PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'perlreguts.1’

$ man perlreguts.1

PERLREGUTS(1) Perl Programmers Reference Guide PERLREGUTS(1)

NAME
perlreguts - Description of the Perl regular expression engine.

DESCRIPTION
This document is an attempt to shine some light on the guts of the regex engine and how it
works. The regex engine represents a significant chunk of the perl codebase, but is
relatively poorly understood. This document is a meagre attempt at addressing this
situation. It is derived from the author's experience, comments in the source code, other
papers on the regex engine, feedback on the perl5-porters mail list, and no doubt other
places as well.
NOTICE! It should be clearly understood that the behavior and structures discussed in this
represents the state of the engine as the author understood it at the time of writing. It
is NOT an API definition, it is purely an internals guide for those who want to hack the
regex engine, or understand how the regex engine works. Readers of this document are
expected to understand perl's regex syntax and its usage in detail. If you want to learn
about the basics of Perl's regular expressions, see perlre. And if you want to replace the
regex engine with your own, see perlreapi.

OVERVIEW

A quick note on terms

There is some debate as to whether to say "regexp" or "regex". In this document we will
use the term "regex" unless there is a special reason not to, in which case we will
explain why.

When speaking about regexes we need to distinguish between their source code form and Page 1/20

their internal form. In this document we will use the term "pattern” when we speak of
their textual, source code form, and the term "program” when we speak of their internal
representation. These correspond to the terms S-regex and B-regex that Mark Jason Dominus
employs in his paper on "Rx" ([1] in "REFERENCES").

What is a regular expression engine?
A regular expression engine is a program that takes a set of constraints specified in a
mini-language, and then applies those constraints to a target string, and determines
whether or not the string satisfies the constraints. See perlre for a full definition of
the language.
In less grandiose terms, the first part of the job is to turn a pattern into something the
computer can efficiently use to find the matching point in the string, and the second part
is performing the search itself.
To do this we need to produce a program by parsing the text. We then need to execute the
program to find the point in the string that matches. And we need to do the whole thing
efficiently.

Structure of a Regexp Program
High Level
Although it is a bit confusing and some people object to the terminology, it is worth
taking a look at a comment that has been in regexp.h for years:
This is essentially a linear encoding of a nondeterministic finite-state machine (aka
syntax charts or "railroad normal form" in parsing technology).
The term "railroad normal form" is a bit esoteric, with "syntax diagram/charts", or
"railroad diagram/charts" being more common terms. Nevertheless it provides a useful
mental image of a regex program: each node can be thought of as a unit of track, with a
single entry and in most cases a single exit point (there are pieces of track that fork,
but statistically not many), and the whole forms a layout with a single entry and single
exit point. The matching process can be thought of as a car that moves along the track,
with the particular route through the system being determined by the character read at
each possible connector point. A car can fall off the track at any point but it may only
proceed as long as it matches the track.
Thus the pattern "/foo(?:\w+|\d+|\s+)bar/" can be thought of as the following chart:

[start]

I Page 2/20

[end]
The truth of the matter is that perl's regular expressions these days are much more
complex than this kind of structure, but visualising it this way can help when trying to
get your bearings, and it matches the current implementation pretty closely.
To be more precise, we will say that a regex program is an encoding of a graph. Each node
in the graph corresponds to part of the original regex pattern, such as a literal string
or a branch, and has a pointer to the nodes representing the next component to be matched.
Since "node" and "opcode" already have other meanings in the perl source, we will call the
nodes in a regex program "regops".
The program is represented by an array of "regnode" structures, one or more of which
represent a single regop of the program. Struct "regnode" is the smallest struct needed,
and has a field structure which is shared with all the other larger structures. (Outside
this document, the term "regnode" is sometimes used to mean "regop"”, which could be
confusing.)
The "next" pointers of all regops except "BRANCH" implement concatenation; a "next"
pointer with a "BRANCH" on both ends of it is connecting two alternatives. [Here we have
one of the subtle syntax dependencies: an individual "BRANCH" (as opposed to a collection
of them) is never concatenated with anything because of operator precedence.]
The operand of some types of regop is a literal string; for others, it is a regop leading
into a sub-program. In particular, the operand of a "BRANCH" node is the first regop of
the branch.
NOTE: As the railroad metaphor suggests, this is not a tree structure: the tail of the

