
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlinterp.1'

$ man perlinterp.1

PERLINTERP(1) Perl Programmers Reference Guide PERLINTERP(1)

NAME

 perlinterp - An overview of the Perl interpreter

DESCRIPTION

 This document provides an overview of how the Perl interpreter works at the level of C

 code, along with pointers to the relevant C source code files.

ELEMENTS OF THE INTERPRETER

 The work of the interpreter has two main stages: compiling the code into the internal

 representation, or bytecode, and then executing it. "Compiled code" in perlguts explains

 exactly how the compilation stage happens.

 Here is a short breakdown of perl's operation:

 Startup

 The action begins in perlmain.c. (or miniperlmain.c for miniperl) This is very high-level

 code, enough to fit on a single screen, and it resembles the code found in perlembed; most

 of the real action takes place in perl.c

 perlmain.c is generated by "ExtUtils::Miniperl" from miniperlmain.c at make time, so you

 should make perl to follow this along.

 First, perlmain.c allocates some memory and constructs a Perl interpreter, along these

 lines:

 1 PERL_SYS_INIT3(&argc,&argv,&env);

 2

 3 if (!PL_do_undump) {

 4 my_perl = perl_alloc(); Page 1/18

 5 if (!my_perl)

 6 exit(1);

 7 perl_construct(my_perl);

 8 PL_perl_destruct_level = 0;

 9 }

 Line 1 is a macro, and its definition is dependent on your operating system. Line 3

 references "PL_do_undump", a global variable - all global variables in Perl start with

 "PL_". This tells you whether the current running program was created with the "-u" flag

 to perl and then undump, which means it's going to be false in any sane context.

 Line 4 calls a function in perl.c to allocate memory for a Perl interpreter. It's quite a

 simple function, and the guts of it looks like this:

 my_perl = (PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));

 Here you see an example of Perl's system abstraction, which we'll see later:

 "PerlMem_malloc" is either your system's "malloc", or Perl's own "malloc" as defined in

 malloc.c if you selected that option at configure time.

 Next, in line 7, we construct the interpreter using perl_construct, also in perl.c; this

 sets up all the special variables that Perl needs, the stacks, and so on.

 Now we pass Perl the command line options, and tell it to go:

 if (!perl_parse(my_perl, xs_init, argc, argv, (char **)NULL))

 perl_run(my_perl);

 exitstatus = perl_destruct(my_perl);

 perl_free(my_perl);

 "perl_parse" is actually a wrapper around "S_parse_body", as defined in perl.c, which

 processes the command line options, sets up any statically linked XS modules, opens the

 program and calls "yyparse" to parse it.

 Parsing

 The aim of this stage is to take the Perl source, and turn it into an op tree. We'll see

 what one of those looks like later. Strictly speaking, there's three things going on here.

 "yyparse", the parser, lives in perly.c, although you're better off reading the original

 YACC input in perly.y. (Yes, Virginia, there is a YACC grammar for Perl!) The job of the

 parser is to take your code and "understand" it, splitting it into sentences, deciding

 which operands go with which operators and so on.

 The parser is nobly assisted by the lexer, which chunks up your input into tokens, and Page 2/18

 decides what type of thing each token is: a variable name, an operator, a bareword, a

 subroutine, a core function, and so on. The main point of entry to the lexer is "yylex",

 and that and its associated routines can be found in toke.c. Perl isn't much like other

 computer languages; it's highly context sensitive at times, it can be tricky to work out

 what sort of token something is, or where a token ends. As such, there's a lot of

 interplay between the tokeniser and the parser, which can get pretty frightening if you're

 not used to it.

 As the parser understands a Perl program, it builds up a tree of operations for the

 interpreter to perform during execution. The routines which construct and link together

 the various operations are to be found in op.c, and will be examined later.

