 for

 foreach

 if

 unless

 until

 while

 These flow-control keywords are documented in "Compound Statements" in perlsyn.

 elseif

 The "else if" keyword is spelled "elsif" in Perl. There's no "elif" or "else if"

 either. It does parse "elseif", but only to warn you about not using it.

 See the documentation for flow-control keywords in "Compound Statements" in perlsyn.

 default

 given

 when Page 181/182

 These flow-control keywords related to the experimental switch feature are documented

 in "Switch Statements" in perlsyn.

perl v5.34.0 2023-11-23 PERLFUNC(1)

Page 182/182