branch connects to the thing following the set of "BRANCH"es. ltis a like a single line Page 3/20

of railway track that splits as it goes into a station or railway yard and rejoins as it
comes out the other side.
Regops
The base structure of a regop is defined in regexp.h as follows:
struct regnode {
U8 flags; /* Various purposes, sometimes overridden */
U8 type; /* Opcode value as specified by regnodes.h */
U16 next_off; /* Offset in size regnode */
h
Other larger "regnode”-like structures are defined in regcomp.h. They are almost like
subclasses in that they have the same fields as "regnode”, with possibly additional fields
following in the structure, and in some cases the specific meaning (and name) of some of
base fields are overridden. The following is a more complete description.
“regnode_1"
"regnode_2"
"regnode_1" structures have the same header, followed by a single four-byte argument;
"regnode_2" structures contain two two-byte arguments instead:
regnode_1 U32 argl;
regnode_2 U16 argl; U16 arg2;
"regnode_string"
"regnode_string" structures, used for literal strings, follow the header with a one-
byte length and then the string data. Strings are padded on the tail end with zero
bytes so that the total length of the node is a multiple of four bytes:
regnode_string char string[1];
U8 str_len; /* overrides flags */
"regnode_charclass"
Bracketed character classes are represented by "regnode_charclass" structures, which
have a four-byte argument and then a 32-byte (256-bit) bitmap indicating which
characters in the Latinl range are included in the class.
regnode_charclass U32 argl;
char bitmap[ANYOF_BITMAP_SIZE];
Various flags whose names begin with "ANYOF_" are used for special situations. Above

Latinl matches and things not known until run-time are stored in "Perl's pprivate Page 4/20

structure”.
"regnode_charclass_posix!"
There is also a larger form of a char class structure used to represent POSIX char
classes under "/I" matching, called "regnode_charclass_posixI" which has an additional
32-bit bitmap indicating which POSIX char classes have been included.
regnode_charclass_posixl U32 argl;
char bitmap[ANYOF_BITMAP_SIZE];
U32 classflags;

regnodes.h defines an array called "regarglen[]" which gives the size of each opcode in

units of "size regnode" (4-byte). A macro is used to calculate the size of an "EXACT" node

based on its "str_len" field.

The regops are defined in regnodes.h which is generated from regcomp.sym by regcomp.pl.

Currently the maximum possible number of distinct regops is restricted to 256, with about

a quarter already used.

A set of macros makes accessing the fields easier and more consistent. These include

"OP()", which is used to determine the type of a "regnode"-like structure; "NEXT_OFF()",

which is the offset to the next node (more on this later); "ARG()", "ARG1()", "ARG2()",

"ARG_SET()", and equivalents for reading and setting the arguments; and "STR_LEN()",

"STRING()" and "OPERAND()" for manipulating strings and regop bearing types.

What regop is next?

There are three distinct concepts of "next" in the regex engine, and it is important to

keep them clear.

? There is the "next regnode" from a given regnode, a value which is rarely useful
except that sometimes it matches up in terms of value with one of the others, and that
sometimes the code assumes this to always be so.

? There is the "next regop" from a given regop/regnode. This is the regop physically
located after the current one, as determined by the size of the current regop. This is
often useful, such as when dumping the structure we use this order to traverse.
Sometimes the code assumes that the "next regnode" is the same as the "next regop", or
in other words assumes that the sizeof a given regop type is always going to be one
regnode large.

