PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'perlreapi.l’
$ man perlreapi.1
PERLREAPI(1) Perl Programmers Reference Guide PERLREAPI(1)
NAME
perlreapi - Perl regular expression plugin interface
DESCRIPTION
As of Perl 5.9.5 there is a new interface for plugging and using regular expression
engines other than the default one.
Each engine is supposed to provide access to a constant structure of the following format:
typedef struct regexp_engine {
REGEXP* (*comp) (pTHX _
const SV * const pattern, const U32 flags);
132 (*exec) (pTHX_
REGEXP * const rx,
char* stringarg,
char* strend, char* strbeg,
SSize_t minend, SV* sv,
void* data, U32 flags);
char* (*intuit) (pTHX_
REGEXP * const rx, SV *sv,
const char * const strbeg,
char *strpos, char *strend, U32 flags,
struct re_scream_pos_data_s *data);
SV* (*checkstr) (pTHX_ REGEXP * const rx);

void (*free) (pTHX_REGEXP * const rx);

FPDF Library

Page 1/17

void (*numbered_buff FETCH) (pTHX_
REGEXP * const rx,
const 132 paren,
SV * const sv);
void (*numbered_buff STORE) (pTHX_
REGEXP * const rx,
const 132 paren,
SV const * const value);
132 (*numbered_buff LENGTH) (pTHX_
REGEXP * const rx,
const SV * const sv,
const 132 paren);
SV* (*named_buff) (pTHX _
REGEXP * const rx,
SV * const key,
SV * const value,
U32 flags);
SV* (*named_buff_iter) (pTHX_
REGEXP * const rx,
const SV * const lastkey,
const U32 flags);
SV* (*qr_package)(pTHX_ REGEXP * const rx);
#ifdef USE_ITHREADS
void* (*dupe) (pTHX_ REGEXP * const rx, CLONE_PARAMS *param);
#endif
REGEXP* (*op_comp) (...);
When a regexp is compiled, its "engine" field is then set to point at the appropriate
structure, so that when it needs to be used Perl can find the right routines to do so.
In order to install a new regexp handler, $"H{regcomp} is set to an integer which (when
casted appropriately) resolves to one of these structures. When compiling, the "comp"
method is executed, and the resulting "regexp" structure's engine field is expected to
point back at the same structure.

The pTHX_ symbol in the definition is a macro used by Perl under threading to provide an

Page 2/17

extra argument to the routine holding a pointer back to the interpreter that is executing
the regexp. So under threading all routines get an extra argument.
Callbacks
comp

REGEXP* comp(pTHX_ const SV * const pattern, const U32 flags);
Compile the pattern stored in "pattern” using the given "flags" and return a pointer to a
prepared "REGEXP" structure that can perform the match. See "The REGEXP structure" below
for an explanation of the individual fields in the REGEXP struct.
The "pattern” parameter is the scalar that was used as the pattern. Previous versions of
Perl would pass two "char*" indicating the start and end of the stringified pattern; the
following snippet can be used to get the old parameters:

STRLEN plen;

char* exp = SvPV(pattern, plen);

char* xend = exp + plen;
Since any scalar can be passed as a pattern, it's possible to implement an engine that

does something with an array (""ook" =~ [gw/ eek hlagh /]") or with the non-stringified

form of a compiled regular expression ("ook" =~ qr/eek/"). Perl's own engine will always
stringify everything using the snippet above, but that doesn't mean other engines have to.
The "flags" parameter is a bitfield which indicates which of the "msixpn" flags the regex
was compiled with. It also contains additional info, such as if "use locale" is in

effect.

The "eogc" flags are stripped out before being passed to the comp routine. The regex
engine does not need to know if any of these are set, as those flags should only affect
what Perl does with the pattern and its match variables, not how it gets compiled and
executed.

By the time the comp callback is called, some of these flags have already had effect
(noted below where applicable). However most of their effect occurs after the comp
callback has run, in routines that read the "rx->extflags" field which it populates.

In general the flags should be preserved in "rx->extflags" after compilation, although the
regex engine might want to add or delete some of them to invoke or disable some special
behavior in Perl. The flags along with any special behavior they cause are documented

below:

The pattern modifiers: Page 3/17

“Im" - RXf_PMf_MULTILINE
If this is in "rx->extflags" it will be passed to "Perl_fbm_instr" by "pp_split" which
will treat the subject string as a multi-line string.