 Optimization

 Now the parsing stage is complete, and the finished tree represents the operations that

 the Perl interpreter needs to perform to execute our program. Next, Perl does a dry run

 over the tree looking for optimisations: constant expressions such as "3 + 4" will be

 computed now, and the optimizer will also see if any multiple operations can be replaced

 with a single one. For instance, to fetch the variable $foo, instead of grabbing the glob

 *foo and looking at the scalar component, the optimizer fiddles the op tree to use a

 function which directly looks up the scalar in question. The main optimizer is "peep" in

 op.c, and many ops have their own optimizing functions.

 Running

 Now we're finally ready to go: we have compiled Perl byte code, and all that's left to do

 is run it. The actual execution is done by the "runops_standard" function in run.c; more

 specifically, it's done by these three innocent looking lines:

 while ((PL_op = PL_op->op_ppaddr(aTHX))) {

 PERL_ASYNC_CHECK();

 }

 You may be more comfortable with the Perl version of that:

 PERL_ASYNC_CHECK() while $Perl::op = &{$Perl::op->{function}};

 Well, maybe not. Anyway, each op contains a function pointer, which stipulates the

 function which will actually carry out the operation. This function will return the next

 op in the sequence - this allows for things like "if" which choose the next op dynamically

 at run time. The "PERL_ASYNC_CHECK" makes sure that things like signals interrupt

 execution if required. Page 3/18

 The actual functions called are known as PP code, and they're spread between four files:

 pp_hot.c contains the "hot" code, which is most often used and highly optimized, pp_sys.c

 contains all the system-specific functions, pp_ctl.c contains the functions which

 implement control structures ("if", "while" and the like) and pp.c contains everything

 else. These are, if you like, the C code for Perl's built-in functions and operators.

 Note that each "pp_" function is expected to return a pointer to the next op. Calls to

 perl subs (and eval blocks) are handled within the same runops loop, and do not consume

 extra space on the C stack. For example, "pp_entersub" and "pp_entertry" just push a

 "CxSUB" or "CxEVAL" block struct onto the context stack which contain the address of the

 op following the sub call or eval. They then return the first op of that sub or eval

 block, and so execution continues of that sub or block. Later, a "pp_leavesub" or

 "pp_leavetry" op pops the "CxSUB" or "CxEVAL", retrieves the return op from it, and

 returns it.

 Exception handing

 Perl's exception handing (i.e. "die" etc.) is built on top of the low-level

 "setjmp()"/"longjmp()" C-library functions. These basically provide a way to capture the

 current PC and SP registers and later restore them; i.e. a "longjmp()" continues at the

 point in code where a previous "setjmp()" was done, with anything further up on the C

 stack being lost. This is why code should always save values using "SAVE_FOO" rather than

 in auto variables.

 The perl core wraps "setjmp()" etc in the macros "JMPENV_PUSH" and "JMPENV_JUMP". The

 basic rule of perl exceptions is that "exit", and "die" (in the absence of "eval") perform

 a JMPENV_JUMP(2), while "die" within "eval" does a JMPENV_JUMP(3).

 At entry points to perl, such as "perl_parse()", "perl_run()" and "call_sv(cv, G_EVAL)"

 each does a "JMPENV_PUSH", then enter a runops loop or whatever, and handle possible

 exception returns. For a 2 return, final cleanup is performed, such as popping stacks and

 calling "CHECK" or "END" blocks. Amongst other things, this is how scope cleanup still

 occurs during an "exit".

 If a "die" can find a "CxEVAL" block on the context stack, then the stack is popped to

 that level and the return op in that block is assigned to "PL_restartop"; then a

 JMPENV_JUMP(3) is performed. This normally passes control back to the guard. In the case

 of "perl_run" and "call_sv", a non-null "PL_restartop" triggers re-entry to the runops

 loop. The is the normal way that "die" or "croak" is handled within an "eval". Page 4/18

 Sometimes ops are executed within an inner runops loop, such as tie, sort or overload

 code. In this case, something like

 sub FETCH { eval { die } }

 would cause a longjmp right back to the guard in "perl_run", popping both runops loops,

 which is clearly incorrect. One way to avoid this is for the tie code to do a

 "JMPENV_PUSH" before executing "FETCH" in the inner runops loop, but for efficiency

 reasons, perl in fact just sets a flag, using "CATCH_SET(TRUE)". The "pp_require",

 "pp_entereval" and "pp_entertry" ops check this flag, and if true, they call "docatch",

 which does a "JMPENV_PUSH" and starts a new runops level to execute the code, rather than

 doing it on the current loop.