? There is the "regnext" from a given regop. This is the regop which is reached by

jumping forward by the value of "NEXT_OFF()", or in a few cases for longer jumps by Page 5/20

the "argl" field of the "regnode_1" structure. The subroutine "regnext()" handles this
transparently. This is the logical successor of the node, which in some cases, like
that of the "BRANCH" regop, has special meaning.
Process Overview
Broadly speaking, performing a match of a string against a pattern involves the following
steps:
A. Compilation
1. Parsing
2. Peep-hole optimisation and analysis
B. Execution
3. Start position and no-match optimisations
4. Program execution
Where these steps occur in the actual execution of a perl program is determined by whether
the pattern involves interpolating any string variables. If interpolation occurs, then
compilation happens at run time. If it does not, then compilation is performed at compile
time. (The "/0" modifier changes this, as does "qr//" to a certain extent.) The engine
doesn't really care that much.
Compilation
This code resides primarily in regcomp.c, along with the header files regcomp.h, regexp.h
and regnodes.h.
Compilation starts with "pregcomp()", which is mostly an initialisation wrapper which
farms work out to two other routines for the heavy lifting: the first is "reg()", which is
the start point for parsing; the second, "study_chunk()", is responsible for optimisation.
Initialisation in "pregcomp()" mostly involves the creation and data-filling of a special
structure, "REXC_state_t" (defined in regcomp.c). Almost all internally-used routines in
regcomp.h take a pointer to one of these structures as their first argument, with the name
"pREXC_state". This structure is used to store the compilation state and contains many
fields. Likewise there are many macros which operate on this variable: anything that looks
like "REXC_xxxx" is a macro that operates on this pointer/structure.
"reg()" is the start of the parse process. It is responsible for parsing an arbitrary
chunk of pattern up to either the end of the string, or the first closing parenthesis it
encounters in the pattern. This means it can be used to parse the top-level regex, or any

section inside of a grouping parenthesis. It also handles the "special parens" that perl's Page 6/20

regexes have. For instance when parsing "/x(?:foo)y/", "reg()" will at one point be called

to parse from the "?" symbol up to and including the ")".

Additionally, "reg()" is responsible for parsing the one or more branches from the

pattern, and for "finishing them off" by correctly setting their next pointers. In order

to do the parsing, it repeatedly calls out to "regbranch()", which is responsible for

handling up to the first "|" symbol it sees.

"regbranch()" in turn calls "regpiece()" which handles "things" followed by a quantifier.

In order to parse the "things", "regatom()" is called. This is the lowest level routine,

which parses out constant strings, character classes, and the various special symbols like
"$". If "regatom()" encounters a "(" character it in turn calls "reg()".

There used to be two main passes involved in parsing, the first to calculate the size of

the compiled program, and the second to actually compile it. But now there is only one
main pass, with an initial crude guess based on the length of the input pattern, which is
increased if necessary as parsing proceeds, and afterwards, trimmed to the actual amount
used.

However, it may happen that parsing must be restarted at the beginning when various
circumstances occur along the way. An example is if the program turns out to be so large
that there are jumps in it that won't fit in the normal 16 bits available. There are two
special regops that can hold bigger jump destinations, BRANCHJ and LONGBRANCH. The parse
is restarted, and these are used instead of the normal shorter ones. Whenever restarting
the parse is required, the function returns failure and sets a flag as to what needs to be
done. This is passed up to the top level routine which takes the appropriate action and
restarts from scratch. In the case of needing longer jumps, the "RExC_use_ BRANCHJ" flag
is set in the "RExC_state t" structure, which the functions know to inspect before

deciding how to do branches.

In most instances, the function that discovers the issue sets the causal flag and returns
failure immediately. "Parsing complications" contains an explicit example of how this
works. In other cases, such as a forward reference to a numbered parenthetical grouping,
we need to finish the parse to know if that numbered grouping actually appears in the
pattern. In those cases, the parse is just redone at the end, with the knowledge of how
many groupings occur in it.

