
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlretut.1'

$ man perlretut.1

PERLRETUT(1) Perl Programmers Reference Guide PERLRETUT(1)

NAME

 perlretut - Perl regular expressions tutorial

DESCRIPTION

 This page provides a basic tutorial on understanding, creating and using regular

 expressions in Perl. It serves as a complement to the reference page on regular

 expressions perlre. Regular expressions are an integral part of the "m//", "s///", "qr//"

 and "split" operators and so this tutorial also overlaps with "Regexp Quote-Like

 Operators" in perlop and "split" in perlfunc.

 Perl is widely renowned for excellence in text processing, and regular expressions are one

 of the big factors behind this fame. Perl regular expressions display an efficiency and

 flexibility unknown in most other computer languages. Mastering even the basics of

 regular expressions will allow you to manipulate text with surprising ease.

 What is a regular expression? At its most basic, a regular expression is a template that

 is used to determine if a string has certain characteristics. The string is most often

 some text, such as a line, sentence, web page, or even a whole book, but it doesn't have

 to be. It could be binary data, for example. Biologists often use Perl to look for

 patterns in long DNA sequences.

 Suppose we want to determine if the text in variable, $var contains the sequence of

 characters "m?u?s?h?r?o?o?m" (blanks added for legibility). We can write in Perl

 $var =~ m/mushroom/

 The value of this expression will be TRUE if $var contains that sequence of characters

 anywhere within it, and FALSE otherwise. The portion enclosed in '/' characters denotes Page 1/61

 the characteristic we are looking for. We use the term pattern for it. The process of

 looking to see if the pattern occurs in the string is called matching, and the "=~"

 operator along with the "m//" tell Perl to try to match the pattern against the string.

 Note that the pattern is also a string, but a very special kind of one, as we will see.

 Patterns are in common use these days; examples are the patterns typed into a search

 engine to find web pages and the patterns used to list files in a directory, e.g., ""ls

 *.txt"" or ""dir *.*"". In Perl, the patterns described by regular expressions are used

 not only to search strings, but to also extract desired parts of strings, and to do search

 and replace operations.

 Regular expressions have the undeserved reputation of being abstract and difficult to

 understand. This really stems simply because the notation used to express them tends to

 be terse and dense, and not because of inherent complexity. We recommend using the "/x"

 regular expression modifier (described below) along with plenty of white space to make

 them less dense, and easier to read. Regular expressions are constructed using simple

 concepts like conditionals and loops and are no more difficult to understand than the

 corresponding "if" conditionals and "while" loops in the Perl language itself.

 This tutorial flattens the learning curve by discussing regular expression concepts, along

 with their notation, one at a time and with many examples. The first part of the tutorial

 will progress from the simplest word searches to the basic regular expression concepts.

 If you master the first part, you will have all the tools needed to solve about 98% of

 your needs. The second part of the tutorial is for those comfortable with the basics and

 hungry for more power tools. It discusses the more advanced regular expression operators

 and introduces the latest cutting-edge innovations.

 A note: to save time, "regular expression" is often abbreviated as regexp or regex.

 Regexp is a more natural abbreviation than regex, but is harder to pronounce. The Perl

 pod documentation is evenly split on regexp vs regex; in Perl, there is more than one way

 to abbreviate it. We'll use regexp in this tutorial.

 New in v5.22, "use re 'strict'" applies stricter rules than otherwise when compiling

 regular expression patterns. It can find things that, while legal, may not be what you

 intended.

Part 1: The basics

 Simple word matching

 The simplest regexp is simply a word, or more generally, a string of characters. A regexp Page 2/61

 consisting of just a word matches any string that contains that word:

 "Hello World" =~ /World/; # matches

 What is this Perl statement all about? "Hello World" is a simple double-quoted string.

 "World" is the regular expression and the "//" enclosing "/World/" tells Perl to search a

 string for a match. The operator "=~" associates the string with the regexp match and

 produces a true value if the regexp matched, or false if the regexp did not match. In our

 case, "World" matches the second word in "Hello World", so the expression is true.

 Expressions like this are useful in conditionals:

 if ("Hello World" =~ /World/) {

 print "It matches\n";

 }

 else {

 print "It doesn't match\n";

 }

 There are useful variations on this theme. The sense of the match can be reversed by

 using the "!~" operator:

 if ("Hello World" !~ /World/) {

 print "It doesn't match\n";

 }

 else {

 print "It matches\n";

 }

 The literal string in the regexp can be replaced by a variable:

 my $greeting = "World";

 if ("Hello World" =~ /$greeting/) {

 print "It matches\n";

 }

 else {

 print "It doesn't match\n";

 }

 If you're matching against the special default variable $_, the "$_ =~" part can be

 omitted:

 $_ = "Hello World"; Page 3/61

 if (/World/) {

 print "It matches\n";

 }

 else {

 print "It doesn't match\n";

 }

 And finally, the "//" default delimiters for a match can be changed to arbitrary

 delimiters by putting an 'm' out front:

 "Hello World" =~ m!World!; # matches, delimited by '!'

 "Hello World" =~ m{World}; # matches, note the paired '{}'

 "/usr/bin/perl" =~ m"/perl"; # matches after '/usr/bin',

 # '/' becomes an ordinary char

 "/World/", "m!World!", and "m{World}" all represent the same thing. When, e.g., the quote

 ('"') is used as a delimiter, the forward slash '/' becomes an ordinary character and can

 be used in this regexp without trouble.

 Let's consider how different regexps would match "Hello World":

 "Hello World" =~ /world/; # doesn't match

 "Hello World" =~ /o W/; # matches

 "Hello World" =~ /oW/; # doesn't match

 "Hello World" =~ /World /; # doesn't match

 The first regexp "world" doesn't match because regexps are by default case-sensitive. The

 second regexp matches because the substring 'o?W' occurs in the string "Hello?World". The

 space character ' ' is treated like any other character in a regexp and is needed to match

 in this case. The lack of a space character is the reason the third regexp 'oW' doesn't

 match. The fourth regexp ""World "" doesn't match because there is a space at the end of

 the regexp, but not at the end of the string. The lesson here is that regexps must match

 a part of the string exactly in order for the statement to be true.

 If a regexp matches in more than one place in the string, Perl will always match at the

 earliest possible point in the string:

 "Hello World" =~ /o/; # matches 'o' in 'Hello'

 "That hat is red" =~ /hat/; # matches 'hat' in 'That'

 With respect to character matching, there are a few more points you need to know about.

 First of all, not all characters can be used "as-is" in a match. Some characters, called Page 4/61

 metacharacters, are generally reserved for use in regexp notation. The metacharacters are

 {}[]()^$.|*+?-#\

 This list is not as definitive as it may appear (or be claimed to be in other

 documentation). For example, "#" is a metacharacter only when the "/x" pattern modifier

 (described below) is used, and both "}" and "]" are metacharacters only when paired with

 opening "{" or "[" respectively; other gotchas apply.

 The significance of each of these will be explained in the rest of the tutorial, but for

 now, it is important only to know that a metacharacter can be matched as-is by putting a

 backslash before it:

 "2+2=4" =~ /2+2/; # doesn't match, + is a metacharacter

 "2+2=4" =~ /2\+2/; # matches, \+ is treated like an ordinary +

 "The interval is [0,1)." =~ /[0,1)./ # is a syntax error!

 "The interval is [0,1)." =~ /\[0,1\)\./ # matches

 "#!/usr/bin/perl" =~ /#!\/usr\/bin\/perl/; # matches

 In the last regexp, the forward slash '/' is also backslashed, because it is used to

 delimit the regexp. This can lead to LTS (leaning toothpick syndrome), however, and it is

 often more readable to change delimiters.

 "#!/usr/bin/perl" =~ m!#\!/usr/bin/perl!; # easier to read

 The backslash character '\' is a metacharacter itself and needs to be backslashed:

 'C:\WIN32' =~ /C:\\WIN/; # matches

 In situations where it doesn't make sense for a particular metacharacter to mean what it

 normally does, it automatically loses its metacharacter-ness and becomes an ordinary

 character that is to be matched literally. For example, the '}' is a metacharacter only

 when it is the mate of a '{' metacharacter. Otherwise it is treated as a literal RIGHT

 CURLY BRACKET. This may lead to unexpected results. "use re 'strict'" can catch some of

 these.

 In addition to the metacharacters, there are some ASCII characters which don't have

 printable character equivalents and are instead represented by escape sequences. Common

 examples are "\t" for a tab, "\n" for a newline, "\r" for a carriage return and "\a" for a

 bell (or alert). If your string is better thought of as a sequence of arbitrary bytes,

 the octal escape sequence, e.g., "\033", or hexadecimal escape sequence, e.g., "\x1B" may

 be a more natural representation for your bytes. Here are some examples of escapes:

 "1000\t2000" =~ m(0\t2) # matches Page 5/61

 "1000\n2000" =~ /0\n20/ # matches

 "1000\t2000" =~ /\000\t2/ # doesn't match, "0" ne "\000"

 "cat" =~ /\o{143}\x61\x74/ # matches in ASCII, but a weird way

 # to spell cat

 If you've been around Perl a while, all this talk of escape sequences may seem familiar.

 Similar escape sequences are used in double-quoted strings and in fact the regexps in Perl

 are mostly treated as double-quoted strings. This means that variables can be used in

 regexps as well. Just like double-quoted strings, the values of the variables in the

 regexp will be substituted in before the regexp is evaluated for matching purposes. So we

 have:

 $foo = 'house';

 'housecat' =~ /$foo/; # matches

 'cathouse' =~ /cat$foo/; # matches

 'housecat' =~ /${foo}cat/; # matches

 So far, so good. With the knowledge above you can already perform searches with just

 about any literal string regexp you can dream up. Here is a very simple emulation of the

 Unix grep program:

 % cat > simple_grep

 #!/usr/bin/perl

 $regexp = shift;

 while (<>) {

 print if /$regexp/;

 }

 ^D

 % chmod +x simple_grep

 % simple_grep abba /usr/dict/words

 Babbage

 cabbage

 cabbages

 sabbath

 Sabbathize

 Sabbathizes

 sabbatical Page 6/61

 scabbard

 scabbards

 This program is easy to understand. "#!/usr/bin/perl" is the standard way to invoke a

 perl program from the shell. "$regexp?=?shift;" saves the first command line argument as

 the regexp to be used, leaving the rest of the command line arguments to be treated as

 files. "while?(<>)" loops over all the lines in all the files. For each line,

 "print?if?/$regexp/;" prints the line if the regexp matches the line. In this line, both

 "print" and "/$regexp/" use the default variable $_ implicitly.

 With all of the regexps above, if the regexp matched anywhere in the string, it was

 considered a match. Sometimes, however, we'd like to specify where in the string the

 regexp should try to match. To do this, we would use the anchor metacharacters '^' and

 '$'. The anchor '^' means match at the beginning of the string and the anchor '$' means

 match at the end of the string, or before a newline at the end of the string. Here is how

 they are used:

 "housekeeper" =~ /keeper/; # matches

 "housekeeper" =~ /^keeper/; # doesn't match

 "housekeeper" =~ /keeper$/; # matches

 "housekeeper\n" =~ /keeper$/; # matches

 The second regexp doesn't match because '^' constrains "keeper" to match only at the

 beginning of the string, but "housekeeper" has keeper starting in the middle. The third

 regexp does match, since the '$' constrains "keeper" to match only at the end of the

 string.

 When both '^' and '$' are used at the same time, the regexp has to match both the

 beginning and the end of the string, i.e., the regexp matches the whole string. Consider

 "keeper" =~ /^keep$/; # doesn't match

 "keeper" =~ /^keeper$/; # matches

 "" =~ /^$/; # ^$ matches an empty string

 The first regexp doesn't match because the string has more to it than "keep". Since the

 second regexp is exactly the string, it matches. Using both '^' and '$' in a regexp

 forces the complete string to match, so it gives you complete control over which strings

 match and which don't. Suppose you are looking for a fellow named bert, off in a string

 by himself:

 "dogbert" =~ /bert/; # matches, but not what you want Page 7/61

 "dilbert" =~ /^bert/; # doesn't match, but ..

 "bertram" =~ /^bert/; # matches, so still not good enough

 "bertram" =~ /^bert$/; # doesn't match, good

 "dilbert" =~ /^bert$/; # doesn't match, good

 "bert" =~ /^bert$/; # matches, perfect

 Of course, in the case of a literal string, one could just as easily use the string

 comparison "$string?eq?'bert'" and it would be more efficient. The "^...$" regexp

 really becomes useful when we add in the more powerful regexp tools below.

 Using character classes

 Although one can already do quite a lot with the literal string regexps above, we've only

 scratched the surface of regular expression technology. In this and subsequent sections

 we will introduce regexp concepts (and associated metacharacter notations) that will allow

 a regexp to represent not just a single character sequence, but a whole class of them.

 One such concept is that of a character class. A character class allows a set of possible

 characters, rather than just a single character, to match at a particular point in a

 regexp. You can define your own custom character classes. These are denoted by brackets

 "[...]", with the set of characters to be possibly matched inside. Here are some

 examples:

 /cat/; # matches 'cat'

 /[bcr]at/; # matches 'bat, 'cat', or 'rat'

 /item[0123456789]/; # matches 'item0' or ... or 'item9'

 "abc" =~ /[cab]/; # matches 'a'

 In the last statement, even though 'c' is the first character in the class, 'a' matches

 because the first character position in the string is the earliest point at which the

 regexp can match.