"Is" - RXf_PMf_SINGLELINE

"/i" - RXf_PMf_FOLD

"IX" - RXf_PMf_EXTENDED
If present on a regex, "#" comments will be handled differently by the tokenizer in
some cases.
TODO: Document those cases.

"Ip" - RXf_PMf_KEEPCOPY
TODO: Document this

Character set
The character set rules are determined by an enum that is contained in this field.
This is still experimental and subject to change, but the current interface returns
the rules by use of the in-line function "get_regex_charset(const U32 flags)". The
only currently documented value returned from it is REGEX_LOCALE_CHARSET, which is set
if "use locale" is in effect. If present in "rx->extflags", "split" will use the
locale dependent definition of whitespace when RXf_SKIPWHITE or RXf_WHITE is in
effect. ASCII whitespace is defined as per isSPACE, and by the internal macros
"is_utf8 space" under UTF-8, and "isSPACE_LC" under "use locale".

Additional flags:

RXf_SPLIT

This flag was removed in perl 5.18.0. "split' ™ is now special-cased solely in the
parser. RXf_SPLIT is still #defined, so you can test for it. This is how it used to
work:

If "split" is invoked as "split ' " or with no arguments (which really means "split(’
', $_)", see split), Perl will set this flag. The regex engine can then check for it
and set the SKIPWHITE and WHITE extflags. To do this, the Perl engine does:
if (flags & RXf_SPLIT && r->prelen == 1 && r->precomp[0] =="")
r->extflags |= (RXf_SKIPWHITE|RXf WHITE);
These flags can be set during compilation to enable optimizations in the "split" operator.

RXf_SKIPWHITE

This flag was removed in perl 5.18.0. It is still #defined, so you can set it, but Page 4/17

doing so will have no effect. This is how it used to work:
If the flag is present in "rx->extflags" "split" will delete whitespace from the start
of the subject string before it's operated on. What is considered whitespace depends
on if the subject is a UTF-8 string and if the "RXf_PMf_LOCALE" flag is set.
If RXf_WHITE is set in addition to this flag, "split" will behave like "split " "™
under the Perl engine.
RXf START_ONLY
Tells the split operator to split the target string on newlines ("\n") without
invoking the regex engine.
Perl's engine sets this if the pattern is "/*/" ("plen == 1 && *exp =="""), even
under "/7s"; see split. Of course a different regex engine might want to use the
same optimizations with a different syntax.
RXf_WHITE
Tells the split operator to split the target string on whitespace without invoking the
regex engine. The definition of whitespace varies depending on if the target string
is a UTF-8 string and on if RXf_PMf_LOCALE is set.
Perl's engine sets this flag if the pattern is "\s+".
RXf_NULL
Tells the split operator to split the target string on characters. The definition of
character varies depending on if the target string is a UTF-8 string.
Perl's engine sets this flag on empty patterns, this optimization makes "split /"
much faster than it would otherwise be. It's even faster than "unpack”.
RXf_NO_INPLACE_SUBST
Added in perl 5.18.0, this flag indicates that a regular expression might perform an
operation that would interfere with inplace substitution. For instance it might
contain lookbehind, or assign to non-magical variables (such as SREGMARK and
$REGERROR) during matching. "s///" will skip certain optimisations when this is set.
exec
132 exec(pTHX_ REGEXP * const rx,
char *stringarg, char* strend, char* strbeg,
SSize_t minend, SV* sv,
void* data, U32 flags);

Execute a regexp. The arguments are

Page 5/17

rx The regular expression to execute.
sv This is the SV to be matched against. Note that the actual char array to be matched
against is supplied by the arguments described below; the SV is just used to determine
UTF8ness, "pos()" etc.
strbeg
Pointer to the physical start of the string.
strend
Pointer to the character following the physical end of the string (i.e. the "\0", if
any).
stringarg
Pointer to the position in the string where matching should start; it might not be
equal to "strbeg" (for example in a later iteration of "/.../g").
minend
Minimum length of string (measured in bytes from "stringarg") that must match; if the
engine reaches the end of the match but hasn't reached this position in the string, it
should fail.
data
Optimisation data; subject to change.
flags
Optimisation flags; subject to change.
intuit
char* intuit(pTHX_
REGEXP * const rx,
SV *sv,
const char * const strbeg,
char *strpos,
char *strend,
const U32 flags,
struct re_scream_pos_data_s *data);
Find the start position where a regex match should be attempted, or possibly if the regex
engine should not be run because the pattern can't match. This is called, as appropriate,
by the core, depending on the values of the "extflags" member of the "regexp" structure.