The routine "regtail()" is called by both "reg()" and "regbranch()" in order to "set the

tail pointer" correctly. When executing and we get to the end of a branch, we need to go Page 7/20

to the node following the grouping parens. When parsing, however, we don't know where the

end will be until we get there, so when we do we must go back and update the offsets as

appropriate. "regtail” is used to make this easier.

A subtlety of the parsing process means that a regex like "/foo/" is originally parsed

into an alternation with a single branch. It is only afterwards that the optimiser

converts single branch alternations into the simpler form.
Parse Call Graph and a Grammar

The call graph looks like this:

reg() # parse a top level regex, or inside of
parens
regbranch() # parse a single branch of an alternation
regpiece() # parse a pattern followed by a quantifier

regatom() # parse a simple pattern
regclass() # used to handle a class
reg() # used to handle a parenthesised

subpattern

regtail() # finish off the branch

regtail() # finish off the branch sequence. Tie each
branch's tail to the tail of the
sequence
(NEW) In Debug mode this is
regtail_study().
A grammar form might be something like this:
atom : constant | class
quant : * | '+ | '?' | {min,max}'
_branch: piece
| piece _branch
| nothing
branch: _branch

| _branch'|' branch

Page 8/20

group : ‘(" branch ')’
_piece: atom | group
piece : _piece
| _piece quant
Parsing complications
The implication of the above description is that a pattern containing nested parentheses

will result in a call graph which cycles through "reg()", "regbranch()", "regpiece()",
"regatom()", "reg()", "regbranch()" etc multiple times, until the deepest level of nesting

is reached. All the above routines return a pointer to a "regnode”, which is usually the

last regnode added to the program. However, one complication is that reg() returns NULL
for parsing "(?:)" syntax for embedded modifiers, setting the flag "TRYAGAIN". The
"TRYAGAIN" propagates upwards until it is captured, in some cases by "regatom()", but
otherwise unconditionally by "regbranch()". Hence it will never be returned by
"regbranch()" to "reg()". This flag permits patterns such as "(?i)+" to be detected as

errors (Quantifier follows nothing in regex; marked by <-- HERE in m/(?i)+ <-- HERE /).
Another complication is that the representation used for the program differs if it needs

to store Unicode, but it's not always possible to know for sure whether it does until
midway through parsing. The Unicode representation for the program is larger, and cannot
be matched as efficiently. (See "Unicode and Localisation Support" below for more details
as to why.) If the pattern contains literal Unicode, it's obvious that the program needs

to store Unicode. Otherwise, the parser optimistically assumes that the more efficient
representation can be used, and starts sizing on this basis. However, if it then
encounters something in the pattern which must be stored as Unicode, such as an "\x{...}"
escape sequence representing a character literal, then this means that all previously
calculated sizes need to be redone, using values appropriate for the Unicode
representation. This is another instance where the parsing needs to be restarted, and it
can and is done immediately. The function returns failure, and sets the flag
"RESTART_UTF8" (encapsulated by using the macro "REQUIRE_UTF8"). This restart request is
propagated up the call chain in a similar fashion, until it is "caught" in
"Perl_re_op_compile()", which marks the pattern as containing Unicode, and restarts the
sizing pass. It is also possible for constructions within run-time code blocks to turn out

to need Unicode representation., which is signalled by "S_compile_runtime_code()"

returning false to "Perl_re_op_compile()". Page 9/20

The restart was previously implemented using a "longjmp" in "regatom()" back to a "setjmp"
in "Perl_re_op_compile()", but this proved to be problematic as the latter is a large

function containing many automatic variables, which interact badly with the emergent
control flow of "setjmp".

Debug Output

Starting in the 5.9.x development version of perl you can "use re Debug => 'PARSE" to see
some trace information about the parse process. We will start with some simple patterns
and build up to more complex patterns.

