
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlpodstyle.1'

$ man perlpodstyle.1

PERLPODSTYLE(1) Perl Programmers Reference Guide PERLPODSTYLE(1)

NAME

 perlpodstyle - Perl POD style guide

DESCRIPTION

 These are general guidelines for how to write POD documentation for Perl scripts and

 modules, based on general guidelines for writing good UNIX man pages. All of these

 guidelines are, of course, optional, but following them will make your documentation more

 consistent with other documentation on the system.

 The name of the program being documented is conventionally written in bold (using B<>)

 wherever it occurs, as are all program options. Arguments should be written in italics

 (I<>). Function names are traditionally written in italics; if you write a function as

 function(), Pod::Man will take care of this for you. Literal code or commands should be

 in C<>. References to other man pages should be in the form "manpage(section)" or

 "L<manpage(section)>", and Pod::Man will automatically format those appropriately. The

 second form, with L<>, is used to request that a POD formatter make a link to the man page

 if possible. As an exception, one normally omits the section when referring to module

 documentation since it's not clear what section module documentation will be in; use

 "L<Module::Name>" for module references instead.

 References to other programs or functions are normally in the form of man page references

 so that cross-referencing tools can provide the user with links and the like. It's

 possible to overdo this, though, so be careful not to clutter your documentation with too

 much markup. References to other programs that are not given as man page references

 should be enclosed in B<>. Page 1/7

 The major headers should be set out using a "=head1" directive, and are historically

 written in the rather startling ALL UPPER CASE format; this is not mandatory, but it's

 strongly recommended so that sections have consistent naming across different software

 packages. Minor headers may be included using "=head2", and are typically in mixed case.

 The standard sections of a manual page are:

 NAME

 Mandatory section; should be a comma-separated list of programs or functions

 documented by this POD page, such as:

 foo, bar - programs to do something

 Manual page indexers are often extremely picky about the format of this section, so

 don't put anything in it except this line. Every program or function documented by

 this POD page should be listed, separated by a comma and a space. For a Perl module,

 just give the module name. A single dash, and only a single dash, should separate the

 list of programs or functions from the description. Do not use any markup such as C<>

 or B<> anywhere in this line. Functions should not be qualified with "()" or the

 like. The description should ideally fit on a single line, even if a man program

 replaces the dash with a few tabs.

 SYNOPSIS

 A short usage summary for programs and functions. This section is mandatory for

 section 3 pages. For Perl module documentation, it's usually convenient to have the

 contents of this section be a verbatim block showing some (brief) examples of typical

 ways the module is used.

 DESCRIPTION

 Extended description and discussion of the program or functions, or the body of the

 documentation for man pages that document something else. If particularly long, it's

 a good idea to break this up into subsections "=head2" directives like:

 =head2 Normal Usage

 =head2 Advanced Features

 =head2 Writing Configuration Files

 or whatever is appropriate for your documentation.

 For a module, this is generally where the documentation of the interfaces provided by

 the module goes, usually in the form of a list with an "=item" for each interface.

 Depending on how many interfaces there are, you may want to put that documentation in Page 2/7

 separate METHODS, FUNCTIONS, CLASS METHODS, or INSTANCE METHODS sections instead and

 save the DESCRIPTION section for an overview.

 OPTIONS

 Detailed description of each of the command-line options taken by the program. This

 should be separate from the description for the use of parsers like Pod::Usage. This

 is normally presented as a list, with each option as a separate "=item". The specific

 option string should be enclosed in B<>. Any values that the option takes should be

 enclosed in I<>. For example, the section for the option --section=manext would be

 introduced with:

 =item B<--section>=I<manext>

 Synonymous options (like both the short and long forms) are separated by a comma and a

 space on the same "=item" line, or optionally listed as their own item with a

 reference to the canonical name. For example, since --section can also be written as

 -s, the above would be:

 =item B<-s> I<manext>, B<--section>=I<manext>

 Writing the short option first is recommended because it's easier to read. The long

 option is long enough to draw the eye to it anyway and the short option can otherwise

 get lost in visual noise.

 RETURN VALUE

 What the program or function returns, if successful. This section can be omitted for

 programs whose precise exit codes aren't important, provided they return 0 on success

 and non-zero on failure as is standard. It should always be present for functions.

 For modules, it may be useful to summarize return values from the module interface

 here, or it may be more useful to discuss return values separately in the

 documentation of each function or method the module provides.

 ERRORS

 Exceptions, error return codes, exit statuses, and errno settings. Typically used for

 function or module documentation; program documentation uses DIAGNOSTICS instead. The

 general rule of thumb is that errors printed to "STDOUT" or "STDERR" and intended for

 the end user are documented in DIAGNOSTICS while errors passed internal to the calling

 program and intended for other programmers are documented in ERRORS. When documenting

 a function that sets errno, a full list of the possible errno values should be given

 here. Page 3/7

 DIAGNOSTICS

 All possible messages the program can print out and what they mean. You may wish to

 follow the same documentation style as the Perl documentation; see perldiag(1) for

 more details (and look at the POD source as well).