 As a further optimisation, on exit from the eval block in the "FETCH", execution of the

 code following the block is still carried on in the inner loop. When an exception is

 raised, "docatch" compares the "JMPENV" level of the "CxEVAL" with "PL_top_env" and if

 they differ, just re-throws the exception. In this way any inner loops get popped.

 Here's an example.

 1: eval { tie @a, 'A' };

 2: sub A::TIEARRAY {

 3: eval { die };

 4: die;

 5: }

 To run this code, "perl_run" is called, which does a "JMPENV_PUSH" then enters a runops

 loop. This loop executes the eval and tie ops on line 1, with the eval pushing a "CxEVAL"

 onto the context stack.

 The "pp_tie" does a "CATCH_SET(TRUE)", then starts a second runops loop to execute the

 body of "TIEARRAY". When it executes the entertry op on line 3, "CATCH_GET" is true, so

 "pp_entertry" calls "docatch" which does a "JMPENV_PUSH" and starts a third runops loop,

 which then executes the die op. At this point the C call stack looks like this:

 Perl_pp_die

 Perl_runops # third loop

 S_docatch_body

 S_docatch

 Perl_pp_entertry

 Perl_runops # second loop Page 5/18

 S_call_body

 Perl_call_sv

 Perl_pp_tie

 Perl_runops # first loop

 S_run_body

 perl_run

 main

 and the context and data stacks, as shown by "-Dstv", look like:

 STACK 0: MAIN

 CX 0: BLOCK =>

 CX 1: EVAL => AV() PV("A"\0)

 retop=leave

 STACK 1: MAGIC

 CX 0: SUB =>

 retop=(null)

 CX 1: EVAL => *

 retop=nextstate

 The die pops the first "CxEVAL" off the context stack, sets "PL_restartop" from it, does a

 JMPENV_JUMP(3), and control returns to the top "docatch". This then starts another third-

 level runops level, which executes the nextstate, pushmark and die ops on line 4. At the

 point that the second "pp_die" is called, the C call stack looks exactly like that above,

 even though we are no longer within an inner eval; this is because of the optimization

 mentioned earlier. However, the context stack now looks like this, ie with the top CxEVAL

 popped:

 STACK 0: MAIN

 CX 0: BLOCK =>

 CX 1: EVAL => AV() PV("A"\0)

 retop=leave

 STACK 1: MAGIC

 CX 0: SUB =>

 retop=(null)

 The die on line 4 pops the context stack back down to the CxEVAL, leaving it as:

 STACK 0: MAIN Page 6/18

 CX 0: BLOCK =>

 As usual, "PL_restartop" is extracted from the "CxEVAL", and a JMPENV_JUMP(3) done, which

 pops the C stack back to the docatch:

 S_docatch

 Perl_pp_entertry

 Perl_runops # second loop

 S_call_body

 Perl_call_sv

 Perl_pp_tie

 Perl_runops # first loop

 S_run_body

 perl_run

 main

 In this case, because the "JMPENV" level recorded in the "CxEVAL" differs from the

 current one, "docatch" just does a JMPENV_JUMP(3) and the C stack unwinds to:

 perl_run

 main

 Because "PL_restartop" is non-null, "run_body" starts a new runops loop and execution

 continues.

 INTERNAL VARIABLE TYPES

 You should by now have had a look at perlguts, which tells you about Perl's internal

 variable types: SVs, HVs, AVs and the rest. If not, do that now.

 These variables are used not only to represent Perl-space variables, but also any

 constants in the code, as well as some structures completely internal to Perl. The symbol

 table, for instance, is an ordinary Perl hash. Your code is represented by an SV as it's

 read into the parser; any program files you call are opened via ordinary Perl filehandles,

 and so on.