 /[yY][eE][sS]/; # match 'yes' in a case-insensitive way

 # 'yes', 'Yes', 'YES', etc.

 This regexp displays a common task: perform a case-insensitive match. Perl provides a way

 of avoiding all those brackets by simply appending an 'i' to the end of the match. Then

 "/[yY][eE][sS]/;" can be rewritten as "/yes/i;". The 'i' stands for case-insensitive and

 is an example of a modifier of the matching operation. We will meet other modifiers later

 in the tutorial.

 We saw in the section above that there were ordinary characters, which represented Page 8/61

 themselves, and special characters, which needed a backslash '\' to represent themselves.

 The same is true in a character class, but the sets of ordinary and special characters

 inside a character class are different than those outside a character class. The special

 characters for a character class are "-]\^$" (and the pattern delimiter, whatever it is).

 ']' is special because it denotes the end of a character class. '$' is special because it

 denotes a scalar variable. '\' is special because it is used in escape sequences, just

 like above. Here is how the special characters "]$\" are handled:

 /[\]c]def/; # matches ']def' or 'cdef'

 $x = 'bcr';

 /[$x]at/; # matches 'bat', 'cat', or 'rat'

 /[\$x]at/; # matches '$at' or 'xat'

 /[\\$x]at/; # matches '\at', 'bat, 'cat', or 'rat'

 The last two are a little tricky. In "[\$x]", the backslash protects the dollar sign, so

 the character class has two members '$' and 'x'. In "[\\$x]", the backslash is protected,

 so $x is treated as a variable and substituted in double quote fashion.

 The special character '-' acts as a range operator within character classes, so that a

 contiguous set of characters can be written as a range. With ranges, the unwieldy

 "[0123456789]" and "[abc...xyz]" become the svelte "[0-9]" and "[a-z]". Some examples are

 /item[0-9]/; # matches 'item0' or ... or 'item9'

 /[0-9bx-z]aa/; # matches '0aa', ..., '9aa',

 # 'baa', 'xaa', 'yaa', or 'zaa'

 /[0-9a-fA-F]/; # matches a hexadecimal digit

 /[0-9a-zA-Z_]/; # matches a "word" character,

 # like those in a Perl variable name

 If '-' is the first or last character in a character class, it is treated as an ordinary

 character; "[-ab]", "[ab-]" and "[a\-b]" are all equivalent.

 The special character '^' in the first position of a character class denotes a negated

 character class, which matches any character but those in the brackets. Both "[...]" and

 "[^...]" must match a character, or the match fails. Then

 /[^a]at/; # doesn't match 'aat' or 'at', but matches

 # all other 'bat', 'cat, '0at', '%at', etc.

 /[^0-9]/; # matches a non-numeric character

 /[a^]at/; # matches 'aat' or '^at'; here '^' is ordinary Page 9/61

 Now, even "[0-9]" can be a bother to write multiple times, so in the interest of saving

 keystrokes and making regexps more readable, Perl has several abbreviations for common

 character classes, as shown below. Since the introduction of Unicode, unless the "/a"

 modifier is in effect, these character classes match more than just a few characters in

 the ASCII range.

 ? "\d" matches a digit, not just "[0-9]" but also digits from non-roman scripts

 ? "\s" matches a whitespace character, the set "[\ \t\r\n\f]" and others

 ? "\w" matches a word character (alphanumeric or '_'), not just "[0-9a-zA-Z_]" but also

 digits and characters from non-roman scripts

 ? "\D" is a negated "\d"; it represents any other character than a digit, or "[^\d]"

 ? "\S" is a negated "\s"; it represents any non-whitespace character "[^\s]"

 ? "\W" is a negated "\w"; it represents any non-word character "[^\w]"

 ? The period '.' matches any character but "\n" (unless the modifier "/s" is in effect,

 as explained below).

 ? "\N", like the period, matches any character but "\n", but it does so regardless of

 whether the modifier "/s" is in effect.

 The "/a" modifier, available starting in Perl 5.14, is used to restrict the matches of

 "\d", "\s", and "\w" to just those in the ASCII range. It is useful to keep your program

 from being needlessly exposed to full Unicode (and its accompanying security

 considerations) when all you want is to process English-like text. (The "a" may be

 doubled, "/aa", to provide even more restrictions, preventing case-insensitive matching of

 ASCII with non-ASCII characters; otherwise a Unicode "Kelvin Sign" would caselessly match

 a "k" or "K".)

 The "\d\s\w\D\S\W" abbreviations can be used both inside and outside of bracketed

 character classes. Here are some in use:

 /\d\d:\d\d:\d\d/; # matches a hh:mm:ss time format

 /[\d\s]/; # matches any digit or whitespace character

 /\w\W\w/; # matches a word char, followed by a

 # non-word char, followed by a word char

 /..rt/; # matches any two chars, followed by 'rt'

 /end\./; # matches 'end.'

 /end[.]/; # same thing, matches 'end.'

 Because a period is a metacharacter, it needs to be escaped to match as an ordinary Page 10/61

 period. Because, for example, "\d" and "\w" are sets of characters, it is incorrect to

 think of "[^\d\w]" as "[\D\W]"; in fact "[^\d\w]" is the same as "[^\w]", which is the

 same as "[\W]". Think DeMorgan's laws.

 In actuality, the period and "\d\s\w\D\S\W" abbreviations are themselves types of

 character classes, so the ones surrounded by brackets are just one type of character

 class. When we need to make a distinction, we refer to them as "bracketed character

 classes."

 An anchor useful in basic regexps is the word anchor "\b". This matches a boundary

 between a word character and a non-word character "\w\W" or "\W\w":

 $x = "Housecat catenates house and cat";

 $x =~ /cat/; # matches cat in 'housecat'

 $x =~ /\bcat/; # matches cat in 'catenates'

 $x =~ /cat\b/; # matches cat in 'housecat'

 $x =~ /\bcat\b/; # matches 'cat' at end of string

 Note in the last example, the end of the string is considered a word boundary.

 For natural language processing (so that, for example, apostrophes are included in words),

 use instead "\b{wb}"

 "don't" =~ / .+? \b{wb} /x; # matches the whole string

 You might wonder why '.' matches everything but "\n" - why not every character? The reason

 is that often one is matching against lines and would like to ignore the newline

 characters. For instance, while the string "\n" represents one line, we would like to

 think of it as empty. Then

 "" =~ /^$/; # matches

 "\n" =~ /^$/; # matches, $ anchors before "\n"

 "" =~ /./; # doesn't match; it needs a char

 "" =~ /^.$/; # doesn't match; it needs a char

 "\n" =~ /^.$/; # doesn't match; it needs a char other than "\n"

 "a" =~ /^.$/; # matches

 "a\n" =~ /^.$/; # matches, $ anchors before "\n"

 This behavior is convenient, because we usually want to ignore newlines when we count and

 match characters in a line. Sometimes, however, we want to keep track of newlines. We

 might even want '^' and '$' to anchor at the beginning and end of lines within the string,

 rather than just the beginning and end of the string. Perl allows us to choose between Page 11/61

 ignoring and paying attention to newlines by using the "/s" and "/m" modifiers. "/s" and

 "/m" stand for single line and multi-line and they determine whether a string is to be

 treated as one continuous string, or as a set of lines. The two modifiers affect two

 aspects of how the regexp is interpreted: 1) how the '.' character class is defined, and

 2) where the anchors '^' and '$' are able to match. Here are the four possible

 combinations:

 ? no modifiers: Default behavior. '.' matches any character except "\n". '^' matches

 only at the beginning of the string and '$' matches only at the end or before a

 newline at the end.

 ? s modifier ("/s"): Treat string as a single long line. '.' matches any character,

 even "\n". '^' matches only at the beginning of the string and '$' matches only at

 the end or before a newline at the end.

 ? m modifier ("/m"): Treat string as a set of multiple lines. '.' matches any character

 except "\n". '^' and '$' are able to match at the start or end of any line within the

 string.

 ? both s and m modifiers ("/sm"): Treat string as a single long line, but detect

 multiple lines. '.' matches any character, even "\n". '^' and '$', however, are able

 to match at the start or end of any line within the string.

 Here are examples of "/s" and "/m" in action:

 $x = "There once was a girl\nWho programmed in Perl\n";

 $x =~ /^Who/; # doesn't match, "Who" not at start of string

 $x =~ /^Who/s; # doesn't match, "Who" not at start of string

 $x =~ /^Who/m; # matches, "Who" at start of second line

 $x =~ /^Who/sm; # matches, "Who" at start of second line

 $x =~ /girl.Who/; # doesn't match, "." doesn't match "\n"

 $x =~ /girl.Who/s; # matches, "." matches "\n"

 $x =~ /girl.Who/m; # doesn't match, "." doesn't match "\n"

 $x =~ /girl.Who/sm; # matches, "." matches "\n"

 Most of the time, the default behavior is what is wanted, but "/s" and "/m" are

 occasionally very useful. If "/m" is being used, the start of the string can still be

 matched with "\A" and the end of the string can still be matched with the anchors "\Z"

 (matches both the end and the newline before, like '$'), and "\z" (matches only the end):

 $x =~ /^Who/m; # matches, "Who" at start of second line Page 12/61

 $x =~ /\AWho/m; # doesn't match, "Who" is not at start of string

 $x =~ /girl$/m; # matches, "girl" at end of first line

 $x =~ /girl\Z/m; # doesn't match, "girl" is not at end of string

 $x =~ /Perl\Z/m; # matches, "Perl" is at newline before end

 $x =~ /Perl\z/m; # doesn't match, "Perl" is not at end of string

 We now know how to create choices among classes of characters in a regexp. What about

 choices among words or character strings? Such choices are described in the next section.

 Matching this or that

 Sometimes we would like our regexp to be able to match different possible words or

 character strings. This is accomplished by using the alternation metacharacter '|'. To

 match "dog" or "cat", we form the regexp "dog|cat". As before, Perl will try to match the

 regexp at the earliest possible point in the string. At each character position, Perl

 will first try to match the first alternative, "dog". If "dog" doesn't match, Perl will

 then try the next alternative, "cat". If "cat" doesn't match either, then the match fails

 and Perl moves to the next position in the string. Some examples:

 "cats and dogs" =~ /cat|dog|bird/; # matches "cat"

 "cats and dogs" =~ /dog|cat|bird/; # matches "cat"

 Even though "dog" is the first alternative in the second regexp, "cat" is able to match

 earlier in the string.

 "cats" =~ /c|ca|cat|cats/; # matches "c"

 "cats" =~ /cats|cat|ca|c/; # matches "cats"

 Here, all the alternatives match at the first string position, so the first alternative is

 the one that matches. If some of the alternatives are truncations of the others, put the

 longest ones first to give them a chance to match.

 "cab" =~ /a|b|c/ # matches "c"

 # /a|b|c/ == /[abc]/

 The last example points out that character classes are like alternations of characters.

 At a given character position, the first alternative that allows the regexp match to

 succeed will be the one that matches.

 Grouping things and hierarchical matching

 Alternation allows a regexp to choose among alternatives, but by itself it is

 unsatisfying. The reason is that each alternative is a whole regexp, but sometime we want

 alternatives for just part of a regexp. For instance, suppose we want to search for Page 13/61

 housecats or housekeepers. The regexp "housecat|housekeeper" fits the bill, but is

 inefficient because we had to type "house" twice. It would be nice to have parts of the

 regexp be constant, like "house", and some parts have alternatives, like "cat|keeper".

 The grouping metacharacters "()" solve this problem. Grouping allows parts of a regexp to

 be treated as a single unit. Parts of a regexp are grouped by enclosing them in

 parentheses. Thus we could solve the "housecat|housekeeper" by forming the regexp as

 "house(cat|keeper)". The regexp "house(cat|keeper)" means match "house" followed by

 either "cat" or "keeper". Some more examples are

 /(a|b)b/; # matches 'ab' or 'bb'

 /(ac|b)b/; # matches 'acb' or 'bb'

 /(^a|b)c/; # matches 'ac' at start of string or 'bc' anywhere

 /(a|[bc])d/; # matches 'ad', 'bd', or 'cd'

 /house(cat|)/; # matches either 'housecat' or 'house'

 /house(cat(s|)|)/; # matches either 'housecats' or 'housecat' or

 # 'house'. Note groups can be nested.

 /(19|20|)\d\d/; # match years 19xx, 20xx, or the Y2K problem, xx

 "20" =~ /(19|20|)\d\d/; # matches the null alternative '()\d\d',

 # because '20\d\d' can't match

 Alternations behave the same way in groups as out of them: at a given string position, the

 leftmost alternative that allows the regexp to match is taken. So in the last example at

 the first string position, "20" matches the second alternative, but there is nothing left

 over to match the next two digits "\d\d". So Perl moves on to the next alternative, which

 is the null alternative and that works, since "20" is two digits.

 The process of trying one alternative, seeing if it matches, and moving on to the next

 alternative, while going back in the string from where the previous alternative was tried,

 if it doesn't, is called backtracking. The term "backtracking" comes from the idea that

 matching a regexp is like a walk in the woods. Successfully matching a regexp is like

 arriving at a destination. There are many possible trailheads, one for each string

 position, and each one is tried in order, left to right. From each trailhead there may be

 many paths, some of which get you there, and some which are dead ends. When you walk

 along a trail and hit a dead end, you have to backtrack along the trail to an earlier

 point to try another trail. If you hit your destination, you stop immediately and forget

 about trying all the other trails. You are persistent, and only if you have tried all the Page 14/61

 trails from all the trailheads and not arrived at your destination, do you declare

 failure. To be concrete, here is a step-by-step analysis of what Perl does when it tries

 to match the regexp

 "abcde" =~ /(abd|abc)(df|d|de)/;

 0. Start with the first letter in the string 'a'.

 ?

 1. Try the first alternative in the first group 'abd'.

 ?

 2. Match 'a' followed by 'b'. So far so good.

 ?