So when we parse "/foo/" we see something like the following table. The left shows what is
being parsed, and the number indicates where the next regop would go. The stuff on the
right is the trace output of the graph. The names are chosen to be short to make it less

dense on the screen. 'tsdy' is a special form of "regtail()" which does some extra

analysis.
>foo< 1 reg
brnc
piec
atom
>< 4 tsdy~ EXACT <foo> (EXACT) (1)

~ attach to END (3) offset to 2
The resulting program then looks like:
1: EXACT <foo>(3)
3: END(0)

As you can see, even though we parsed out a branch and a piece, it was ultimately only an

atom. The final program shows us how things work. We have an "EXACT" regop, followed by an

"END" regop. The number in parens indicates where the "regnext" of the node goes. The

"regnext" of an "END" regop is unused, as "END" regops mean we have successfully matched.

The number on the left indicates the position of the regop in the regnode array.
Now let's try a harder pattern. We will add a quantifier, so now we have the pattern
"Ifoo+/". We will see that "regbranch()" calls "regpiece()" twice.
>foo+< 1 reg
brnc
piec

atom

Page 10/20

>0+< 3 piec
atom
>< 6 tail~ EXACT <fo> (1)
7 tsdy~ EXACT <fo> (EXACT) (1)
~ PLUS (END) (3)
~ attach to END (6) offset to 3
And we end up with the program:
1: EXACT <fo>(3)
3: PLUS(6)
4: EXACT <0>(0)

6: END(0)

Now we have a special case. The "EXACT" regop has a "regnext" of 0. This is because if it
matches it should try to match itself again. The "PLUS" regop handles the actual failure

of the "EXACT" regop and acts appropriately (going to regnode 6 if the "EXACT" matched at

least once, or failing if it didn't).

Now for something much more complex: "/x(?:foo*|b[a][rR])(foo|bar)$/"

>x(?:foo*|b... 1 reg
brnc
piec
atom

>(?:foo*|b[... 3 piec

atom
>?:foo*|b[a... reg
>foo*|b[a][... brnc
piec

atom
>o*|b[a][rR... 5 piec

atom
>|b[a][rR])... 8 tail~ EXACT <fo> (3)
>b[a][rR]D(... 9 brnc

10 piec
atom

>[a][rR]D(f... 12 piec

Page 11/20

>a][rR])(fo...

>[rR])(foo]... 14

>rR])(foolb...

>)(foo|bar)... 25

26

>(foo|bar)$<

>foo|bar)$<

>|bar)$<

>bar)$<

>)$<

28

31

32

34

36

atom
clas
tail~ EXACT (10)
piec
atom
clas
tail~ EXACT <a> (12)
tail~ BRANCH (3)
tsdy~ BRANCH (END) (9)
~ attach to TAIL (25) offset to 16
tsdy~ EXACT <fo> (EXACT) (4)
~ STAR (END) (6)
~ attach to TAIL (25) offset to 19
tsdy~ EXACT (EXACT) (10)
~ EXACT <a> (EXACT) (12)
~ ANYOF[Rr] (END) (14)
~ attach to TAIL (25) offset to 11
tail~ EXACT <x> (1)
piec
atom
reg
brnc
piec
atom
tail~ OPENL1 (26)
brnc
piec
atom
tail~ BRANCH (28)
tsdy~ BRANCH (END) (31)
~ attach to CLOSE1 (34) offset to 3
tsdy~ EXACT <foo> (EXACT) (29)

~ attach to CLOSE1 (34) offsetto 5

Page 12/20

tsdy~ EXACT <bar> (EXACT) (32)

~ attach to CLOSEL1 (34) offset to 2

>$< tail~ BRANCH (3)
~ BRANCH (9)
~ TAIL (25)
piec
atom
>< 37 tail~ OPEN1 (26)