 The core Devel::Peek module lets us examine SVs from a Perl program. Let's see, for

 instance, how Perl treats the constant "hello".

 % perl -MDevel::Peek -e 'Dump("hello")'

 1 SV = PV(0xa041450) at 0xa04ecbc

 2 REFCNT = 1

 3 FLAGS = (POK,READONLY,pPOK) Page 7/18

 4 PV = 0xa0484e0 "hello"\0

 5 CUR = 5

 6 LEN = 6

 Reading "Devel::Peek" output takes a bit of practise, so let's go through it line by line.

 Line 1 tells us we're looking at an SV which lives at 0xa04ecbc in memory. SVs themselves

 are very simple structures, but they contain a pointer to a more complex structure. In

 this case, it's a PV, a structure which holds a string value, at location 0xa041450. Line

 2 is the reference count; there are no other references to this data, so it's 1.

 Line 3 are the flags for this SV - it's OK to use it as a PV, it's a read-only SV (because

 it's a constant) and the data is a PV internally. Next we've got the contents of the

 string, starting at location 0xa0484e0.

 Line 5 gives us the current length of the string - note that this does not include the

 null terminator. Line 6 is not the length of the string, but the length of the currently

 allocated buffer; as the string grows, Perl automatically extends the available storage

 via a routine called "SvGROW".

 You can get at any of these quantities from C very easily; just add "Sv" to the name of

 the field shown in the snippet, and you've got a macro which will return the value:

 "SvCUR(sv)" returns the current length of the string, "SvREFCOUNT(sv)" returns the

 reference count, "SvPV(sv, len)" returns the string itself with its length, and so on.

 More macros to manipulate these properties can be found in perlguts.

 Let's take an example of manipulating a PV, from "sv_catpvn", in sv.c

 1 void

 2 Perl_sv_catpvn(pTHX_ SV *sv, const char *ptr, STRLEN len)

 3 {

 4 STRLEN tlen;

 5 char *junk;

 6 junk = SvPV_force(sv, tlen);

 7 SvGROW(sv, tlen + len + 1);

 8 if (ptr == junk)

 9 ptr = SvPVX(sv);

 10 Move(ptr,SvPVX(sv)+tlen,len,char);

 11 SvCUR(sv) += len;

 12 *SvEND(sv) = '\0'; Page 8/18

 13 (void)SvPOK_only_UTF8(sv); /* validate pointer */

 14 SvTAINT(sv);

 15 }

 This is a function which adds a string, "ptr", of length "len" onto the end of the PV

 stored in "sv". The first thing we do in line 6 is make sure that the SV has a valid PV,

 by calling the "SvPV_force" macro to force a PV. As a side effect, "tlen" gets set to the

 current value of the PV, and the PV itself is returned to "junk".

 In line 7, we make sure that the SV will have enough room to accommodate the old string,

 the new string and the null terminator. If "LEN" isn't big enough, "SvGROW" will

 reallocate space for us.

 Now, if "junk" is the same as the string we're trying to add, we can grab the string

 directly from the SV; "SvPVX" is the address of the PV in the SV.

 Line 10 does the actual catenation: the "Move" macro moves a chunk of memory around: we

 move the string "ptr" to the end of the PV - that's the start of the PV plus its current

 length. We're moving "len" bytes of type "char". After doing so, we need to tell Perl

 we've extended the string, by altering "CUR" to reflect the new length. "SvEND" is a macro

 which gives us the end of the string, so that needs to be a "\0".

 Line 13 manipulates the flags; since we've changed the PV, any IV or NV values will no

 longer be valid: if we have "$a=10; $a.="6";" we don't want to use the old IV of 10.

 "SvPOK_only_utf8" is a special UTF-8-aware version of "SvPOK_only", a macro which turns

 off the IOK and NOK flags and turns on POK. The final "SvTAINT" is a macro which launders

 tainted data if taint mode is turned on.