 3. 'd' in the regexp doesn't match 'c' in the string - a dead end. So backtrack two

 characters and pick the second alternative in the first group 'abc'.

 ?

 4. Match 'a' followed by 'b' followed by 'c'. We are on a roll and have satisfied the

 first group. Set $1 to 'abc'.

 ?

 5 Move on to the second group and pick the first alternative 'df'.

 ?

 6 Match the 'd'.

 ?

 7. 'f' in the regexp doesn't match 'e' in the string, so a dead end. Backtrack one

 character and pick the second alternative in the second group 'd'.

 ?

 8. 'd' matches. The second grouping is satisfied, so set $2 to 'd'.

 ?

 9. We are at the end of the regexp, so we are done! We have matched 'abcd' out of the

 string "abcde".

 There are a couple of things to note about this analysis. First, the third alternative in

 the second group 'de' also allows a match, but we stopped before we got to it - at a given

 character position, leftmost wins. Second, we were able to get a match at the first

 character position of the string 'a'. If there were no matches at the first position,

 Perl would move to the second character position 'b' and attempt the match all over again.

 Only when all possible paths at all possible character positions have been exhausted does Page 15/61

 Perl give up and declare "$string?=~?/(abd|abc)(df|d|de)/;" to be false.

 Even with all this work, regexp matching happens remarkably fast. To speed things up,

 Perl compiles the regexp into a compact sequence of opcodes that can often fit inside a

 processor cache. When the code is executed, these opcodes can then run at full throttle

 and search very quickly.

 Extracting matches

 The grouping metacharacters "()" also serve another completely different function: they

 allow the extraction of the parts of a string that matched. This is very useful to find

 out what matched and for text processing in general. For each grouping, the part that

 matched inside goes into the special variables $1, $2, etc. They can be used just as

 ordinary variables:

 # extract hours, minutes, seconds

 if ($time =~ /(\d\d):(\d\d):(\d\d)/) { # match hh:mm:ss format

 $hours = $1;

 $minutes = $2;

 $seconds = $3;

 }

 Now, we know that in scalar context, "$time?=~?/(\d\d):(\d\d):(\d\d)/" returns a true or

 false value. In list context, however, it returns the list of matched values

 "($1,$2,$3)". So we could write the code more compactly as

 # extract hours, minutes, seconds

 ($hours, $minutes, $second) = ($time =~ /(\d\d):(\d\d):(\d\d)/);

 If the groupings in a regexp are nested, $1 gets the group with the leftmost opening

 parenthesis, $2 the next opening parenthesis, etc. Here is a regexp with nested groups:

 /(ab(cd|ef)((gi)|j))/;

 1 2 34

 If this regexp matches, $1 contains a string starting with 'ab', $2 is either set to 'cd'

 or 'ef', $3 equals either 'gi' or 'j', and $4 is either set to 'gi', just like $3, or it

 remains undefined.

 For convenience, Perl sets $+ to the string held by the highest numbered $1, $2,... that

 got assigned (and, somewhat related, $^N to the value of the $1, $2,... most-recently

 assigned; i.e. the $1, $2,... associated with the rightmost closing parenthesis used in

 the match). Page 16/61

 Backreferences

 Closely associated with the matching variables $1, $2, ... are the backreferences "\g1",

 "\g2",... Backreferences are simply matching variables that can be used inside a regexp.

 This is a really nice feature; what matches later in a regexp is made to depend on what

 matched earlier in the regexp. Suppose we wanted to look for doubled words in a text,

 like "the the". The following regexp finds all 3-letter doubles with a space in between:

 /\b(\w\w\w)\s\g1\b/;

 The grouping assigns a value to "\g1", so that the same 3-letter sequence is used for both

 parts.

 A similar task is to find words consisting of two identical parts:

 % simple_grep '^(\w\w\w\w|\w\w\w|\w\w|\w)\g1$' /usr/dict/words

 beriberi

 booboo

 coco

 mama

 murmur

 papa

 The regexp has a single grouping which considers 4-letter combinations, then 3-letter

 combinations, etc., and uses "\g1" to look for a repeat. Although $1 and "\g1" represent

 the same thing, care should be taken to use matched variables $1, $2,... only outside a

 regexp and backreferences "\g1", "\g2",... only inside a regexp; not doing so may lead to

 surprising and unsatisfactory results.

 Relative backreferences

 Counting the opening parentheses to get the correct number for a backreference is error-

 prone as soon as there is more than one capturing group. A more convenient technique

 became available with Perl 5.10: relative backreferences. To refer to the immediately

 preceding capture group one now may write "\g-1" or "\g{-1}", the next but last is

 available via "\g-2" or "\g{-2}", and so on.

 Another good reason in addition to readability and maintainability for using relative

 backreferences is illustrated by the following example, where a simple pattern for

 matching peculiar strings is used:

 $a99a = '([a-z])(\d)\g2\g1'; # matches a11a, g22g, x33x, etc.

 Now that we have this pattern stored as a handy string, we might feel tempted to use it as Page 17/61

 a part of some other pattern:

 $line = "code=e99e";

 if ($line =~ /^(\w+)=$a99a$/){ # unexpected behavior!

 print "$1 is valid\n";

 } else {

 print "bad line: '$line'\n";

 }

 But this doesn't match, at least not the way one might expect. Only after inserting the

 interpolated $a99a and looking at the resulting full text of the regexp is it obvious that

 the backreferences have backfired. The subexpression "(\w+)" has snatched number 1 and

 demoted the groups in $a99a by one rank. This can be avoided by using relative

 backreferences:

 $a99a = '([a-z])(\d)\g{-1}\g{-2}'; # safe for being interpolated

 Named backreferences

 Perl 5.10 also introduced named capture groups and named backreferences. To attach a name

 to a capturing group, you write either "(?<name>...)" or "(?'name'...)". The

 backreference may then be written as "\g{name}". It is permissible to attach the same

 name to more than one group, but then only the leftmost one of the eponymous set can be

 referenced. Outside of the pattern a named capture group is accessible through the "%+"

 hash.

 Assuming that we have to match calendar dates which may be given in one of the three

 formats yyyy-mm-dd, mm/dd/yyyy or dd.mm.yyyy, we can write three suitable patterns where

 we use 'd', 'm' and 'y' respectively as the names of the groups capturing the pertaining

 components of a date. The matching operation combines the three patterns as alternatives:

 $fmt1 = '(?<y>\d\d\d\d)-(?<m>\d\d)-(?<d>\d\d)';

 $fmt2 = '(?<m>\d\d)/(?<d>\d\d)/(?<y>\d\d\d\d)';

 $fmt3 = '(?<d>\d\d)\.(?<m>\d\d)\.(?<y>\d\d\d\d)';

 for my $d (qw(2006-10-21 15.01.2007 10/31/2005)) {

 if ($d =~ m{$fmt1|$fmt2|$fmt3}){

 print "day=$+{d} month=$+{m} year=$+{y}\n";

 }

 }

 If any of the alternatives matches, the hash "%+" is bound to contain the three key-value Page 18/61

 pairs.

 Alternative capture group numbering

 Yet another capturing group numbering technique (also as from Perl 5.10) deals with the

 problem of referring to groups within a set of alternatives. Consider a pattern for

 matching a time of the day, civil or military style:

 if ($time =~ /(\d\d|\d):(\d\d)|(\d\d)(\d\d)/){

 # process hour and minute

 }

 Processing the results requires an additional if statement to determine whether $1 and $2

 or $3 and $4 contain the goodies. It would be easier if we could use group numbers 1 and 2

 in second alternative as well, and this is exactly what the parenthesized construct

 "(?|...)", set around an alternative achieves. Here is an extended version of the previous

 pattern:

 if($time =~ /(?|(\d\d|\d):(\d\d)|(\d\d)(\d\d))\s+([A-Z][A-Z][A-Z])/){

 print "hour=$1 minute=$2 zone=$3\n";

 }

 Within the alternative numbering group, group numbers start at the same position for each

 alternative. After the group, numbering continues with one higher than the maximum reached

 across all the alternatives.

 Position information

 In addition to what was matched, Perl also provides the positions of what was matched as

 contents of the "@-" and "@+" arrays. "$-[0]" is the position of the start of the entire

 match and $+[0] is the position of the end. Similarly, "$-[n]" is the position of the

 start of the $n match and $+[n] is the position of the end. If $n is undefined, so are

 "$-[n]" and $+[n]. Then this code

 $x = "Mmm...donut, thought Homer";

 $x =~ /^(Mmm|Yech)\.\.\.(donut|peas)/; # matches

 foreach $exp (1..$#-) {

 no strict 'refs';

 print "Match $exp: '$$exp' at position ($-[$exp],$+[$exp])\n";

 }

 prints

 Match 1: 'Mmm' at position (0,3) Page 19/61

 Match 2: 'donut' at position (6,11)

 Even if there are no groupings in a regexp, it is still possible to find out what exactly

 matched in a string. If you use them, Perl will set "$`" to the part of the string before

 the match, will set $& to the part of the string that matched, and will set "$'" to the

 part of the string after the match. An example:

 $x = "the cat caught the mouse";

 $x =~ /cat/; # $` = 'the ', $& = 'cat', $' = ' caught the mouse'

 $x =~ /the/; # $` = '', $& = 'the', $' = ' cat caught the mouse'

 In the second match, "$`" equals '' because the regexp matched at the first character

 position in the string and stopped; it never saw the second "the".

 If your code is to run on Perl versions earlier than 5.20, it is worthwhile to note that

 using "$`" and "$'" slows down regexp matching quite a bit, while $& slows it down to a

 lesser extent, because if they are used in one regexp in a program, they are generated for

 all regexps in the program. So if raw performance is a goal of your application, they

 should be avoided. If you need to extract the corresponding substrings, use "@-" and "@+"

 instead:

 $` is the same as substr($x, 0, $-[0])

 $& is the same as substr($x, $-[0], $+[0]-$-[0])

 $' is the same as substr($x, $+[0])

 As of Perl 5.10, the "${^PREMATCH}", "${^MATCH}" and "${^POSTMATCH}" variables may be

 used. These are only set if the "/p" modifier is present. Consequently they do not

 penalize the rest of the program. In Perl 5.20, "${^PREMATCH}", "${^MATCH}" and

 "${^POSTMATCH}" are available whether the "/p" has been used or not (the modifier is

 ignored), and "$`", "$'" and $& do not cause any speed difference.

 Non-capturing groupings

 A group that is required to bundle a set of alternatives may or may not be useful as a

 capturing group. If it isn't, it just creates a superfluous addition to the set of

 available capture group values, inside as well as outside the regexp. Non-capturing

 groupings, denoted by "(?:regexp)", still allow the regexp to be treated as a single unit,

 but don't establish a capturing group at the same time. Both capturing and non-capturing

 groupings are allowed to co-exist in the same regexp. Because there is no extraction,

 non-capturing groupings are faster than capturing groupings. Non-capturing groupings are

 also handy for choosing exactly which parts of a regexp are to be extracted to matching Page 20/61

 variables:

 # match a number, $1-$4 are set, but we only want $1

 /([+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?)/;

 # match a number faster , only $1 is set

 /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE][+-]?\d+)?)/;

 # match a number, get $1 = whole number, $2 = exponent

 /([+-]?\ *(?:\d+(?:\.\d*)?|\.\d+)(?:[eE]([+-]?\d+))?)/;

 Non-capturing groupings are also useful for removing nuisance elements gathered from a

 split operation where parentheses are required for some reason:

 $x = '12aba34ba5';

 @num = split /(a|b)+/, $x; # @num = ('12','a','34','a','5')

 @num = split /(?:a|b)+/, $x; # @num = ('12','34','5')

 In Perl 5.22 and later, all groups within a regexp can be set to non-capturing by using

 the new "/n" flag:

 "hello" =~ /(hi|hello)/n; # $1 is not set!

 See "n" in perlre for more information.

 Matching repetitions

 The examples in the previous section display an annoying weakness. We were only matching

 3-letter words, or chunks of words of 4 letters or less. We'd like to be able to match

 words or, more generally, strings of any length, without writing out tedious alternatives

 like "\w\w\w\w|\w\w\w|\w\w|\w".

 This is exactly the problem the quantifier metacharacters '?', '*', '+', and "{}" were

 created for. They allow us to delimit the number of repeats for a portion of a regexp we

 consider to be a match. Quantifiers are put immediately after the character, character

 class, or grouping that we want to specify. They have the following meanings:

 ? "a?" means: match 'a' 1 or 0 times

 ? "a*" means: match 'a' 0 or more times, i.e., any number of times

 ? "a+" means: match 'a' 1 or more times, i.e., at least once

 ? "a{n,m}" means: match at least "n" times, but not more than "m" times.

 ? "a{n,}" means: match at least "n" or more times

 ? "a{,n}" means: match at most "n" times, or fewer

 ? "a{n}" means: match exactly "n" times

 If you like, you can add blanks (tab or space characters) within the braces, but adjacent Page 21/61

 to them, and/or next to the comma (if any).

 Here are some examples:

 /[a-z]+\s+\d*/; # match a lowercase word, at least one space, and

 # any number of digits

 /(\w+)\s+\g1/; # match doubled words of arbitrary length

 /y(es)?/i; # matches 'y', 'Y', or a case-insensitive 'yes'

 $year =~ /^\d{2,4}$/; # make sure year is at least 2 but not more

 # than 4 digits

 $year =~ /^\d{ 2, 4 }$/; # Same; for those who like wide open

 # spaces.

 $year =~ /^\d{2, 4}$/; # Same.

 $year =~ /^\d{4}$|^\d{2}$/; # better match; throw out 3-digit dates

 $year =~ /^\d{2}(\d{2})?$/; # same thing written differently.