Arguments: Page 6/17

rx: the regex to match against
sv: the SV being matched: only used for utf8 flag; the string
itself is accessed via the pointers below. Note that on
something like an overloaded SV, SvPOK(sv) may be false
and the string pointers may point to something unrelated to
the SV itself.
strbeg: real beginning of string
strpos: the point in the string at which to begin matching
strend: pointer to the byte following the last char of the string
flags currently unused; set to 0
data: currently unused; set to NULL
checkstr
SV* checkstr(pTHX_ REGEXP * const rx);
Return a SV containing a string that must appear in the pattern. Used by "split" for
optimising matches.
free
void free(pTHX_ REGEXP * const rx);
Called by Perl when it is freeing a regexp pattern so that the engine can release any
resources pointed to by the "pprivate” member of the "regexp" structure. This is only
responsible for freeing private data; Perl will handle releasing anything else contained
in the "regexp" structure.
Numbered capture callbacks
Called to get/set the value of "$™, "$", $& and their named equivalents, ${"PREMATCH]},
${"POSTMATCH} and ${*MATCH}, as well as the numbered capture groups ($1, $2, ...).
The "paren” parameter will be 1 for $1, 2 for $2 and so forth, and have these symbolic
values for the special variables:
${"PREMATCH} RX_BUFF_IDX_CARET_PREMATCH
${"POSTMATCH} RX_BUFF_IDX_CARET_POSTMATCH

${*"MATCH} RX_BUFF_IDX_CARET_FULLMATCH

$ RX_BUFF_IDX_PREMATCH
$ RX_BUFF_IDX_POSTMATCH
$& RX_BUFF_IDX_FULLMATCH

Note that in Perl 5.17.3 and earlier, the last three constants were also used for the Page 7/17

caret variants of the variables.
The names have been chosen by analogy with Tie::Scalar methods names with an additional
LENGTH callback for efficiency. However named capture variables are currently not tied
internally but implemented via magic.
numbered_buff FETCH
void numbered_buff FETCH(pTHX_ _REGEXP * const rx, const 132 paren,
SV * const sv);
Fetch a specified numbered capture. "sv" should be set to the scalar to return, the
scalar is passed as an argument rather than being returned from the function because when
it's called Perl already has a scalar to store the value, creating another one would be
redundant. The scalar can be set with "sv_setsv", "sv_setpvn" and friends, see perlapi.
This callback is where Perl untaints its own capture variables under taint mode (see
perlsec). See the "Perl_reg_numbered_buff fetch" function in regcomp.c for how to untaint
capture variables if that's something you'd like your engine to do as well.
numbered_buff STORE
void (*numbered_buff STORE) (pTHX_
REGEXP * const rx,
const 132 paren,
SV const * const value);
Set the value of a numbered capture variable. "value" is the scalar that is to be used as
the new value. It's up to the engine to make sure this is used as the new value (or
reject it).
Example:
if ("ook" =~ /(0*)/) {
'paren’ will be '1' and 'value' will be 'ee’
$1 =~ tr/olel,
}
Perl's own engine will croak on any attempt to modify the capture variables, to do this in
another engine use the following callback (copied from "Perl_reg_numbered_buff _store"):
void
Example_reg_numbered_buff_store(pTHX _
REGEXP * const rx,

const 132 paren, Page 8/17

SV const * const value)

PERL_UNUSED_ARG(rx);
PERL_UNUSED_ARG(paren);
PERL_UNUSED_ARG(value);
if (IPL_localizing)
Perl_croak(aTHX_ PL_no_modify);
}
Actually Perl will not always croak in a statement that looks like it would modify a
numbered capture variable. This is because the STORE callback will not be called if Perl
can determine that it doesn't have to modify the value. This is exactly how tied
variables behave in the same situation:
package CaptureVar;
use parent 'Tie::Scalar’;
sub TIESCALAR { bless [] }
sub FETCH { undef }
sub STORE { die "This doesn't get called" }
package main;
tie my $sv => "CaptureVar";
$sv =~ yla/bl;
Because $sv is "undef" when the "y///" operator is applied to it, the transliteration
won't actually execute and the program won't "die". This is different to how 5.8 and
earlier versions behaved since the capture variables were READONLY variables then; now
they'll just die when assigned to in the default engine.
numbered_buff LENGTH
132 numbered_buff LENGTH (pTHX_
REGEXP * const rx,
const SV * const sv,
const 132 paren);
Get the "length" of a capture variable. There's a special callback for this so that Perl
doesn't have to do a FETCH and run "length" on the result, since the length is (in Perl's
case) known from an offset stored in "rx->offs", this is much more efficient:

132 s1 = rx->offs[paren].start; Page 9/17

132 s2 = rx->offs[paren].end;

132 len =11 - s1;
This is a little bit more complex in the case of UTF-8, see what
"Perl_reg_numbered_buff length" does with is_utf8 string_loclen.

Named capture callbacks

Called to get/set the value of "%+" and "%-", as well as by some utility functions in re.
There are two callbacks, "named_buff" is called in all the cases the FETCH, STORE, DELETE,
CLEAR, EXISTS and SCALAR Tie::Hash callbacks would be on changes to "%+" and "%-" and
"named_buff_iter" in the same cases as FIRSTKEY and NEXTKEY.
The "flags" parameter can be used to determine which of these operations the callbacks
should respond to. The following flags are currently defined:
Which Tie::Hash operation is being performed from the Perl level on "%+" or "%+", if any:

RXapif FETCH

RXapif STORE

RXapif DELETE

RXapif CLEAR

RXapif EXISTS

RXapif SCALAR

RXapif FIRSTKEY

RXapif NEXTKEY
If "%+" or "%-" is being operated on, if any.

RXapif ONE /* %+ */

RXapif_ALL /* %- */

If this is being called as "re::regname”, "re::regnames" or "re::regnames_count", if any.
The first two will be combined with "RXapif ONE" or "RXapif ALL".

RXapif REGNAME

RXapif REGNAMES

RXapif REGNAMES_COUNT
Internally "%+" and "%-" are implemented with a real tied interface via
Tie::Hash::NamedCapture. The methods in that package will call back into these functions.
However the usage of Tie::Hash::NamedCapture for this purpose might change in future

releases. For instance this might be implemented by magic instead (would need an

extension to mgvtbl).

Page 10/17

named_buff
SVv* (*named_buff) (pTHX _REGEXP * const rx, SV * const key,
SV * const value, U32 flags);
named_buff_iter
SV* (*named_buff_iter) (pTHX_
REGEXP * const rx,
const SV * const lastkey,
const U32 flags);
gr_package
SV* qr_package(pTHX_ REGEXP * const rx);
The package the qr// magic object is blessed into (as seen by "ref gr//"). Itis
recommended that engines change this to their package name for identification regardless
of if they implement methods on the object.
The package this method returns should also have the internal "Regexp" package in its
@ISA. "gr/l->isa("Regexp")" should always be true regardless of what engine is being
used.
Example implementation might be:
Sv*
Example_gr_package(pTHX REGEXP * const rx)
{
PERL_UNUSED_ARG(rx);
return newSVpvs(“re::engine::Example");
}
Any method calls on an object created with "qr//" will be dispatched to the package as a
normal object.
use re::engine::Example;
my $re = qr//;
$re->meth; # dispatched to re::engine::Example::meth()
To retrieve the "REGEXP" object from the scalar in an XS function use the "SvRX" macro,
see "REGEXP Functions" in perlapi.
void meth(SV * rv)
PPCODE:

REGEXP * re = SVRX(sV);