 AVs and HVs are more complicated, but SVs are by far the most common variable type being

 thrown around. Having seen something of how we manipulate these, let's go on and look at

 how the op tree is constructed.

OP TREES

 First, what is the op tree, anyway? The op tree is the parsed representation of your

 program, as we saw in our section on parsing, and it's the sequence of operations that

 Perl goes through to execute your program, as we saw in "Running".

 An op is a fundamental operation that Perl can perform: all the built-in functions and

 operators are ops, and there are a series of ops which deal with concepts the interpreter

 needs internally - entering and leaving a block, ending a statement, fetching a variable,

 and so on. Page 9/18

 The op tree is connected in two ways: you can imagine that there are two "routes" through

 it, two orders in which you can traverse the tree. First, parse order reflects how the

 parser understood the code, and secondly, execution order tells perl what order to perform

 the operations in.

 The easiest way to examine the op tree is to stop Perl after it has finished parsing, and

 get it to dump out the tree. This is exactly what the compiler backends B::Terse,

 B::Concise and CPAN module <B::Debug do.

 Let's have a look at how Perl sees "$a = $b + $c":

 % perl -MO=Terse -e '$a=$b+$c'

 1 LISTOP (0x8179888) leave

 2 OP (0x81798b0) enter

 3 COP (0x8179850) nextstate

 4 BINOP (0x8179828) sassign

 5 BINOP (0x8179800) add [1]

 6 UNOP (0x81796e0) null [15]

 7 SVOP (0x80fafe0) gvsv GV (0x80fa4cc) *b

 8 UNOP (0x81797e0) null [15]

 9 SVOP (0x8179700) gvsv GV (0x80efeb0) *c

 10 UNOP (0x816b4f0) null [15]

 11 SVOP (0x816dcf0) gvsv GV (0x80fa460) *a

 Let's start in the middle, at line 4. This is a BINOP, a binary operator, which is at

 location 0x8179828. The specific operator in question is "sassign" - scalar assignment -

 and you can find the code which implements it in the function "pp_sassign" in pp_hot.c. As

 a binary operator, it has two children: the add operator, providing the result of "$b+$c",

 is uppermost on line 5, and the left hand side is on line 10.

 Line 10 is the null op: this does exactly nothing. What is that doing there? If you see

 the null op, it's a sign that something has been optimized away after parsing. As we

 mentioned in "Optimization", the optimization stage sometimes converts two operations into

 one, for example when fetching a scalar variable. When this happens, instead of rewriting

 the op tree and cleaning up the dangling pointers, it's easier just to replace the

 redundant operation with the null op. Originally, the tree would have looked like this:

 10 SVOP (0x816b4f0) rv2sv [15]

 11 SVOP (0x816dcf0) gv GV (0x80fa460) *a Page 10/18

 That is, fetch the "a" entry from the main symbol table, and then look at the scalar

 component of it: "gvsv" ("pp_gvsv" in pp_hot.c) happens to do both these things.

 The right hand side, starting at line 5 is similar to what we've just seen: we have the

 "add" op ("pp_add", also in pp_hot.c) add together two "gvsv"s.

 Now, what's this about?

 1 LISTOP (0x8179888) leave

 2 OP (0x81798b0) enter

 3 COP (0x8179850) nextstate

 "enter" and "leave" are scoping ops, and their job is to perform any housekeeping every

 time you enter and leave a block: lexical variables are tidied up, unreferenced variables

 are destroyed, and so on. Every program will have those first three lines: "leave" is a

 list, and its children are all the statements in the block. Statements are delimited by

 "nextstate", so a block is a collection of "nextstate" ops, with the ops to be performed

 for each statement being the children of "nextstate". "enter" is a single op which

 functions as a marker.