 # However, this captures the last two

 # digits in $1 and the other does not.

 % simple_grep '^(\w+)\g1$' /usr/dict/words # isn't this easier?

 beriberi

 booboo

 coco

 mama

 murmur

 papa

 For all of these quantifiers, Perl will try to match as much of the string as possible,

 while still allowing the regexp to succeed. Thus with "/a?.../", Perl will first try to

 match the regexp with the 'a' present; if that fails, Perl will try to match the regexp

 without the 'a' present. For the quantifier '*', we get the following:

 $x = "the cat in the hat";

 $x =~ /^(.*)(cat)(.*)$/; # matches,

 # $1 = 'the '

 # $2 = 'cat'

 # $3 = ' in the hat'

 Which is what we might expect, the match finds the only "cat" in the string and locks onto

 it. Consider, however, this regexp: Page 22/61

 $x =~ /^(.*)(at)(.*)$/; # matches,

 # $1 = 'the cat in the h'

 # $2 = 'at'

 # $3 = '' (0 characters match)

 One might initially guess that Perl would find the "at" in "cat" and stop there, but that

 wouldn't give the longest possible string to the first quantifier ".*". Instead, the

 first quantifier ".*" grabs as much of the string as possible while still having the

 regexp match. In this example, that means having the "at" sequence with the final "at" in

 the string. The other important principle illustrated here is that, when there are two or

 more elements in a regexp, the leftmost quantifier, if there is one, gets to grab as much

 of the string as possible, leaving the rest of the regexp to fight over scraps. Thus in

 our example, the first quantifier ".*" grabs most of the string, while the second

 quantifier ".*" gets the empty string. Quantifiers that grab as much of the string as

 possible are called maximal match or greedy quantifiers.

 When a regexp can match a string in several different ways, we can use the principles

 above to predict which way the regexp will match:

 ? Principle 0: Taken as a whole, any regexp will be matched at the earliest possible

 position in the string.

 ? Principle 1: In an alternation "a|b|c...", the leftmost alternative that allows a

 match for the whole regexp will be the one used.

 ? Principle 2: The maximal matching quantifiers '?', '*', '+' and "{n,m}" will in

 general match as much of the string as possible while still allowing the whole regexp

 to match.

 ? Principle 3: If there are two or more elements in a regexp, the leftmost greedy

 quantifier, if any, will match as much of the string as possible while still allowing

 the whole regexp to match. The next leftmost greedy quantifier, if any, will try to

 match as much of the string remaining available to it as possible, while still

 allowing the whole regexp to match. And so on, until all the regexp elements are

 satisfied.

 As we have seen above, Principle 0 overrides the others. The regexp will be matched as

 early as possible, with the other principles determining how the regexp matches at that

 earliest character position.

 Here is an example of these principles in action: Page 23/61

 $x = "The programming republic of Perl";

 $x =~ /^(.+)(e|r)(.*)$/; # matches,

 # $1 = 'The programming republic of Pe'

 # $2 = 'r'

 # $3 = 'l'

 This regexp matches at the earliest string position, 'T'. One might think that 'e', being

 leftmost in the alternation, would be matched, but 'r' produces the longest string in the

 first quantifier.

 $x =~ /(m{1,2})(.*)$/; # matches,

 # $1 = 'mm'

 # $2 = 'ing republic of Perl'

 Here, The earliest possible match is at the first 'm' in "programming". "m{1,2}" is the

 first quantifier, so it gets to match a maximal "mm".

 $x =~ /.*(m{1,2})(.*)$/; # matches,

 # $1 = 'm'

 # $2 = 'ing republic of Perl'

 Here, the regexp matches at the start of the string. The first quantifier ".*" grabs as

 much as possible, leaving just a single 'm' for the second quantifier "m{1,2}".

 $x =~ /(.?)(m{1,2})(.*)$/; # matches,

 # $1 = 'a'

 # $2 = 'mm'

 # $3 = 'ing republic of Perl'

 Here, ".?" eats its maximal one character at the earliest possible position in the string,

 'a' in "programming", leaving "m{1,2}" the opportunity to match both 'm''s. Finally,

 "aXXXb" =~ /(X*)/; # matches with $1 = ''

 because it can match zero copies of 'X' at the beginning of the string. If you definitely

 want to match at least one 'X', use "X+", not "X*".

 Sometimes greed is not good. At times, we would like quantifiers to match a minimal piece

 of string, rather than a maximal piece. For this purpose, Larry Wall created the minimal

 match or non-greedy quantifiers "??", "*?", "+?", and "{}?". These are the usual

 quantifiers with a '?' appended to them. They have the following meanings:

 ? "a??" means: match 'a' 0 or 1 times. Try 0 first, then 1.

 ? "a*?" means: match 'a' 0 or more times, i.e., any number of times, but as few times as Page 24/61

 possible

 ? "a+?" means: match 'a' 1 or more times, i.e., at least once, but as few times as

 possible

 ? "a{n,m}?" means: match at least "n" times, not more than "m" times, as few times as

 possible

 ? "a{n,}?" means: match at least "n" times, but as few times as possible

 ? "a{,n}?" means: match at most "n" times, but as few times as possible

 ? "a{n}?" means: match exactly "n" times. Because we match exactly "n" times, "a{n}?"

 is equivalent to "a{n}" and is just there for notational consistency.

 Let's look at the example above, but with minimal quantifiers:

 $x = "The programming republic of Perl";

 $x =~ /^(.+?)(e|r)(.*)$/; # matches,

 # $1 = 'Th'

 # $2 = 'e'

 # $3 = ' programming republic of Perl'

 The minimal string that will allow both the start of the string '^' and the alternation to

 match is "Th", with the alternation "e|r" matching 'e'. The second quantifier ".*" is

 free to gobble up the rest of the string.

 $x =~ /(m{1,2}?)(.*?)$/; # matches,

 # $1 = 'm'

 # $2 = 'ming republic of Perl'

 The first string position that this regexp can match is at the first 'm' in "programming".

 At this position, the minimal "m{1,2}?" matches just one 'm'. Although the second

 quantifier ".*?" would prefer to match no characters, it is constrained by the end-of-

 string anchor '$' to match the rest of the string.

 $x =~ /(.*?)(m{1,2}?)(.*)$/; # matches,

 # $1 = 'The progra'

 # $2 = 'm'

 # $3 = 'ming republic of Perl'

 In this regexp, you might expect the first minimal quantifier ".*?" to match the empty

 string, because it is not constrained by a '^' anchor to match the beginning of the word.

 Principle 0 applies here, however. Because it is possible for the whole regexp to match

 at the start of the string, it will match at the start of the string. Thus the first Page 25/61

 quantifier has to match everything up to the first 'm'. The second minimal quantifier

 matches just one 'm' and the third quantifier matches the rest of the string.

 $x =~ /(.??)(m{1,2})(.*)$/; # matches,

 # $1 = 'a'

 # $2 = 'mm'

 # $3 = 'ing republic of Perl'

 Just as in the previous regexp, the first quantifier ".??" can match earliest at position

 'a', so it does. The second quantifier is greedy, so it matches "mm", and the third

 matches the rest of the string.

 We can modify principle 3 above to take into account non-greedy quantifiers:

 ? Principle 3: If there are two or more elements in a regexp, the leftmost greedy (non-

 greedy) quantifier, if any, will match as much (little) of the string as possible

 while still allowing the whole regexp to match. The next leftmost greedy (non-greedy)

 quantifier, if any, will try to match as much (little) of the string remaining

 available to it as possible, while still allowing the whole regexp to match. And so

 on, until all the regexp elements are satisfied.

 Just like alternation, quantifiers are also susceptible to backtracking. Here is a step-

 by-step analysis of the example

 $x = "the cat in the hat";

 $x =~ /^(.*)(at)(.*)$/; # matches,

 # $1 = 'the cat in the h'

 # $2 = 'at'

 # $3 = '' (0 matches)

 0. Start with the first letter in the string 't'.

 ?

 1. The first quantifier '.*' starts out by matching the whole string ""the cat in the

 hat"".

 ?

 2. 'a' in the regexp element 'at' doesn't match the end of the string. Backtrack one

 character.

 ?

 3. 'a' in the regexp element 'at' still doesn't match the last letter of the string 't',

 so backtrack one more character. Page 26/61

 ?

 4. Now we can match the 'a' and the 't'.

 ?

 5. Move on to the third element '.*'. Since we are at the end of the string and '.*' can

 match 0 times, assign it the empty string.

 ?

 6. We are done!

 Most of the time, all this moving forward and backtracking happens quickly and searching

 is fast. There are some pathological regexps, however, whose execution time exponentially

 grows with the size of the string. A typical structure that blows up in your face is of

 the form

 /(a|b+)*/;

 The problem is the nested indeterminate quantifiers. There are many different ways of

 partitioning a string of length n between the '+' and '*': one repetition with "b+" of

 length n, two repetitions with the first "b+" length k and the second with length n-k, m

 repetitions whose bits add up to length n, etc. In fact there are an exponential number

 of ways to partition a string as a function of its length. A regexp may get lucky and

 match early in the process, but if there is no match, Perl will try every possibility

 before giving up. So be careful with nested '*''s, "{n,m}"'s, and '+''s. The book

 Mastering Regular Expressions by Jeffrey Friedl gives a wonderful discussion of this and

 other efficiency issues.

 Possessive quantifiers

 Backtracking during the relentless search for a match may be a waste of time, particularly

 when the match is bound to fail. Consider the simple pattern

 /^\w+\s+\w+$/; # a word, spaces, a word

 Whenever this is applied to a string which doesn't quite meet the pattern's expectations

 such as "abc??" or "abc??def?", the regexp engine will backtrack, approximately once for

 each character in the string. But we know that there is no way around taking all of the

 initial word characters to match the first repetition, that all spaces must be eaten by

 the middle part, and the same goes for the second word.

 With the introduction of the possessive quantifiers in Perl 5.10, we have a way of

 instructing the regexp engine not to backtrack, with the usual quantifiers with a '+'

 appended to them. This makes them greedy as well as stingy; once they succeed they won't Page 27/61

 give anything back to permit another solution. They have the following meanings:

 ? "a{n,m}+" means: match at least "n" times, not more than "m" times, as many times as

 possible, and don't give anything up. "a?+" is short for "a{0,1}+"

 ? "a{n,}+" means: match at least "n" times, but as many times as possible, and don't

 give anything up. "a++" is short for "a{1,}+".

 ? "a{,n}+" means: match as many times as possible up to at most "n" times, and don't

 give anything up. "a*+" is short for "a{0,}+".

 ? "a{n}+" means: match exactly "n" times. It is just there for notational consistency.

 These possessive quantifiers represent a special case of a more general concept, the

 independent subexpression, see below.

 As an example where a possessive quantifier is suitable we consider matching a quoted

 string, as it appears in several programming languages. The backslash is used as an

 escape character that indicates that the next character is to be taken literally, as

 another character for the string. Therefore, after the opening quote, we expect a

 (possibly empty) sequence of alternatives: either some character except an unescaped quote

 or backslash or an escaped character.

 /"(?:[^"\\]++|\\.)*+"/;

 Building a regexp

 At this point, we have all the basic regexp concepts covered, so let's give a more

 involved example of a regular expression. We will build a regexp that matches numbers.

 The first task in building a regexp is to decide what we want to match and what we want to

 exclude. In our case, we want to match both integers and floating point numbers and we

 want to reject any string that isn't a number.

 The next task is to break the problem down into smaller problems that are easily converted

 into a regexp.

 The simplest case is integers. These consist of a sequence of digits, with an optional

 sign in front. The digits we can represent with "\d+" and the sign can be matched with

 "[+-]". Thus the integer regexp is

 /[+-]?\d+/; # matches integers

 A floating point number potentially has a sign, an integral part, a decimal point, a

 fractional part, and an exponent. One or more of these parts is optional, so we need to

 check out the different possibilities. Floating point numbers which are in proper form

 include 123., 0.345, .34, -1e6, and 25.4E-72. As with integers, the sign out front is Page 28/61

 completely optional and can be matched by "[+-]?". We can see that if there is no

 exponent, floating point numbers must have a decimal point, otherwise they are integers.

 We might be tempted to model these with "\d*\.\d*", but this would also match just a

 single decimal point, which is not a number. So the three cases of floating point number

 without exponent are

 /[+-]?\d+\./; # 1., 321., etc.

 /[+-]?\.\d+/; # .1, .234, etc.

 /[+-]?\d+\.\d+/; # 1.0, 30.56, etc.

 These can be combined into a single regexp with a three-way alternation:

 /[+-]?(\d+\.\d+|\d+\.|\.\d+)/; # floating point, no exponent

 In this alternation, it is important to put '\d+\.\d+' before '\d+\.'. If '\d+\.' were

 first, the regexp would happily match that and ignore the fractional part of the number.

 Now consider floating point numbers with exponents. The key observation here is that both

 integers and numbers with decimal points are allowed in front of an exponent. Then

 exponents, like the overall sign, are independent of whether we are matching numbers with

 or without decimal points, and can be "decoupled" from the mantissa. The overall form of

 the regexp now becomes clear:

 /^(optional sign)(integer | f.p. mantissa)(optional exponent)$/;

 The exponent is an 'e' or 'E', followed by an integer. So the exponent regexp is

 /[eE][+-]?\d+/; # exponent

 Putting all the parts together, we get a regexp that matches numbers:

 /^[+-]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+-]?\d+)?$/; # Ta da!

 Long regexps like this may impress your friends, but can be hard to decipher. In complex

 situations like this, the "/x" modifier for a match is invaluable. It allows one to put

 nearly arbitrary whitespace and comments into a regexp without affecting their meaning.