Page 11/17

dupe
void* dupe(pTHX _REGEXP * const rx, CLONE_PARAMS *param);
On threaded builds a regexp may need to be duplicated so that the pattern can be used by
multiple threads. This routine is expected to handle the duplication of any private data
pointed to by the "pprivate” member of the "regexp” structure. It will be called with the
preconstructed new "regexp" structure as an argument, the "pprivate" member will point at
the old private structure, and it is this routine's responsibility to construct a copy and
return a pointer to it (which Perl will then use to overwrite the field as passed to this
routine.)
This allows the engine to dupe its private data but also if necessary modify the final
structure if it really must.
On unthreaded builds this field doesn't exist.
op_comp
This is private to the Perl core and subject to change. Should be left null.
The REGEXP structure
The REGEXP struct is defined in regexp.h. All regex engines must be able to correctly
build such a structure in their "comp" routine.
The REGEXP structure contains all the data that Perl needs to be aware of to properly work
with the regular expression. It includes data about optimisations that Perl can use to
determine if the regex engine should really be used, and various other control info that
is needed to properly execute patterns in various contexts, such as if the pattern
anchored in some way, or what flags were used during the compile, or if the program
contains special constructs that Perl needs to be aware of.
In addition it contains two fields that are intended for the private use of the regex
engine that compiled the pattern. These are the "intflags" and "pprivate" members.
"pprivate” is a void pointer to an arbitrary structure, whose use and management is the
responsibility of the compiling engine. Perl will never modify either of these values.
typedef struct regexp {

[* what engine created this regexp? */

const struct regexp_engine* engine;

[* what re is this a lightweight copy of? */

struct regexp* mother_re;

/* Information about the match that the Perl core uses to manage Page 12/17

* things */
U32 extflags; /* Flags used both externally and internally */
132 minlen; /* mininum possible number of chars in */
string to match */
132 minlenret; /* mininum possible number of chars in $& */
U32 gofs; /* chars left of pos that we search from */
[* substring data about strings that must appear
in the final match, used for optimisations */
struct reg_substr_data *substrs;
U32 nparens; /* number of capture groups */
[* private engine specific data */
U32 intflags; /* Engine Specific Internal flags */
void *pprivate; /* Data private to the regex engine which

created this object. */

[* Data about the last/current match. These are modified during

* matching*/

U32 lastparen; /* highest close paren matched ($+) */

U32 lastcloseparen; /* last close paren matched ($"N) */

regexp_paren_pair *offs; /* Array of offsets for (@-) and
(@+)

char *subbeg; /* saved or original string so \digit works

forever. */

SV_SAVED_COPY /*If non-NULL, SV which is COW from original */

132 sublen; /* Length of string pointed by subbeg */
132 suboffset; /* byte offset of subbeg from logical start of
str ¥/
132 subcoffset; /* suboffset equiv, but in chars (for @-/@+) */
/* Information about the match that isn't often used */
132 prelen; /* length of precomp */
const char *precomp; /* pre-compilation regular expression */
char *wrapped; /* wrapped version of the pattern */
132 wraplen; /* length of wrapped */

132 seen_evals; /* number of eval groups in the pattern - for

Page 13/17

security checks */

HV *paren_names; /* Optional hash of paren names */

[* Refcount of this regexp */

132 refent; [* Refcount of this regexp */

} regexp;
The fields are discussed in more detail below:
"engine"

This field points at a "regexp_engine" structure which contains pointers to the
subroutines that are to be used for performing a match. It is the compiling routine's
responsibility to populate this field before returning the regexp object.

Internally this is set to "NULL" unless a custom engine is specified in $"H{regcomp},

Perl's own set of callbacks can be accessed in the struct pointed to by "RE_ENGINE_PTR".

"mother_re"
TODO, see commit 28d8d7f41a.

"extflags"
This will be used by Perl to see what flags the regexp was compiled with, this will
normally be set to the value of the flags parameter by the comp callback. See the comp
documentation for valid flags.

"minlen" "minlenret"

The minimum string length (in characters) required for the pattern to match. This is used

to prune the search space by not bothering to match any closer to the end of a string than

would allow a match. For instance there is no point in even starting the regex engine if

the minlen is 10 but the string is only 5 characters long. There is no way that the

pattern can match.

"minlenret” is the minimum length (in characters) of the string that would be found in $&

after a match.

The difference between "minlen" and "minlenret” can be seen in the following pattern:
/ns(?=\d)/

where the "minlen" would be 3 but "minlenret" would only be 2 as the \d is required to

match but is not actually included in the matched content. This distinction is

particularly important as the substitution logic uses the "minlenret" to tell if it can do

in-place substitutions (these can result in considerable speed-up).

"gofs"

Page 14/17

Left offset from pos() to start match at.

"substrs"
Substring data about strings that must appear in the final match. This is currently only
used internally by Perl's engine, but might be used in the future for all engines for
optimisations.

"nparens", "lastparen”, and "lastcloseparen”
These fields are used to keep track of: how many paren capture groups there are in the
pattern; which was the highest paren to be closed (see "$+" in perlvar); and which was the
most recent paren to be closed (see "$"N" in perlvar).