~ BRANCH (28)
~ BRANCH (31)
~ CLOSEL1 (34)
38 tsdy~ EXACT <x> (EXACT) (1)
~ BRANCH (END) (3)
~ BRANCH (END) (9)
~ TAIL (END) (25)
~ OPEN1 (END) (26)
~ BRANCH (END) (28)
~ BRANCH (END) (31)
~ CLOSEL (END) (34)
~ EOL (END) (36)
~ attach to END (37) offset to 1
Resulting in the program
1: EXACT <x>(3)
3: BRANCH(9)
4; EXACT <fo>(6)
6: STAR(26)
7. EXACT <0>(0)
9: BRANCH(25)
10: EXACT <ba>(14)
12: OPTIMIZED (2 nodes)
14: ANYOF[Rr](26)
25: TAIL(26)

26: OPEN1(28)

Page 13/20

28: TRIE-EXACT(34)
[StS:1 Wds:2 Cs:6 Uq:5 #Sts:7 Mn:3 Mx:3 Stcls:bf]
<foo>
<bar>

30: OPTIMIZED (4 nodes)

34: CLOSE1(36)

36: EOL(37)

37: END(0)
Here we can see a much more complex program, with various optimisations in play. At
regnode 10 we see an example where a character class with only one character in it was
turned into an "EXACT" node. We can also see where an entire alternation was turned into a
"TRIE-EXACT" node. As a consequence, some of the regnodes have been marked as optimised
away. We can see that the "$" symbol has been converted into an "EOL" regop, a special
piece of code that looks for "\n" or the end of the string.
The next pointer for "BRANCH"es is interesting in that it points at where execution should
go if the branch fails. When executing, if the engine tries to traverse from a branch to a
"regnext” that isn't a branch then the engine will know that the entire set of branches
has failed.
Peep-hole Optimisation and Analysis
The regular expression engine can be a weighty tool to wield. On long strings and complex
patterns it can end up having to do a lot of work to find a match, and even more to decide
that no match is possible. Consider a situation like the following pattern.

‘ababababababababababab' =~ /(a|b)*z/
The "(a]b)*" part can match at every char in the string, and then fail every time because
there is no "z" in the string. So obviously we can avoid using the regex engine unless
there is a "z" in the string. Likewise in a pattern like:

[foo(\w+)bar/
In this case we know that the string must contain a "foo" which must be followed by "bar".
We can use Fast Boyer-Moore matching as implemented in "fom_instr()" to find the location
of these strings. If they don't exist then we don't need to resort to the much more
expensive regex engine. Even better, if they do exist then we can use their positions to
reduce the search space that the regex engine needs to cover to determine if the entire

pattern matches. Page 14/20

There are various aspects of the pattern that can be used to facilitate optimisations
along these lines:
? anchored fixed strings
? floating fixed strings
? minimum and maximum length requirements
? start class
? Beginning/End of line positions
Another form of optimisation that can occur is the post-parse "peep-hole" optimisation,
where inefficient constructs are replaced by more efficient constructs. The "TAIL" regops
which are used during parsing to mark the end of branches and the end of groups are
examples of this. These regops are used as place-holders during construction and "always
match" so they can be "optimised away" by making the things that point to the "TAIL" point
to the thing that "TAIL" points to, thus "skipping" the node.
Another optimisation that can occur is that of "'EXACT" merging" which is where two
consecutive "EXACT" nodes are merged into a single regop. An even more aggressive form of
this is that a branch sequence of the form "EXACT BRANCH ... EXACT" can be converted into
a "TRIE-EXACT" regop.
All of this occurs in the routine "study_chunk()" which uses a special structure
"scan_data_t" to store the analysis that it has performed, and does the "peep-hole"
optimisations as it goes.
The code involved in "study_chunk()" is extremely cryptic. Be careful. :-)

Execution
Execution of a regex generally involves two phases, the first being finding the start
point in the string where we should match from, and the second being running the regop
interpreter.
If we can tell that there is no valid start point then we don't bother running the
interpreter at all. Likewise, if we know from the analysis phase that we cannot detect a
short-cut to the start position, we go straight to the interpreter.
The two entry points are "re_intuit_start()" and "pregexec()". These routines have a
somewhat incestuous relationship with overlap between their functions, and "pregexec()"
may even call "re_intuit_start()" on its own. Nevertheless other parts of the perl source
code may call into either, or both.