 Using it, we can rewrite our "extended" regexp in the more pleasing form

 /^

 [+-]? # first, match an optional sign

 (# then match integers or f.p. mantissas:

 \d+\.\d+ # mantissa of the form a.b

 |\d+\. # mantissa of the form a.

 |\.\d+ # mantissa of the form .b

 |\d+ # integer of the form a Page 29/61

)

 ([eE] [+-]? \d+)? # finally, optionally match an exponent

 $/x;

 If whitespace is mostly irrelevant, how does one include space characters in an extended

 regexp? The answer is to backslash it '\?' or put it in a character class "[?]". The same

 thing goes for pound signs: use "\#" or "[#]". For instance, Perl allows a space between

 the sign and the mantissa or integer, and we could add this to our regexp as follows:

 /^

 [+-]?\ * # first, match an optional sign *and space*

 (# then match integers or f.p. mantissas:

 \d+\.\d+ # mantissa of the form a.b

 |\d+\. # mantissa of the form a.

 |\.\d+ # mantissa of the form .b

 |\d+ # integer of the form a

)

 ([eE] [+-]? \d+)? # finally, optionally match an exponent

 $/x;

 In this form, it is easier to see a way to simplify the alternation. Alternatives 1, 2,

 and 4 all start with "\d+", so it could be factored out:

 /^

 [+-]?\ * # first, match an optional sign

 (# then match integers or f.p. mantissas:

 \d+ # start out with a ...

 (

 \.\d* # mantissa of the form a.b or a.

)? # ? takes care of integers of the form a

 |\.\d+ # mantissa of the form .b

)

 ([eE] [+-]? \d+)? # finally, optionally match an exponent

 $/x;

 Starting in Perl v5.26, specifying "/xx" changes the square-bracketed portions of a

 pattern to ignore tabs and space characters unless they are escaped by preceding them with

 a backslash. So, we could write Page 30/61

 /^

 [+ -]?\ * # first, match an optional sign

 (# then match integers or f.p. mantissas:

 \d+ # start out with a ...

 (

 \.\d* # mantissa of the form a.b or a.

)? # ? takes care of integers of the form a

 |\.\d+ # mantissa of the form .b

)

 ([e E] [+ -]? \d+)? # finally, optionally match an exponent

 $/xx;

 This doesn't really improve the legibility of this example, but it's available in case you

 want it. Squashing the pattern down to the compact form, we have

 /^[+-]?\ *(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?$/;

 This is our final regexp. To recap, we built a regexp by

 ? specifying the task in detail,

 ? breaking down the problem into smaller parts,

 ? translating the small parts into regexps,

 ? combining the regexps,

 ? and optimizing the final combined regexp.

 These are also the typical steps involved in writing a computer program. This makes

 perfect sense, because regular expressions are essentially programs written in a little

 computer language that specifies patterns.

 Using regular expressions in Perl

 The last topic of Part 1 briefly covers how regexps are used in Perl programs. Where do

 they fit into Perl syntax?

 We have already introduced the matching operator in its default "/regexp/" and arbitrary

 delimiter "m!regexp!" forms. We have used the binding operator "=~" and its negation "!~"

 to test for string matches. Associated with the matching operator, we have discussed the

 single line "/s", multi-line "/m", case-insensitive "/i" and extended "/x" modifiers.

 There are a few more things you might want to know about matching operators.

 Prohibiting substitution

 If you change $pattern after the first substitution happens, Perl will ignore it. If you Page 31/61

 don't want any substitutions at all, use the special delimiter "m''":

 @pattern = ('Seuss');

 while (<>) {

 print if m'@pattern'; # matches literal '@pattern', not 'Seuss'

 }

 Similar to strings, "m''" acts like apostrophes on a regexp; all other 'm' delimiters act

 like quotes. If the regexp evaluates to the empty string, the regexp in the last

 successful match is used instead. So we have

 "dog" =~ /d/; # 'd' matches

 "dogbert" =~ //; # this matches the 'd' regexp used before

 Global matching

 The final two modifiers we will discuss here, "/g" and "/c", concern multiple matches.

 The modifier "/g" stands for global matching and allows the matching operator to match

 within a string as many times as possible. In scalar context, successive invocations

 against a string will have "/g" jump from match to match, keeping track of position in the

 string as it goes along. You can get or set the position with the "pos()" function.

 The use of "/g" is shown in the following example. Suppose we have a string that consists

 of words separated by spaces. If we know how many words there are in advance, we could

 extract the words using groupings:

 $x = "cat dog house"; # 3 words

 $x =~ /^\s*(\w+)\s+(\w+)\s+(\w+)\s*$/; # matches,

 # $1 = 'cat'

 # $2 = 'dog'

 # $3 = 'house'

 But what if we had an indeterminate number of words? This is the sort of task "/g" was

 made for. To extract all words, form the simple regexp "(\w+)" and loop over all matches

 with "/(\w+)/g":

 while ($x =~ /(\w+)/g) {

 print "Word is $1, ends at position ", pos $x, "\n";

 }

 prints

 Word is cat, ends at position 3

 Word is dog, ends at position 7 Page 32/61

 Word is house, ends at position 13

 A failed match or changing the target string resets the position. If you don't want the

 position reset after failure to match, add the "/c", as in "/regexp/gc". The current

 position in the string is associated with the string, not the regexp. This means that

 different strings have different positions and their respective positions can be set or

 read independently.

 In list context, "/g" returns a list of matched groupings, or if there are no groupings, a

 list of matches to the whole regexp. So if we wanted just the words, we could use

 @words = ($x =~ /(\w+)/g); # matches,

 # $words[0] = 'cat'

 # $words[1] = 'dog'

 # $words[2] = 'house'

 Closely associated with the "/g" modifier is the "\G" anchor. The "\G" anchor matches at

 the point where the previous "/g" match left off. "\G" allows us to easily do context-

 sensitive matching:

 $metric = 1; # use metric units

 ...

 $x = <FILE>; # read in measurement

 $x =~ /^([+-]?\d+)\s*/g; # get magnitude

 $weight = $1;

 if ($metric) { # error checking

 print "Units error!" unless $x =~ /\Gkg\./g;

 }

 else {

 print "Units error!" unless $x =~ /\Glbs\./g;

 }

 $x =~ /\G\s+(widget|sprocket)/g; # continue processing

 The combination of "/g" and "\G" allows us to process the string a bit at a time and use

 arbitrary Perl logic to decide what to do next. Currently, the "\G" anchor is only fully

 supported when used to anchor to the start of the pattern.

 "\G" is also invaluable in processing fixed-length records with regexps. Suppose we have

 a snippet of coding region DNA, encoded as base pair letters "ATCGTTGAAT..." and we want

 to find all the stop codons "TGA". In a coding region, codons are 3-letter sequences, so Page 33/61

 we can think of the DNA snippet as a sequence of 3-letter records. The naive regexp

 # expanded, this is "ATC GTT GAA TGC AAA TGA CAT GAC"

 $dna = "ATCGTTGAATGCAAATGACATGAC";

 $dna =~ /TGA/;

 doesn't work; it may match a "TGA", but there is no guarantee that the match is aligned

 with codon boundaries, e.g., the substring "GTT?GAA" gives a match. A better solution is

 while ($dna =~ /(\w\w\w)*?TGA/g) { # note the minimal *?

 print "Got a TGA stop codon at position ", pos $dna, "\n";

 }

 which prints

 Got a TGA stop codon at position 18

 Got a TGA stop codon at position 23

 Position 18 is good, but position 23 is bogus. What happened?

 The answer is that our regexp works well until we get past the last real match. Then the

 regexp will fail to match a synchronized "TGA" and start stepping ahead one character

 position at a time, not what we want. The solution is to use "\G" to anchor the match to

 the codon alignment:

 while ($dna =~ /\G(\w\w\w)*?TGA/g) {

 print "Got a TGA stop codon at position ", pos $dna, "\n";

 }

 This prints

 Got a TGA stop codon at position 18

 which is the correct answer. This example illustrates that it is important not only to

 match what is desired, but to reject what is not desired.

 (There are other regexp modifiers that are available, such as "/o", but their specialized

 uses are beyond the scope of this introduction.)

 Search and replace

 Regular expressions also play a big role in search and replace operations in Perl. Search

 and replace is accomplished with the "s///" operator. The general form is

 "s/regexp/replacement/modifiers", with everything we know about regexps and modifiers

 applying in this case as well. The replacement is a Perl double-quoted string that

 replaces in the string whatever is matched with the "regexp". The operator "=~" is also

 used here to associate a string with "s///". If matching against $_, the "$_?=~" can be Page 34/61

 dropped. If there is a match, "s///" returns the number of substitutions made; otherwise

 it returns false. Here are a few examples:

 $x = "Time to feed the cat!";

 $x =~ s/cat/hacker/; # $x contains "Time to feed the hacker!"

 if ($x =~ s/^(Time.*hacker)!$/$1 now!/) {

 $more_insistent = 1;

 }

 $y = "'quoted words'";

 $y =~ s/^'(.*)'$/$1/; # strip single quotes,

 # $y contains "quoted words"

 In the last example, the whole string was matched, but only the part inside the single

 quotes was grouped. With the "s///" operator, the matched variables $1, $2, etc. are

 immediately available for use in the replacement expression, so we use $1 to replace the

 quoted string with just what was quoted. With the global modifier, "s///g" will search

 and replace all occurrences of the regexp in the string:

 $x = "I batted 4 for 4";

 $x =~ s/4/four/; # doesn't do it all:

 # $x contains "I batted four for 4"

 $x = "I batted 4 for 4";

 $x =~ s/4/four/g; # does it all:

 # $x contains "I batted four for four"

 If you prefer "regex" over "regexp" in this tutorial, you could use the following program

 to replace it:

 % cat > simple_replace

 #!/usr/bin/perl

 $regexp = shift;

 $replacement = shift;

 while (<>) {

 s/$regexp/$replacement/g;

 print;

 }

 ^D

 % simple_replace regexp regex perlretut.pod Page 35/61

 In "simple_replace" we used the "s///g" modifier to replace all occurrences of the regexp

 on each line. (Even though the regular expression appears in a loop, Perl is smart enough

 to compile it only once.) As with "simple_grep", both the "print" and the

 "s/$regexp/$replacement/g" use $_ implicitly.

 If you don't want "s///" to change your original variable you can use the non-destructive

 substitute modifier, "s///r". This changes the behavior so that "s///r" returns the final

 substituted string (instead of the number of substitutions):

 $x = "I like dogs.";

 $y = $x =~ s/dogs/cats/r;

 print "$x $y\n";

 That example will print "I like dogs. I like cats". Notice the original $x variable has

 not been affected. The overall result of the substitution is instead stored in $y. If the

 substitution doesn't affect anything then the original string is returned:

 $x = "I like dogs.";

 $y = $x =~ s/elephants/cougars/r;

 print "$x $y\n"; # prints "I like dogs. I like dogs."

 One other interesting thing that the "s///r" flag allows is chaining substitutions:

 $x = "Cats are great.";

 print $x =~ s/Cats/Dogs/r =~ s/Dogs/Frogs/r =~

 s/Frogs/Hedgehogs/r, "\n";

 # prints "Hedgehogs are great."

 A modifier available specifically to search and replace is the "s///e" evaluation

 modifier. "s///e" treats the replacement text as Perl code, rather than a double-quoted

 string. The value that the code returns is substituted for the matched substring.

 "s///e" is useful if you need to do a bit of computation in the process of replacing text.

 This example counts character frequencies in a line:

 $x = "Bill the cat";

 $x =~ s/(.)/$chars{$1}++;$1/eg; # final $1 replaces char with itself

 print "frequency of '$_' is $chars{$_}\n"

 foreach (sort {$chars{$b} <=> $chars{$a}} keys %chars);

 This prints

 frequency of ' ' is 2

 frequency of 't' is 2 Page 36/61

 frequency of 'l' is 2

 frequency of 'B' is 1

 frequency of 'c' is 1

 frequency of 'e' is 1

 frequency of 'h' is 1

 frequency of 'i' is 1

 frequency of 'a' is 1

 As with the match "m//" operator, "s///" can use other delimiters, such as "s!!!" and

 "s{}{}", and even "s{}//". If single quotes are used "s'''", then the regexp and

 replacement are treated as single-quoted strings and there are no variable substitutions.

 "s///" in list context returns the same thing as in scalar context, i.e., the number of

 matches.

 The split function

 The "split()" function is another place where a regexp is used. "split /regexp/, string,

 limit" separates the "string" operand into a list of substrings and returns that list.

 The regexp must be designed to match whatever constitutes the separators for the desired

 substrings. The "limit", if present, constrains splitting into no more than "limit"

 number of strings. For example, to split a string into words, use

 $x = "Calvin and Hobbes";

 @words = split /\s+/, $x; # $word[0] = 'Calvin'

 # $word[1] = 'and'

 # $word[2] = 'Hobbes'

 If the empty regexp "//" is used, the regexp always matches and the string is split into

 individual characters. If the regexp has groupings, then the resulting list contains the

 matched substrings from the groupings as well. For instance,

 $x = "/usr/bin/perl";

 @dirs = split m!/!, $x; # $dirs[0] = ''

 # $dirs[1] = 'usr'

 # $dirs[2] = 'bin'

 # $dirs[3] = 'perl'

 @parts = split m!(/)!, $x; # $parts[0] = ''

 # $parts[1] = '/'

 # $parts[2] = 'usr' Page 37/61

 # $parts[3] = '/'

 # $parts[4] = 'bin'

 # $parts[5] = '/'

 # $parts[6] = 'perl'

 Since the first character of $x matched the regexp, "split" prepended an empty initial

 element to the list.