 That's how Perl parsed the program, from top to bottom:

 Program

 |

 Statement

 |

 =

 / \

 / \

 $a +

 / \

 $b $c

 However, it's impossible to perform the operations in this order: you have to find the

 values of $b and $c before you add them together, for instance. So, the other thread that

 runs through the op tree is the execution order: each op has a field "op_next" which

 points to the next op to be run, so following these pointers tells us how perl executes

 the code. We can traverse the tree in this order using the "exec" option to "B::Terse":

 % perl -MO=Terse,exec -e '$a=$b+$c'

 1 OP (0x8179928) enter Page 11/18

 2 COP (0x81798c8) nextstate

 3 SVOP (0x81796c8) gvsv GV (0x80fa4d4) *b

 4 SVOP (0x8179798) gvsv GV (0x80efeb0) *c

 5 BINOP (0x8179878) add [1]

 6 SVOP (0x816dd38) gvsv GV (0x80fa468) *a

 7 BINOP (0x81798a0) sassign

 8 LISTOP (0x8179900) leave

 This probably makes more sense for a human: enter a block, start a statement. Get the

 values of $b and $c, and add them together. Find $a, and assign one to the other. Then

 leave.

 The way Perl builds up these op trees in the parsing process can be unravelled by

 examining toke.c, the lexer, and perly.y, the YACC grammar. Let's look at the code that

 constructs the tree for "$a = $b + $c".

 First, we'll look at the "Perl_yylex" function in the lexer. We want to look for "case

 'x'", where x is the first character of the operator. (Incidentally, when looking for the

 code that handles a keyword, you'll want to search for "KEY_foo" where "foo" is the

 keyword.) Here is the code that handles assignment (there are quite a few operators

 beginning with "=", so most of it is omitted for brevity):

 1 case '=':

 2 s++;

 ... code that handles == => etc. and pod ...

 3 pl_yylval.ival = 0;

 4 OPERATOR(ASSIGNOP);

 We can see on line 4 that our token type is "ASSIGNOP" ("OPERATOR" is a macro, defined in

 toke.c, that returns the token type, among other things). And "+":

 1 case '+':

 2 {

 3 const char tmp = *s++;

 ... code for ++ ...

 4 if (PL_expect == XOPERATOR) {

 ...

 5 Aop(OP_ADD);

 6 } Page 12/18

 ...

 7 }

 Line 4 checks what type of token we are expecting. "Aop" returns a token. If you search

 for "Aop" elsewhere in toke.c, you will see that it returns an "ADDOP" token.

 Now that we know the two token types we want to look for in the parser, let's take the

 piece of perly.y we need to construct the tree for "$a = $b + $c"

 1 term : term ASSIGNOP term

 2 { $$ = newASSIGNOP(OPf_STACKED, $1, $2, $3); }

 3 | term ADDOP term

 4 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

 If you're not used to reading BNF grammars, this is how it works: You're fed certain

 things by the tokeniser, which generally end up in upper case. "ADDOP" and "ASSIGNOP" are

 examples of "terminal symbols", because you can't get any simpler than them.

 The grammar, lines one and three of the snippet above, tells you how to build up more

 complex forms. These complex forms, "non-terminal symbols" are generally placed in lower

 case. "term" here is a non-terminal symbol, representing a single expression.

 The grammar gives you the following rule: you can make the thing on the left of the colon

 if you see all the things on the right in sequence. This is called a "reduction", and the

 aim of parsing is to completely reduce the input. There are several different ways you can

 perform a reduction, separated by vertical bars: so, "term" followed by "=" followed by

 "term" makes a "term", and "term" followed by "+" followed by "term" can also make a

 "term".

 So, if you see two terms with an "=" or "+", between them, you can turn them into a single

 expression. When you do this, you execute the code in the block on the next line: if you

 see "=", you'll do the code in line 2. If you see "+", you'll do the code in line 4. It's

 this code which contributes to the op tree.

 | term ADDOP term

 { $$ = newBINOP($2, 0, scalar($1), scalar($3)); }

 What this does is creates a new binary op, and feeds it a number of variables. The

 variables refer to the tokens: $1 is the first token in the input, $2 the second, and so

 on - think regular expression backreferences. $$ is the op returned from this reduction.