Execution of the interpreter itself used to be recursive, but thanks to the efforts of Page 15/20

Dave Mitchell in the 5.9.x development track, that has changed: now an internal stack is
maintained on the heap and the routine is fully iterative. This can make it tricky as the
code is quite conservative about what state it stores, with the result that two
consecutive lines in the code can actually be running in totally different contexts due to
the simulated recursion.

Start position and no-match optimisations

“re_intuit_start()" is responsible for handling start points and no-match optimisations as
determined by the results of the analysis done by "study_chunk()" (and described in "Peep-
hole Optimisation and Analysis").

The basic structure of this routine is to try to find the start- and/or end-points of

where the pattern could match, and to ensure that the string is long enough to match the
pattern. It tries to use more efficient methods over less efficient methods and may
involve considerable cross-checking of constraints to find the place in the string that
matches. For instance it may try to determine that a given fixed string must be not only
present but a certain number of chars before the end of the string, or whatever.

It calls several other routines, such as "fbm_instr()" which does Fast Boyer Moore
matching and "find_byclass()" which is responsible for finding the start using the first
mandatory regop in the program.

When the optimisation criteria have been satisfied, "reg_try()" is called to perform the
match.

Program execution

"pregexec()" is the main entry point for running a regex. It contains support for
initialising the regex interpreter's state, running "re_intuit_start()" if needed, and
running the interpreter on the string from various start positions as needed. When it is
necessary to use the regex interpreter "pregexec()" calls "regtry()".

"regtry()" is the entry point into the regex interpreter. It expects as arguments a

pointer to a "regmatch_info" structure and a pointer to a string. It returns an integer 1
for success and a 0O for failure. It is basically a set-up wrapper around "regmatch()".
"regmatch" is the main "recursive loop" of the interpreter. It is basically a giant switch
statement that implements a state machine, where the possible states are the regops
themselves, plus a number of additional intermediate and failure states. A few of the
states are implemented as subroutines but the bulk are inline code.

MISCELLANEOUS Page 16/20

Unicode and Localisation Support

When dealing with strings containing characters that cannot be represented using an eight-
bit character set, perl uses an internal representation that is a permissive version of
Unicode's UTF-8 encoding[2]. This uses single bytes to represent characters from the ASCII
character set, and sequences of two or more bytes for all other characters. (See

perlunitut for more information about the relationship between UTF-8 and perl's encoding,
utf8. The difference isn't important for this discussion.)

No matter how you look at it, Unicode support is going to be a pain in a regex engine.
Tricks that might be fine when you have 256 possible characters often won't scale to
handle the size of the UTF-8 character set. Things you can take for granted with ASCII
may not be true with Unicode. For instance, in ASCII, it is safe to assume that
"sizeof(charl) == sizeof(char2)", but in UTF-8 it isn't. Unicode case folding is vastly

more complex than the simple rules of ASCII, and even when not using Unicode but only
localised single byte encodings, things can get tricky (for example, LATIN SMALL LETTER
SHARP S (U+00DF, ?) should match 'SS' in localised case-insensitive matching).

Making things worse is that UTF-8 support was a later addition to the regex engine (as it
was to perl) and this necessarily made things a lot more complicated. Obviously it is
easier to design a regex engine with Unicode support in mind from the beginning than it is
to retrofit it to one that wasn't.

Nearly all regops that involve looking at the input string have two cases, one for UTF-8,
and one not. In fact, it's often more complex than that, as the pattern may be UTF-8 as

well.

Care must be taken when making changes to make sure that you handle UTF-8 properly, both

at compile time and at execution time, including when the string and pattern are

mismatched.