 If applicable, please include details on what the user should do to correct the error;

 documenting an error as indicating "the input buffer is too small" without telling the

 user how to increase the size of the input buffer (or at least telling them that it

 isn't possible) aren't very useful.

 EXAMPLES

 Give some example uses of the program or function. Don't skimp; users often find this

 the most useful part of the documentation. The examples are generally given as

 verbatim paragraphs.

 Don't just present an example without explaining what it does. Adding a short

 paragraph saying what the example will do can increase the value of the example

 immensely.

 ENVIRONMENT

 Environment variables that the program cares about, normally presented as a list using

 "=over", "=item", and "=back". For example:

 =over 6

 =item HOME

 Used to determine the user's home directory. F<.foorc> in this

 directory is read for configuration details, if it exists.

 =back

 Since environment variables are normally in all uppercase, no additional special

 formatting is generally needed; they're glaring enough as it is.

 FILES

 All files used by the program or function, normally presented as a list, and what it

 uses them for. File names should be enclosed in F<>. It's particularly important to

 document files that will be potentially modified.

 CAVEATS

 Things to take special care with, sometimes called WARNINGS.

 BUGS

 Things that are broken or just don't work quite right. Page 4/7

 RESTRICTIONS

 Bugs you don't plan to fix. :-)

 NOTES

 Miscellaneous commentary.

 AUTHOR

 Who wrote it (use AUTHORS for multiple people). It's a good idea to include your

 current e-mail address (or some e-mail address to which bug reports should be sent) or

 some other contact information so that users have a way of contacting you. Remember

 that program documentation tends to roam the wild for far longer than you expect and

 pick a contact method that's likely to last.

 HISTORY

 Programs derived from other sources sometimes have this. Some people keep a

 modification log here, but that usually gets long and is normally better maintained in

 a separate file.

 COPYRIGHT AND LICENSE

 For copyright

 Copyright YEAR(s) YOUR NAME(s)

 (No, (C) is not needed. No, "all rights reserved" is not needed.)

 For licensing the easiest way is to use the same licensing as Perl itself:

 This library is free software; you may redistribute it and/or

 modify it under the same terms as Perl itself.

 This makes it easy for people to use your module with Perl. Note that this licensing

 example is neither an endorsement or a requirement, you are of course free to choose

 any licensing.

 SEE ALSO

 Other man pages to check out, like man(1), man(7), makewhatis(8), or catman(8).

 Normally a simple list of man pages separated by commas, or a paragraph giving the

 name of a reference work. Man page references, if they use the standard

 "name(section)" form, don't have to be enclosed in L<> (although it's recommended),

 but other things in this section probably should be when appropriate.

 If the package has a mailing list, include a URL or subscription instructions here.

 If the package has a web site, include a URL here.

 Documentation of object-oriented libraries or modules may want to use CONSTRUCTORS and Page 5/7

 METHODS sections, or CLASS METHODS and INSTANCE METHODS sections, for detailed

 documentation of the parts of the library and save the DESCRIPTION section for an

 overview. Large modules with a function interface may want to use FUNCTIONS for similar

 reasons. Some people use OVERVIEW to summarize the description if it's quite long.

 Section ordering varies, although NAME must always be the first section (you'll break some

 man page systems otherwise), and NAME, SYNOPSIS, DESCRIPTION, and OPTIONS generally always

 occur first and in that order if present. In general, SEE ALSO, AUTHOR, and similar

 material should be left for last. Some systems also move WARNINGS and NOTES to last. The

 order given above should be reasonable for most purposes.

 Some systems use CONFORMING TO to note conformance to relevant standards and MT-LEVEL to

 note safeness for use in threaded programs or signal handlers. These headings are

 primarily useful when documenting parts of a C library.

 Finally, as a general note, try not to use an excessive amount of markup. As documented

 here and in Pod::Man, you can safely leave Perl variables, function names, man page

 references, and the like unadorned by markup and the POD translators will figure it out

 for you. This makes it much easier to later edit the documentation. Note that many

 existing translators will do the wrong thing with e-mail addresses when wrapped in L<>, so

 don't do that.

AUTHOR

 Russ Allbery <rra@cpan.org>, with large portions of this documentation taken from the

 documentation of the original pod2man implementation by Larry Wall and Tom Christiansen.

COPYRIGHT AND LICENSE

 Copyright 1999, 2000, 2001, 2004, 2006, 2008, 2010, 2015, 2018 Russ Allbery <rra@cpan.org>

 Copying and distribution of this file, with or without modification, are permitted in any

 medium without royalty provided the copyright notice and this notice are preserved. This

 file is offered as-is, without any warranty.

 SPDX-License-Identifier: FSFAP

SEE ALSO

 For additional information that may be more accurate for your specific system, see either

 man(5) or man(7) depending on your system manual section numbering conventions.

 This documentation is maintained as part of the podlators distribution. The current

 version is always available from its web site at

 <https://www.eyrie.org/~eagle/software/podlators/>. Page 6/7

perl v5.34.0 2023-11-23 PERLPODSTYLE(1)

Page 7/7