 So, we call "newBINOP" to create a new binary operator. The first parameter to "newBINOP",

 a function in op.c, is the op type. It's an addition operator, so we want the type to be Page 13/18

 "ADDOP". We could specify this directly, but it's right there as the second token in the

 input, so we use $2. The second parameter is the op's flags: 0 means "nothing special".

 Then the things to add: the left and right hand side of our expression, in scalar context.

 The functions that create ops, which have names like "newUNOP" and "newBINOP", call a

 "check" function associated with each op type, before returning the op. The check

 functions can mangle the op as they see fit, and even replace it with an entirely new one.

 These functions are defined in op.c, and have a "Perl_ck_" prefix. You can find out which

 check function is used for a particular op type by looking in regen/opcodes. Take

 "OP_ADD", for example. ("OP_ADD" is the token value from the "Aop(OP_ADD)" in toke.c which

 the parser passes to "newBINOP" as its first argument.) Here is the relevant line:

 add addition (+) ck_null IfsT2 S S

 The check function in this case is "Perl_ck_null", which does nothing. Let's look at a

 more interesting case:

 readline <HANDLE> ck_readline t% F?

 And here is the function from op.c:

 1 OP *

 2 Perl_ck_readline(pTHX_ OP *o)

 3 {

 4 PERL_ARGS_ASSERT_CK_READLINE;

 5

 6 if (o->op_flags & OPf_KIDS) {

 7 OP *kid = cLISTOPo->op_first;

 8 if (kid->op_type == OP_RV2GV)

 9 kid->op_private |= OPpALLOW_FAKE;

 10 }

 11 else {

 12 OP * const newop

 13 = newUNOP(OP_READLINE, 0, newGVOP(OP_GV, 0,

 14 PL_argvgv));

 15 op_free(o);

 16 return newop;

 17 }

 18 return o; Page 14/18

 19 }

 One particularly interesting aspect is that if the op has no kids (i.e., "readline()" or

 "<>") the op is freed and replaced with an entirely new one that references *ARGV (lines

 12-16).

STACKS

 When perl executes something like "addop", how does it pass on its results to the next op?

 The answer is, through the use of stacks. Perl has a number of stacks to store things it's

 currently working on, and we'll look at the three most important ones here.

 Argument stack

 Arguments are passed to PP code and returned from PP code using the argument stack, "ST".

 The typical way to handle arguments is to pop them off the stack, deal with them how you

 wish, and then push the result back onto the stack. This is how, for instance, the cosine

 operator works:

 NV value;

 value = POPn;

 value = Perl_cos(value);

 XPUSHn(value);

 We'll see a more tricky example of this when we consider Perl's macros below. "POPn" gives

 you the NV (floating point value) of the top SV on the stack: the $x in "cos($x)". Then we

 compute the cosine, and push the result back as an NV. The "X" in "XPUSHn" means that the

 stack should be extended if necessary - it can't be necessary here, because we know

 there's room for one more item on the stack, since we've just removed one! The "XPUSH*"

 macros at least guarantee safety.

 Alternatively, you can fiddle with the stack directly: "SP" gives you the first element in

 your portion of the stack, and "TOP*" gives you the top SV/IV/NV/etc. on the stack. So,

 for instance, to do unary negation of an integer:

 SETi(-TOPi);

 Just set the integer value of the top stack entry to its negation.

 Argument stack manipulation in the core is exactly the same as it is in XSUBs - see

 perlxstut, perlxs and perlguts for a longer description of the macros used in stack

 manipulation.