Base Structures

The "regexp" structure described in perlreapi is common to all regex engines. Two of its
fields are intended for the private use of the regex engine that compiled the pattern.
These are the "intflags" and pprivate members. The "pprivate" is a void pointer to an
arbitrary structure whose use and management is the responsibility of the compiling
engine. perl will never modify either of these values. In the case of the stock engine the
structure pointed to by "pprivate" is called "regexp_internal".

Its "pprivate" and "intflags" fields contain data specific to each engine.

Page 17/20

There are two structures used to store a compiled regular expression. One, the "regexp"
structure described in perlreapi is populated by the engine currently being. used and some
of its fields read by perl to implement things such as the stringification of "qr//".
The other structure is pointed to by the "regexp" struct's "pprivate" and is in addition
to "intflags” in the same struct considered to be the property of the regex engine which
compiled the regular expression;
The regexp structure contains all the data that perl needs to be aware of to properly work
with the regular expression. It includes data about optimisations that perl can use to
determine if the regex engine should really be used, and various other control info that
is needed to properly execute patterns in various contexts such as is the pattern anchored
in some way, or what flags were used during the compile, or whether the program contains
special constructs that perl needs to be aware of.
In addition it contains two fields that are intended for the private use of the regex
engine that compiled the pattern. These are the "intflags" and pprivate members. The
"pprivate" is a void pointer to an arbitrary structure whose use and management is the
responsibility of the compiling engine. perl will never modify either of these values.
As mentioned earlier, in the case of the default engines, the "pprivate” will be a pointer
to a regexp_internal structure which holds the compiled program and any additional data
that is private to the regex engine implementation.
Perl's "pprivate" structure
The following structure is used as the "pprivate” struct by perl's regex engine. Since it
is specific to perl it is only of curiosity value to other engine implementations.
typedef struct regexp_internal {
U32 *offsets; [* offset annotations 20001228 MJD
* data about mapping the program to
* the string*/
regnode *regstclass; /* Optional startclass as identified or
* constructed by the optimiser */
struct reg_data *data; /* Additional miscellaneous data used
* by the program. Used to make it
* easier to clone and free arbitrary
* data that the regops need. Often the

* ARG field of a regop is an index

Page 18/20

* into this structure */
regnode program[1]; /* Unwarranted chumminess with
* compiler. */
} regexp_internal;
"offsets”
Offsets holds a mapping of offset in the "program" to offset in the "precomp" string.
This is only used by ActiveState's visual regex debugger.
"regstclass"
Special regop that is used by "re_intuit_start()" to check if a pattern can match at
a certain position. For instance if the regex engine knows that the pattern must
start with a 'Z' then it can scan the string until it finds one and then launch the
regex engine from there. The routine that handles this is called "find_by_class()".

Sometimes this field points at a regop embedded in the program, and sometimes it

points at an independent synthetic regop that has been constructed by the optimiser.

"data"
This field points at a "reg_data" structure, which is defined as follows
struct reg_data {
U32 count;
U8 *what;
void* data[1];
h
This structure is used for handling data structures that the regex engine needs to
handle specially during a clone or free operation on the compiled product. Each
element in the data array has a corresponding element in the what array. During
compilation regops that need special structures stored will add an element to each
array using the add_data() routine and then store the index in the regop.
"program”
Compiled program. Inlined into the structure so the entire struct can be treated as a
single blob.
SEE ALSO
perlreapi
perlre

perlunitut

Page 19/20

AUTHOR

by Yves Orton, 2006.

With excerpts from Perl, and contributions and suggestions from Ronald J. Kimball, Dave

Mitchell, Dominic Dunlop, Mark Jason Dominus, Stephen McCamant, and David Landgren.

Now maintained by Perl 5 Porters.
LICENCE
Same terms as Perl.
REFERENCES
[1] <https://perl.plover.com/Rx/paper/>
[2] <https://www.unicode.org/>

perl v5.34.0 2023-11-23

PERLREGUTS(1)

Page 20/20