"intflags"
The engine's private copy of the flags the pattern was compiled with. Usually this is the
same as "extflags" unless the engine chose to modify one of them.

"pprivate"
A void* pointing to an engine-defined data structure. The Perl engine uses the
"regexp_internal” structure (see "Base Structures" in perlreguts) but a custom engine
should use something else.

"offs"
A "regexp_paren_pair" structure which defines offsets into the string being matched which
correspond to the $& and $1, $2 etc. captures, the "regexp_paren_pair" struct is defined
as follows:

typedef struct regexp_paren_pair {
132 start;
132 end;
} regexp_paren_pair;

If "->offs[num].start" or "->offs[num].end" is "-1" then that capture group did not match.
"->offs[0].start/end" represents $& (or "${*MATCH}" under "/p") and "->offs[paren].end"
matches $$paren where $paren = 1>,

"precomp" "prelen”
Used for optimisations. "precomp" holds a copy of the pattern that was compiled and
"prelen” its length. When a new pattern is to be compiled (such as inside a loop) the

internal "regcomp" operator checks if the last compiled "REGEXP"'s "precomp" and "prelen”

are equivalent to the new one, and if so uses the old pattern instead of compiling a new

one. Page 15/17

The relevant snippet from "Perl_pp_regcomp™:
if (Ire || 're->precomp || re->prelen != (132)len ||
memNE(re->precomp, t, len))
[* Compile a new pattern */
"paren_names"
This is a hash used internally to track named capture groups and their offsets. The keys
are the names of the buffers the values are dualvars, with the 1V slot holding the number
of buffers with the given name and the pv being an embedded array of I132. The values may
also be contained independently in the data array in cases where named backreferences are
used.
"substrs"
Holds information on the longest string that must occur at a fixed offset from the start
of the pattern, and the longest string that must occur at a floating offset from the start
of the pattern. Used to do Fast-Boyer-Moore searches on the string to find out if its

worth using the regex engine at all, and if so where in the string to search.

"subbeg" "sublen" "saved_copy" "suboffset" "subcoffset"

Used during the execution phase for managing search and replace patterns, and for
providing the text for $&, $1 etc. "subbeg" points to a buffer (either the original

string, or a copy in the case of "RX_MATCH_COPIED(rx)"), and "sublen" is the length of the
buffer. The "RX_OFFS" start and end indices index into this buffer.

In the presence of the "REXEC_COPY_STR" flag, but with the addition of the
"REXEC_COPY_SKIP_PRE" or "REXEC_COPY_SKIP_POST" flags, an engine can choose not to copy
the full buffer (although it must still do so in the presence of "RXf_PMf_KEEPCOPY" or the
relevant bits being set in "PL_sawampersand"). In this case, it may set "suboffset" to
indicate the number of bytes from the logical start of the buffer to the physical start

(i.e. "subbeg"). It should also set "subcoffset”, the number of characters in the offset.

The latter is needed to support "@-" and "@+" which work in characters, not bytes.

"wrapped" "wraplen”

Stores the string "qr//" stringifies to. The Perl engine for example stores "(?*:eek)" in

the case of "gr/eek/".

When using a custom engine that doesn't support the "(?:)" construct for inline modifiers,

it's probably best to have "qr//" stringify to the supplied pattern, note that this will

create undesired patterns in cases such as: Page 16/17

my $x = qr/a|b/; # "alb"
my $y = qr/cli; #"c"
my $z = qr/$x$y/; # "albc"
There's no solution for this problem other than making the custom engine understand a
construct like "(?:)".
"seen_evals"
This stores the number of eval groups in the pattern. This is used for security purposes
when embedding compiled regexes into larger patterns with "qr//".
"refcnt”
The number of times the structure is referenced. When this falls to 0, the regexp is
automatically freed by a call to "pregfree”. This should be set to 1 in each engine's
"comp" routine.
HISTORY
Originally part of perlreguts.
AUTHORS
Originally written by Yves Orton, expanded by ?var Arnfj?r? Bjarmason.
LICENSE
Copyright 2006 Yves Orton and 2007 ?var Arnfj?r? Bjarmason.
This program is free software; you can redistribute it and/or modify it under the same
terms as Perl itself.

perl v5.34.0 2023-11-23 PERLREAPI(1)

Page 17/17