 If you have read this far, congratulations! You now have all the basic tools needed to use

 regular expressions to solve a wide range of text processing problems. If this is your

 first time through the tutorial, why not stop here and play around with regexps a

 while.... Part?2 concerns the more esoteric aspects of regular expressions and those

 concepts certainly aren't needed right at the start.

Part 2: Power tools

 OK, you know the basics of regexps and you want to know more. If matching regular

 expressions is analogous to a walk in the woods, then the tools discussed in Part 1 are

 analogous to topo maps and a compass, basic tools we use all the time. Most of the tools

 in part 2 are analogous to flare guns and satellite phones. They aren't used too often on

 a hike, but when we are stuck, they can be invaluable.

 What follows are the more advanced, less used, or sometimes esoteric capabilities of Perl

 regexps. In Part 2, we will assume you are comfortable with the basics and concentrate on

 the advanced features.

 More on characters, strings, and character classes

 There are a number of escape sequences and character classes that we haven't covered yet.

 There are several escape sequences that convert characters or strings between upper and

 lower case, and they are also available within patterns. "\l" and "\u" convert the next

 character to lower or upper case, respectively:

 $x = "perl";

 $string =~ /\u$x/; # matches 'Perl' in $string

 $x = "M(rs?|s)\\."; # note the double backslash

 $string =~ /\l$x/; # matches 'mr.', 'mrs.', and 'ms.',

 A "\L" or "\U" indicates a lasting conversion of case, until terminated by "\E" or thrown

 over by another "\U" or "\L":

 $x = "This word is in lower case:\L SHOUT\E";

 $x =~ /shout/; # matches Page 38/61

 $x = "I STILL KEYPUNCH CARDS FOR MY 360";

 $x =~ /\Ukeypunch/; # matches punch card string

 If there is no "\E", case is converted until the end of the string. The regexps

 "\L\u$word" or "\u\L$word" convert the first character of $word to uppercase and the rest

 of the characters to lowercase.

 Control characters can be escaped with "\c", so that a control-Z character would be

 matched with "\cZ". The escape sequence "\Q"..."\E" quotes, or protects most non-

 alphabetic characters. For instance,

 $x = "\QThat !^*&%~& cat!";

 $x =~ /\Q!^*&%~&\E/; # check for rough language

 It does not protect '$' or '@', so that variables can still be substituted.

 "\Q", "\L", "\l", "\U", "\u" and "\E" are actually part of double-quotish syntax, and not

 part of regexp syntax proper. They will work if they appear in a regular expression

 embedded directly in a program, but not when contained in a string that is interpolated in

 a pattern.

 Perl regexps can handle more than just the standard ASCII character set. Perl supports

 Unicode, a standard for representing the alphabets from virtually all of the world's

 written languages, and a host of symbols. Perl's text strings are Unicode strings, so

 they can contain characters with a value (codepoint or character number) higher than 255.

 What does this mean for regexps? Well, regexp users don't need to know much about Perl's

 internal representation of strings. But they do need to know 1) how to represent Unicode

 characters in a regexp and 2) that a matching operation will treat the string to be

 searched as a sequence of characters, not bytes. The answer to 1) is that Unicode

 characters greater than "chr(255)" are represented using the "\x{hex}" notation, because

 "\x"XY (without curly braces and XY are two hex digits) doesn't go further than 255.

 (Starting in Perl 5.14, if you're an octal fan, you can also use "\o{oct}".)

 /\x{263a}/; # match a Unicode smiley face :)

 /\x{ 263a }/; # Same

 NOTE: In Perl 5.6.0 it used to be that one needed to say "use utf8" to use any Unicode

 features. This is no longer the case: for almost all Unicode processing, the explicit

 "utf8" pragma is not needed. (The only case where it matters is if your Perl script is in

 Unicode and encoded in UTF-8, then an explicit "use utf8" is needed.)

 Figuring out the hexadecimal sequence of a Unicode character you want or deciphering Page 39/61

 someone else's hexadecimal Unicode regexp is about as much fun as programming in machine

 code. So another way to specify Unicode characters is to use the named character escape

 sequence "\N{name}". name is a name for the Unicode character, as specified in the

 Unicode standard. For instance, if we wanted to represent or match the astrological sign

 for the planet Mercury, we could use

 $x = "abc\N{MERCURY}def";

 $x =~ /\N{MERCURY}/; # matches

 $x =~ /\N{ MERCURY }/; # Also matches

 One can also use "short" names:

 print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";

 print "\N{greek:Sigma} is an upper-case sigma.\n";

 You can also restrict names to a certain alphabet by specifying the charnames pragma:

 use charnames qw(greek);

 print "\N{sigma} is Greek sigma\n";

 An index of character names is available on-line from the Unicode Consortium,

 <https://www.unicode.org/charts/charindex.html>; explanatory material with links to other

 resources at <https://www.unicode.org/standard/where>.

 Starting in Perl v5.32, an alternative to "\N{...}" for full names is available, and that

 is to say

 /\p{Name=greek small letter sigma}/

 The casing of the character name is irrelevant when used in "\p{}", as are most spaces,

 underscores and hyphens. (A few outlier characters cause problems with ignoring all of

 them always. The details (which you can look up when you get more proficient, and if ever

 needed) are in <https://www.unicode.org/reports/tr44/tr44-24.html#UAX44-LM2>).

 The answer to requirement 2) is that a regexp (mostly) uses Unicode characters. The

 "mostly" is for messy backward compatibility reasons, but starting in Perl 5.14, any

 regexp compiled in the scope of a "use feature 'unicode_strings'" (which is automatically

 turned on within the scope of a "use 5.012" or higher) will turn that "mostly" into

 "always". If you want to handle Unicode properly, you should ensure that

 'unicode_strings' is turned on. Internally, this is encoded to bytes using either UTF-8

 or a native 8 bit encoding, depending on the history of the string, but conceptually it is

 a sequence of characters, not bytes. See perlunitut for a tutorial about that.

 Let us now discuss Unicode character classes, most usually called "character properties". Page 40/61

 These are represented by the "\p{name}" escape sequence. The negation of this is

 "\P{name}". For example, to match lower and uppercase characters,

 $x = "BOB";

 $x =~ /^\p{IsUpper}/; # matches, uppercase char class

 $x =~ /^\P{IsUpper}/; # doesn't match, char class sans uppercase

 $x =~ /^\p{IsLower}/; # doesn't match, lowercase char class

 $x =~ /^\P{IsLower}/; # matches, char class sans lowercase

 (The ""Is"" is optional.)

 There are many, many Unicode character properties. For the full list see perluniprops.

 Most of them have synonyms with shorter names, also listed there. Some synonyms are a

 single character. For these, you can drop the braces. For instance, "\pM" is the same

 thing as "\p{Mark}", meaning things like accent marks.

 The Unicode "\p{Script}" and "\p{Script_Extensions}" properties are used to categorize

 every Unicode character into the language script it is written in. For example, English,

 French, and a bunch of other European languages are written in the Latin script. But

 there is also the Greek script, the Thai script, the Katakana script, etc. ("Script" is

 an older, less advanced, form of "Script_Extensions", retained only for backwards

 compatibility.) You can test whether a character is in a particular script with, for

 example "\p{Latin}", "\p{Greek}", or "\p{Katakana}". To test if it isn't in the Balinese

 script, you would use "\P{Balinese}". (These all use "Script_Extensions" under the hood,

 as that gives better results.)

 What we have described so far is the single form of the "\p{...}" character classes.

 There is also a compound form which you may run into. These look like "\p{name=value}" or

 "\p{name:value}" (the equals sign and colon can be used interchangeably). These are more

 general than the single form, and in fact most of the single forms are just Perl-defined

 shortcuts for common compound forms. For example, the script examples in the previous

 paragraph could be written equivalently as "\p{Script_Extensions=Latin}",

 "\p{Script_Extensions:Greek}", "\p{script_extensions=katakana}", and

 "\P{script_extensions=balinese}" (case is irrelevant between the "{}" braces). You may

 never have to use the compound forms, but sometimes it is necessary, and their use can

 make your code easier to understand.

 "\X" is an abbreviation for a character class that comprises a Unicode extended grapheme

 cluster. This represents a "logical character": what appears to be a single character, Page 41/61

 but may be represented internally by more than one. As an example, using the Unicode full

 names, e.g., "A?+?COMBINING?RING" is a grapheme cluster with base character "A" and

 combining character "COMBINING?RING, which translates in Danish to "A" with the circle

 atop it, as in the word ?ngstrom.

 For the full and latest information about Unicode see the latest Unicode standard, or the

 Unicode Consortium's website <https://www.unicode.org>

 As if all those classes weren't enough, Perl also defines POSIX-style character classes.

 These have the form "[:name:]", with name the name of the POSIX class. The POSIX classes

 are "alpha", "alnum", "ascii", "cntrl", "digit", "graph", "lower", "print", "punct",

 "space", "upper", and "xdigit", and two extensions, "word" (a Perl extension to match

 "\w"), and "blank" (a GNU extension). The "/a" modifier restricts these to matching just

 in the ASCII range; otherwise they can match the same as their corresponding Perl Unicode

 classes: "[:upper:]" is the same as "\p{IsUpper}", etc. (There are some exceptions and

 gotchas with this; see perlrecharclass for a full discussion.) The "[:digit:]",

 "[:word:]", and "[:space:]" correspond to the familiar "\d", "\w", and "\s" character

 classes. To negate a POSIX class, put a '^' in front of the name, so that, e.g.,

 "[:^digit:]" corresponds to "\D" and, under Unicode, "\P{IsDigit}". The Unicode and POSIX

 character classes can be used just like "\d", with the exception that POSIX character

 classes can only be used inside of a character class:

 /\s+[abc[:digit:]xyz]\s*/; # match a,b,c,x,y,z, or a digit

 /^=item\s[[:digit:]]/; # match '=item',

 # followed by a space and a digit

 /\s+[abc\p{IsDigit}xyz]\s+/; # match a,b,c,x,y,z, or a digit

 /^=item\s\p{IsDigit}/; # match '=item',

 # followed by a space and a digit

 Whew! That is all the rest of the characters and character classes.

 Compiling and saving regular expressions

 In Part 1 we mentioned that Perl compiles a regexp into a compact sequence of opcodes.

 Thus, a compiled regexp is a data structure that can be stored once and used again and

 again. The regexp quote "qr//" does exactly that: "qr/string/" compiles the "string" as a

 regexp and transforms the result into a form that can be assigned to a variable:

 $reg = qr/foo+bar?/; # reg contains a compiled regexp

 Then $reg can be used as a regexp: Page 42/61

 $x = "fooooba";

 $x =~ $reg; # matches, just like /foo+bar?/

 $x =~ /$reg/; # same thing, alternate form

 $reg can also be interpolated into a larger regexp:

 $x =~ /(abc)?$reg/; # still matches

 As with the matching operator, the regexp quote can use different delimiters, e.g.,

 "qr!!", "qr{}" or "qr~~". Apostrophes as delimiters ("qr''") inhibit any interpolation.

 Pre-compiled regexps are useful for creating dynamic matches that don't need to be

 recompiled each time they are encountered. Using pre-compiled regexps, we write a

 "grep_step" program which greps for a sequence of patterns, advancing to the next pattern

 as soon as one has been satisfied.

 % cat > grep_step

 #!/usr/bin/perl

 # grep_step - match <number> regexps, one after the other

 # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...

 $number = shift;

 $regexp[$_] = shift foreach (0..$number-1);

 @compiled = map qr/$_/, @regexp;

 while ($line = <>) {

 if ($line =~ /$compiled[0]/) {

 print $line;

 shift @compiled;

 last unless @compiled;

 }

 }

 ^D

 % grep_step 3 shift print last grep_step

 $number = shift;

 print $line;

 last unless @compiled;

 Storing pre-compiled regexps in an array @compiled allows us to simply loop through the

 regexps without any recompilation, thus gaining flexibility without sacrificing speed.

 Composing regular expressions at runtime Page 43/61

 Backtracking is more efficient than repeated tries with different regular expressions. If

 there are several regular expressions and a match with any of them is acceptable, then it

 is possible to combine them into a set of alternatives. If the individual expressions are

 input data, this can be done by programming a join operation. We'll exploit this idea in

 an improved version of the "simple_grep" program: a program that matches multiple

 patterns:

 % cat > multi_grep

 #!/usr/bin/perl

 # multi_grep - match any of <number> regexps

 # usage: multi_grep <number> regexp1 regexp2 ... file1 file2 ...

 $number = shift;

 $regexp[$_] = shift foreach (0..$number-1);

 $pattern = join '|', @regexp;

 while ($line = <>) {

 print $line if $line =~ /$pattern/;

 }

 ^D

 % multi_grep 2 shift for multi_grep

 $number = shift;

 $regexp[$_] = shift foreach (0..$number-1);

 Sometimes it is advantageous to construct a pattern from the input that is to be analyzed

 and use the permissible values on the left hand side of the matching operations. As an

 example for this somewhat paradoxical situation, let's assume that our input contains a

 command verb which should match one out of a set of available command verbs, with the

 additional twist that commands may be abbreviated as long as the given string is unique.

 The program below demonstrates the basic algorithm.