 Mark stack

 I say "your portion of the stack" above because PP code doesn't necessarily get the whole Page 15/18

 stack to itself: if your function calls another function, you'll only want to expose the

 arguments aimed for the called function, and not (necessarily) let it get at your own

 data. The way we do this is to have a "virtual" bottom-of-stack, exposed to each

 function. The mark stack keeps bookmarks to locations in the argument stack usable by each

 function. For instance, when dealing with a tied variable, (internally, something with "P"

 magic) Perl has to call methods for accesses to the tied variables. However, we need to

 separate the arguments exposed to the method to the argument exposed to the original

 function - the store or fetch or whatever it may be. Here's roughly how the tied "push"

 is implemented; see "av_push" in av.c:

 1 PUSHMARK(SP);

 2 EXTEND(SP,2);

 3 PUSHs(SvTIED_obj((SV*)av, mg));

 4 PUSHs(val);

 5 PUTBACK;

 6 ENTER;

 7 call_method("PUSH", G_SCALAR|G_DISCARD);

 8 LEAVE;

 Let's examine the whole implementation, for practice:

 1 PUSHMARK(SP);

 Push the current state of the stack pointer onto the mark stack. This is so that when

 we've finished adding items to the argument stack, Perl knows how many things we've added

 recently.

 2 EXTEND(SP,2);

 3 PUSHs(SvTIED_obj((SV*)av, mg));

 4 PUSHs(val);

 We're going to add two more items onto the argument stack: when you have a tied array, the

 "PUSH" subroutine receives the object and the value to be pushed, and that's exactly what

 we have here - the tied object, retrieved with "SvTIED_obj", and the value, the SV "val".

 5 PUTBACK;

 Next we tell Perl to update the global stack pointer from our internal variable: "dSP"

 only gave us a local copy, not a reference to the global.

 6 ENTER;

 7 call_method("PUSH", G_SCALAR|G_DISCARD); Page 16/18

 8 LEAVE;

 "ENTER" and "LEAVE" localise a block of code - they make sure that all variables are

 tidied up, everything that has been localised gets its previous value returned, and so on.

 Think of them as the "{" and "}" of a Perl block.

 To actually do the magic method call, we have to call a subroutine in Perl space:

 "call_method" takes care of that, and it's described in perlcall. We call the "PUSH"

 method in scalar context, and we're going to discard its return value. The call_method()

 function removes the top element of the mark stack, so there is nothing for the caller to

 clean up.

 Save stack

 C doesn't have a concept of local scope, so perl provides one. We've seen that "ENTER" and

 "LEAVE" are used as scoping braces; the save stack implements the C equivalent of, for

 example:

 {

 local $foo = 42;

 ...

 }

 See "Localizing changes" in perlguts for how to use the save stack.

MILLIONS OF MACROS

 One thing you'll notice about the Perl source is that it's full of macros. Some have

 called the pervasive use of macros the hardest thing to understand, others find it adds to

 clarity. Let's take an example, a stripped-down version the code which implements the

 addition operator:

 1 PP(pp_add)

 2 {

 3 dSP; dATARGET;

 4 tryAMAGICbin_MG(add_amg, AMGf_assign|AMGf_numeric);

 5 {

 6 dPOPTOPnnrl_ul;

 7 SETn(left + right);

 8 RETURN;

 9 }

 10 } Page 17/18

 Every line here (apart from the braces, of course) contains a macro. The first line sets

 up the function declaration as Perl expects for PP code; line 3 sets up variable

 declarations for the argument stack and the target, the return value of the operation.

 Line 4 tries to see if the addition operation is overloaded; if so, the appropriate

 subroutine is called.

 Line 6 is another variable declaration - all variable declarations start with "d" - which

 pops from the top of the argument stack two NVs (hence "nn") and puts them into the

 variables "right" and "left", hence the "rl". These are the two operands to the addition

 operator. Next, we call "SETn" to set the NV of the return value to the result of adding

 the two values. This done, we return - the "RETURN" macro makes sure that our return value

 is properly handled, and we pass the next operator to run back to the main run loop.

 Most of these macros are explained in perlapi, and some of the more important ones are

 explained in perlxs as well. Pay special attention to "Background and

 PERL_IMPLICIT_CONTEXT" in perlguts for information on the "[pad]THX_?" macros.

FURTHER READING

 For more information on the Perl internals, please see the documents listed at "Internals

 and C Language Interface" in perl.

perl v5.34.0 2023-11-23 PERLINTERP(1)

Page 18/18