 % cat > keymatch

 #!/usr/bin/perl

 $kwds = 'copy compare list print';

 while($cmd = <>){

 $cmd =~ s/^\s+|\s+$//g; # trim leading and trailing spaces

 if((@matches = $kwds =~ /\b$cmd\w*/g) == 1){

 print "command: '@matches'\n"; Page 44/61

 } elsif(@matches == 0){

 print "no such command: '$cmd'\n";

 } else {

 print "not unique: '$cmd' (could be one of: @matches)\n";

 }

 }

 ^D

 % keymatch

 li

 command: 'list'

 co

 not unique: 'co' (could be one of: copy compare)

 printer

 no such command: 'printer'

 Rather than trying to match the input against the keywords, we match the combined set of

 keywords against the input. The pattern matching operation "$kwds?=~?/\b($cmd\w*)/g" does

 several things at the same time. It makes sure that the given command begins where a

 keyword begins ("\b"). It tolerates abbreviations due to the added "\w*". It tells us the

 number of matches ("scalar @matches") and all the keywords that were actually matched.

 You could hardly ask for more.

 Embedding comments and modifiers in a regular expression

 Starting with this section, we will be discussing Perl's set of extended patterns. These

 are extensions to the traditional regular expression syntax that provide powerful new

 tools for pattern matching. We have already seen extensions in the form of the minimal

 matching constructs "??", "*?", "+?", "{n,m}?", "{n,}?", and "{,n}?". Most of the

 extensions below have the form "(?char...)", where the "char" is a character that

 determines the type of extension.

 The first extension is an embedded comment "(?#text)". This embeds a comment into the

 regular expression without affecting its meaning. The comment should not have any closing

 parentheses in the text. An example is

 /(?# Match an integer:)[+-]?\d+/;

 This style of commenting has been largely superseded by the raw, freeform commenting that

 is allowed with the "/x" modifier. Page 45/61

 Most modifiers, such as "/i", "/m", "/s" and "/x" (or any combination thereof) can also be

 embedded in a regexp using "(?i)", "(?m)", "(?s)", and "(?x)". For instance,

 /(?i)yes/; # match 'yes' case insensitively

 /yes/i; # same thing

 /(?x)(# freeform version of an integer regexp

 [+-]? # match an optional sign

 \d+ # match a sequence of digits

)

 /x;

 Embedded modifiers can have two important advantages over the usual modifiers. Embedded

 modifiers allow a custom set of modifiers for each regexp pattern. This is great for

 matching an array of regexps that must have different modifiers:

 $pattern[0] = '(?i)doctor';

 $pattern[1] = 'Johnson';

 ...

 while (<>) {

 foreach $patt (@pattern) {

 print if /$patt/;

 }

 }

 The second advantage is that embedded modifiers (except "/p", which modifies the entire

 regexp) only affect the regexp inside the group the embedded modifier is contained in. So

 grouping can be used to localize the modifier's effects:

 /Answer: ((?i)yes)/; # matches 'Answer: yes', 'Answer: YES', etc.

 Embedded modifiers can also turn off any modifiers already present by using, e.g.,

 "(?-i)". Modifiers can also be combined into a single expression, e.g., "(?s-i)" turns on

 single line mode and turns off case insensitivity.

 Embedded modifiers may also be added to a non-capturing grouping. "(?i-m:regexp)" is a

 non-capturing grouping that matches "regexp" case insensitively and turns off multi-line

 mode.

 Looking ahead and looking behind

 This section concerns the lookahead and lookbehind assertions. First, a little

 background. Page 46/61

 In Perl regular expressions, most regexp elements "eat up" a certain amount of string when

 they match. For instance, the regexp element "[abc]" eats up one character of the string

 when it matches, in the sense that Perl moves to the next character position in the string

 after the match. There are some elements, however, that don't eat up characters (advance

 the character position) if they match. The examples we have seen so far are the anchors.

 The anchor '^' matches the beginning of the line, but doesn't eat any characters.

 Similarly, the word boundary anchor "\b" matches wherever a character matching "\w" is

 next to a character that doesn't, but it doesn't eat up any characters itself. Anchors

 are examples of zero-width assertions: zero-width, because they consume no characters, and

 assertions, because they test some property of the string. In the context of our walk in

 the woods analogy to regexp matching, most regexp elements move us along a trail, but

 anchors have us stop a moment and check our surroundings. If the local environment checks

 out, we can proceed forward. But if the local environment doesn't satisfy us, we must

 backtrack.

 Checking the environment entails either looking ahead on the trail, looking behind, or

 both. '^' looks behind, to see that there are no characters before. '$' looks ahead, to

 see that there are no characters after. "\b" looks both ahead and behind, to see if the

 characters on either side differ in their "word-ness".

 The lookahead and lookbehind assertions are generalizations of the anchor concept.

 Lookahead and lookbehind are zero-width assertions that let us specify which characters we

 want to test for. The lookahead assertion is denoted by "(?=regexp)" or (starting in

 5.32, experimentally in 5.28) "(*pla:regexp)" or "(*positive_lookahead:regexp)"; and the

 lookbehind assertion is denoted by "(?<=fixed-regexp)" or (starting in 5.32,

 experimentally in 5.28) "(*plb:fixed-regexp)" or "(*positive_lookbehind:fixed-regexp)".

 Some examples are

 $x = "I catch the housecat 'Tom-cat' with catnip";

 $x =~ /cat(*pla:\s)/; # matches 'cat' in 'housecat'

 @catwords = ($x =~ /(?<=\s)cat\w+/g); # matches,

 # $catwords[0] = 'catch'

 # $catwords[1] = 'catnip'

 $x =~ /\bcat\b/; # matches 'cat' in 'Tom-cat'

 $x =~ /(?<=\s)cat(?=\s)/; # doesn't match; no isolated 'cat' in

 # middle of $x Page 47/61

 Note that the parentheses in these are non-capturing, since these are zero-width

 assertions. Thus in the second regexp, the substrings captured are those of the whole

 regexp itself. Lookahead can match arbitrary regexps, but lookbehind prior to 5.30

 "(?<=fixed-regexp)" only works for regexps of fixed width, i.e., a fixed number of

 characters long. Thus "(?<=(ab|bc))" is fine, but "(?<=(ab)*)" prior to 5.30 is not.

 The negated versions of the lookahead and lookbehind assertions are denoted by

 "(?!regexp)" and "(?<!fixed-regexp)" respectively. Or, starting in 5.32 (experimentally

 in 5.28), "(*nla:regexp)", "(*negative_lookahead:regexp)", "(*nlb:regexp)", or

 "(*negative_lookbehind:regexp)". They evaluate true if the regexps do not match:

 $x = "foobar";

 $x =~ /foo(?!bar)/; # doesn't match, 'bar' follows 'foo'

 $x =~ /foo(?!baz)/; # matches, 'baz' doesn't follow 'foo'

 $x =~ /(?<!\s)foo/; # matches, there is no \s before 'foo'

 Here is an example where a string containing blank-separated words, numbers and single

 dashes is to be split into its components. Using "/\s+/" alone won't work, because spaces

 are not required between dashes, or a word or a dash. Additional places for a split are

 established by looking ahead and behind:

 $str = "one two - --6-8";

 @toks = split / \s+ # a run of spaces

 | (?<=\S) (?=-) # any non-space followed by '-'

 | (?<=-) (?=\S) # a '-' followed by any non-space

 /x, $str; # @toks = qw(one two - - - 6 - 8)

 Using independent subexpressions to prevent backtracking

 Independent subexpressions (or atomic subexpressions) are regular expressions, in the

 context of a larger regular expression, that function independently of the larger regular

 expression. That is, they consume as much or as little of the string as they wish without

 regard for the ability of the larger regexp to match. Independent subexpressions are

 represented by "(?>regexp)" or (starting in 5.32, experimentally in 5.28)

 "(*atomic:regexp)". We can illustrate their behavior by first considering an ordinary

 regexp:

 $x = "ab";

 $x =~ /a*ab/; # matches

 This obviously matches, but in the process of matching, the subexpression "a*" first Page 48/61

 grabbed the 'a'. Doing so, however, wouldn't allow the whole regexp to match, so after

 backtracking, "a*" eventually gave back the 'a' and matched the empty string. Here, what

 "a*" matched was dependent on what the rest of the regexp matched.

 Contrast that with an independent subexpression:

 $x =~ /(?>a*)ab/; # doesn't match!

 The independent subexpression "(?>a*)" doesn't care about the rest of the regexp, so it

 sees an 'a' and grabs it. Then the rest of the regexp "ab" cannot match. Because

 "(?>a*)" is independent, there is no backtracking and the independent subexpression does

 not give up its 'a'. Thus the match of the regexp as a whole fails. A similar behavior

 occurs with completely independent regexps:

 $x = "ab";

 $x =~ /a*/g; # matches, eats an 'a'

 $x =~ /\Gab/g; # doesn't match, no 'a' available

 Here "/g" and "\G" create a "tag team" handoff of the string from one regexp to the other.

 Regexps with an independent subexpression are much like this, with a handoff of the string

 to the independent subexpression, and a handoff of the string back to the enclosing

 regexp.

 The ability of an independent subexpression to prevent backtracking can be quite useful.

 Suppose we want to match a non-empty string enclosed in parentheses up to two levels deep.

 Then the following regexp matches:

 $x = "abc(de(fg)h"; # unbalanced parentheses

 $x =~ /\(([^ ()]+ | \([^ ()]* \))+ \)/xx;

 The regexp matches an open parenthesis, one or more copies of an alternation, and a close

 parenthesis. The alternation is two-way, with the first alternative "[^()]+" matching a

 substring with no parentheses and the second alternative "\([^()]*\)" matching a

 substring delimited by parentheses. The problem with this regexp is that it is

 pathological: it has nested indeterminate quantifiers of the form "(a+|b)+". We discussed

 in Part 1 how nested quantifiers like this could take an exponentially long time to

 execute if no match were possible. To prevent the exponential blowup, we need to prevent

 useless backtracking at some point. This can be done by enclosing the inner quantifier as

 an independent subexpression:

 $x =~ /\(((?> [^ ()]+) | \([^ ()]* \))+ \)/xx;

 Here, "(?>[^()]+)" breaks the degeneracy of string partitioning by gobbling up as much of Page 49/61

 the string as possible and keeping it. Then match failures fail much more quickly.

 Conditional expressions

 A conditional expression is a form of if-then-else statement that allows one to choose

 which patterns are to be matched, based on some condition. There are two types of

 conditional expression: "(?(condition)yes-regexp)" and

 "(?(condition)yes-regexp|no-regexp)". "(?(condition)yes-regexp)" is like an 'if?()?{}'

 statement in Perl. If the condition is true, the yes-regexp will be matched. If the

 condition is false, the yes-regexp will be skipped and Perl will move onto the next regexp

 element. The second form is like an 'if?()?{}?else?{}' statement in Perl. If the

 condition is true, the yes-regexp will be matched, otherwise the no-regexp will be

 matched.

 The condition can have several forms. The first form is simply an integer in parentheses

 "(integer)". It is true if the corresponding backreference "\integer" matched earlier in

 the regexp. The same thing can be done with a name associated with a capture group,

 written as "(<name>)" or "('name')". The second form is a bare zero-width assertion

 "(?...)", either a lookahead, a lookbehind, or a code assertion (discussed in the next

 section). The third set of forms provides tests that return true if the expression is

 executed within a recursion ("(R)") or is being called from some capturing group,

 referenced either by number ("(R1)", "(R2)",...) or by name ("(R&name)").

 The integer or name form of the "condition" allows us to choose, with more flexibility,

 what to match based on what matched earlier in the regexp. This searches for words of the

 form "xx" or "xyyx":

 % simple_grep '^(\w+)(\w+)?(?(2)\g2\g1|\g1)$' /usr/dict/words

 beriberi

 coco

 couscous

 deed

 ...

 toot

 toto

 tutu

 The lookbehind "condition" allows, along with backreferences, an earlier part of the match

 to influence a later part of the match. For instance, Page 50/61

 /[ATGC]+(?(?<=AA)G|C)$/;

 matches a DNA sequence such that it either ends in "AAG", or some other base pair

 combination and 'C'. Note that the form is "(?(?<=AA)G|C)" and not "(?((?<=AA))G|C)"; for

 the lookahead, lookbehind or code assertions, the parentheses around the conditional are

 not needed.

 Defining named patterns

 Some regular expressions use identical subpatterns in several places. Starting with Perl

 5.10, it is possible to define named subpatterns in a section of the pattern so that they

 can be called up by name anywhere in the pattern. This syntactic pattern for this

 definition group is "(?(DEFINE)(?<name>pattern)...)". An insertion of a named pattern is

 written as "(?&name)".

 The example below illustrates this feature using the pattern for floating point numbers

 that was presented earlier on. The three subpatterns that are used more than once are the

 optional sign, the digit sequence for an integer and the decimal fraction. The "DEFINE"

 group at the end of the pattern contains their definition. Notice that the decimal

 fraction pattern is the first place where we can reuse the integer pattern.

 /^ (?&osg)\ * ((?&int)(?&dec)? | (?&dec))

 (?: [eE](?&osg)(?&int))?

 $

 (?(DEFINE)

 (?<osg>[-+]?) # optional sign

 (?<int>\d++) # integer

 (?<dec>\.(?&int)) # decimal fraction

)/x

 Recursive patterns

 This feature (introduced in Perl 5.10) significantly extends the power of Perl's pattern

 matching. By referring to some other capture group anywhere in the pattern with the

 construct "(?group-ref)", the pattern within the referenced group is used as an

 independent subpattern in place of the group reference itself. Because the group

 reference may be contained within the group it refers to, it is now possible to apply

 pattern matching to tasks that hitherto required a recursive parser.

 To illustrate this feature, we'll design a pattern that matches if a string contains a

 palindrome. (This is a word or a sentence that, while ignoring spaces, interpunctuation Page 51/61

 and case, reads the same backwards as forwards. We begin by observing that the empty

 string or a string containing just one word character is a palindrome. Otherwise it must

 have a word character up front and the same at its end, with another palindrome in

 between.

 /(?: (\w) (?...Here be a palindrome...) \g{ -1 } | \w?)/x

 Adding "\W*" at either end to eliminate what is to be ignored, we already have the full

 pattern:

 my $pp = qr/^(\W* (?: (\w) (?1) \g{-1} | \w?) \W*)$/ix;

 for $s ("saippuakauppias", "A man, a plan, a canal: Panama!"){

 print "'$s' is a palindrome\n" if $s =~ /$pp/;

 }

 In "(?...)" both absolute and relative backreferences may be used. The entire pattern can

 be reinserted with "(?R)" or "(?0)". If you prefer to name your groups, you can use

 "(?&name)" to recurse into that group.

 A bit of magic: executing Perl code in a regular expression

 Normally, regexps are a part of Perl expressions. Code evaluation expressions turn that

 around by allowing arbitrary Perl code to be a part of a regexp. A code evaluation

 expression is denoted "(?{code})", with code a string of Perl statements.

 Code expressions are zero-width assertions, and the value they return depends on their

 environment. There are two possibilities: either the code expression is used as a

 conditional in a conditional expression "(?(condition)...)", or it is not. If the code

 expression is a conditional, the code is evaluated and the result (i.e., the result of the

 last statement) is used to determine truth or falsehood. If the code expression is not

 used as a conditional, the assertion always evaluates true and the result is put into the

 special variable $^R. The variable $^R can then be used in code expressions later in the

 regexp. Here are some silly examples:

 $x = "abcdef";

 $x =~ /abc(?{print "Hi Mom!";})def/; # matches,

 # prints 'Hi Mom!'

 $x =~ /aaa(?{print "Hi Mom!";})def/; # doesn't match,

 # no 'Hi Mom!'

 Pay careful attention to the next example:

 $x =~ /abc(?{print "Hi Mom!";})ddd/; # doesn't match, Page 52/61

 # no 'Hi Mom!'

 # but why not?

 At first glance, you'd think that it shouldn't print, because obviously the "ddd" isn't

 going to match the target string. But look at this example:

 $x =~ /abc(?{print "Hi Mom!";})[dD]dd/; # doesn't match,

 # but _does_ print

 Hmm. What happened here? If you've been following along, you know that the above pattern

 should be effectively (almost) the same as the last one; enclosing the 'd' in a character

 class isn't going to change what it matches. So why does the first not print while the

 second one does?

 The answer lies in the optimizations the regexp engine makes. In the first case, all the

 engine sees are plain old characters (aside from the "?{}" construct). It's smart enough

 to realize that the string 'ddd' doesn't occur in our target string before actually

 running the pattern through. But in the second case, we've tricked it into thinking that

 our pattern is more complicated. It takes a look, sees our character class, and decides

 that it will have to actually run the pattern to determine whether or not it matches, and

 in the process of running it hits the print statement before it discovers that we don't

 have a match.

 To take a closer look at how the engine does optimizations, see the section "Pragmas and

 debugging" below.

 More fun with "?{}":

 $x =~ /(?{print "Hi Mom!";})/; # matches,

 # prints 'Hi Mom!'

 $x =~ /(?{$c = 1;})(?{print "$c";})/; # matches,

 # prints '1'

 $x =~ /(?{$c = 1;})(?{print "$^R";})/; # matches,

 # prints '1'

 The bit of magic mentioned in the section title occurs when the regexp backtracks in the

 process of searching for a match. If the regexp backtracks over a code expression and if

 the variables used within are localized using "local", the changes in the variables

 produced by the code expression are undone! Thus, if we wanted to count how many times a

 character got matched inside a group, we could use, e.g.,

 $x = "aaaa"; Page 53/61

 $count = 0; # initialize 'a' count

 $c = "bob"; # test if $c gets clobbered

 $x =~ /(?{local $c = 0;}) # initialize count

 (a # match 'a'

 (?{local $c = $c + 1;}) # increment count

)* # do this any number of times,

 aa # but match 'aa' at the end

 (?{$count = $c;}) # copy local $c var into $count

 /x;

 print "'a' count is $count, \$c variable is '$c'\n";

 This prints

 'a' count is 2, $c variable is 'bob'

 If we replace the "?(?{local?$c?=?$c?+?1;})" with "?(?{$c?=?$c?+?1;})", the variable

 changes are not undone during backtracking, and we get

 'a' count is 4, $c variable is 'bob'

 Note that only localized variable changes are undone. Other side effects of code

 expression execution are permanent. Thus

 $x = "aaaa";

 $x =~ /(a(?{print "Yow\n";}))*aa/;

 produces

 Yow

 Yow

 Yow

 Yow

 The result $^R is automatically localized, so that it will behave properly in the presence

 of backtracking.

 This example uses a code expression in a conditional to match a definite article, either

 'the' in English or 'der|die|das' in German:

 $lang = 'DE'; # use German

 ...

 $text = "das";

 print "matched\n"

 if $text =~ /(?(?{ Page 54/61

 $lang eq 'EN'; # is the language English?

 })

 the | # if so, then match 'the'

 (der|die|das) # else, match 'der|die|das'

)

 /xi;

 Note that the syntax here is "(?(?{...})yes-regexp|no-regexp)", not

 "(?((?{...}))yes-regexp|no-regexp)". In other words, in the case of a code expression, we

 don't need the extra parentheses around the conditional.

 If you try to use code expressions where the code text is contained within an interpolated

 variable, rather than appearing literally in the pattern, Perl may surprise you:

 $bar = 5;

 $pat = '(?{ 1 })';

 /foo(?{ $bar })bar/; # compiles ok, $bar not interpolated

 /foo(?{ 1 })$bar/; # compiles ok, $bar interpolated

 /foo${pat}bar/; # compile error!

 $pat = qr/(?{ $foo = 1 })/; # precompile code regexp

 /foo${pat}bar/; # compiles ok

 If a regexp has a variable that interpolates a code expression, Perl treats the regexp as

 an error. If the code expression is precompiled into a variable, however, interpolating is

 ok. The question is, why is this an error?

 The reason is that variable interpolation and code expressions together pose a security

 risk. The combination is dangerous because many programmers who write search engines

 often take user input and plug it directly into a regexp:

 $regexp = <>; # read user-supplied regexp

 $chomp $regexp; # get rid of possible newline

 $text =~ /$regexp/; # search $text for the $regexp

 If the $regexp variable contains a code expression, the user could then execute arbitrary

 Perl code. For instance, some joker could search for "system('rm?-rf?*');" to erase your

 files. In this sense, the combination of interpolation and code expressions taints your

 regexp. So by default, using both interpolation and code expressions in the same regexp

 is not allowed. If you're not concerned about malicious users, it is possible to bypass

 this security check by invoking "use?re?'eval'": Page 55/61

 use re 'eval'; # throw caution out the door

 $bar = 5;

 $pat = '(?{ 1 })';

 /foo${pat}bar/; # compiles ok

 Another form of code expression is the pattern code expression. The pattern code

 expression is like a regular code expression, except that the result of the code

 evaluation is treated as a regular expression and matched immediately. A simple example

 is

 $length = 5;

 $char = 'a';

 $x = 'aaaaabb';

 $x =~ /(??{$char x $length})/x; # matches, there are 5 of 'a'

 This final example contains both ordinary and pattern code expressions. It detects

 whether a binary string 1101010010001... has a Fibonacci spacing 0,1,1,2,3,5,... of the

 '1''s:

 $x = "1101010010001000001";

 $z0 = ''; $z1 = '0'; # initial conditions

 print "It is a Fibonacci sequence\n"

 if $x =~ /^1 # match an initial '1'

 (?:

 ((??{ $z0 })) # match some '0'

 1 # and then a '1'

 (?{ $z0 = $z1; $z1 .= $^N; })

)+ # repeat as needed

 $ # that is all there is

 /x;

 printf "Largest sequence matched was %d\n", length($z1)-length($z0);

 Remember that $^N is set to whatever was matched by the last completed capture group. This

 prints

 It is a Fibonacci sequence

 Largest sequence matched was 5

 Ha! Try that with your garden variety regexp package...

 Note that the variables $z0 and $z1 are not substituted when the regexp is compiled, as Page 56/61

 happens for ordinary variables outside a code expression. Rather, the whole code block is

 parsed as perl code at the same time as perl is compiling the code containing the literal

 regexp pattern.

 This regexp without the "/x" modifier is

 /^1(?:((??{ $z0 }))1(?{ $z0 = $z1; $z1 .= $^N; }))+$/

 which shows that spaces are still possible in the code parts. Nevertheless, when working

 with code and conditional expressions, the extended form of regexps is almost necessary in

 creating and debugging regexps.

 Backtracking control verbs

 Perl 5.10 introduced a number of control verbs intended to provide detailed control over

 the backtracking process, by directly influencing the regexp engine and by providing

 monitoring techniques. See "Special Backtracking Control Verbs" in perlre for a detailed

 description.

 Below is just one example, illustrating the control verb "(*FAIL)", which may be

 abbreviated as "(*F)". If this is inserted in a regexp it will cause it to fail, just as

 it would at some mismatch between the pattern and the string. Processing of the regexp

 continues as it would after any "normal" failure, so that, for instance, the next position

 in the string or another alternative will be tried. As failing to match doesn't preserve

 capture groups or produce results, it may be necessary to use this in combination with

 embedded code.

 %count = ();

 "supercalifragilisticexpialidocious" =~

 /([aeiou])(?{ $count{$1}++; })(*FAIL)/i;

 printf "%3d '%s'\n", $count{$_}, $_ for (sort keys %count);

 The pattern begins with a class matching a subset of letters. Whenever this matches, a

 statement like "$count{'a'}++;" is executed, incrementing the letter's counter. Then

 "(*FAIL)" does what it says, and the regexp engine proceeds according to the book: as long

 as the end of the string hasn't been reached, the position is advanced before looking for

 another vowel. Thus, match or no match makes no difference, and the regexp engine proceeds

 until the entire string has been inspected. (It's remarkable that an alternative solution

 using something like

 $count{lc($_)}++ for split('', "supercalifragilisticexpialidocious");

 printf "%3d '%s'\n", $count2{$_}, $_ for (qw{ a e i o u }); Page 57/61

 is considerably slower.)

 Pragmas and debugging

 Speaking of debugging, there are several pragmas available to control and debug regexps in

 Perl. We have already encountered one pragma in the previous section, "use?re?'eval';",

 that allows variable interpolation and code expressions to coexist in a regexp. The other

 pragmas are

 use re 'taint';

 $tainted = <>;

 @parts = ($tainted =~ /(\w+)\s+(\w+)/; # @parts is now tainted

 The "taint" pragma causes any substrings from a match with a tainted variable to be

 tainted as well. This is not normally the case, as regexps are often used to extract the

 safe bits from a tainted variable. Use "taint" when you are not extracting safe bits, but

 are performing some other processing. Both "taint" and "eval" pragmas are lexically

 scoped, which means they are in effect only until the end of the block enclosing the

 pragmas.

 use re '/m'; # or any other flags

 $multiline_string =~ /^foo/; # /m is implied

 The "re '/flags'" pragma (introduced in Perl 5.14) turns on the given regular expression

 flags until the end of the lexical scope. See "'/flags' mode" in re for more detail.

 use re 'debug';

 /^(.*)$/s; # output debugging info

 use re 'debugcolor';

 /^(.*)$/s; # output debugging info in living color

 The global "debug" and "debugcolor" pragmas allow one to get detailed debugging info about

 regexp compilation and execution. "debugcolor" is the same as debug, except the debugging

 information is displayed in color on terminals that can display termcap color sequences.

 Here is example output:

 % perl -e 'use re "debug"; "abc" =~ /a*b+c/;'

 Compiling REx 'a*b+c'

 size 9 first at 1

 1: STAR(4)

 2: EXACT <a>(0)

 4: PLUS(7) Page 58/61

 5: EXACT (0)

 7: EXACT <c>(9)

 9: END(0)

 floating 'bc' at 0..2147483647 (checking floating) minlen 2

 Guessing start of match, REx 'a*b+c' against 'abc'...

 Found floating substr 'bc' at offset 1...

 Guessed: match at offset 0

 Matching REx 'a*b+c' against 'abc'

 Setting an EVAL scope, savestack=3

 0 <> <abc> | 1: STAR

 EXACT <a> can match 1 times out of 32767...

 Setting an EVAL scope, savestack=3

 1 <a> <bc> | 4: PLUS

 EXACT can match 1 times out of 32767...

 Setting an EVAL scope, savestack=3

 2 <ab> <c> | 7: EXACT <c>

 3 <abc> <> | 9: END

 Match successful!

 Freeing REx: 'a*b+c'

 If you have gotten this far into the tutorial, you can probably guess what the different

 parts of the debugging output tell you. The first part

 Compiling REx 'a*b+c'

 size 9 first at 1

 1: STAR(4)

 2: EXACT <a>(0)

 4: PLUS(7)

 5: EXACT (0)

 7: EXACT <c>(9)

 9: END(0)

 describes the compilation stage. STAR(4) means that there is a starred object, in this

 case 'a', and if it matches, goto line 4, i.e., PLUS(7). The middle lines describe some

 heuristics and optimizations performed before a match:

 floating 'bc' at 0..2147483647 (checking floating) minlen 2 Page 59/61

 Guessing start of match, REx 'a*b+c' against 'abc'...

 Found floating substr 'bc' at offset 1...

 Guessed: match at offset 0

 Then the match is executed and the remaining lines describe the process:

 Matching REx 'a*b+c' against 'abc'

 Setting an EVAL scope, savestack=3

 0 <> <abc> | 1: STAR

 EXACT <a> can match 1 times out of 32767...

 Setting an EVAL scope, savestack=3

 1 <a> <bc> | 4: PLUS

 EXACT can match 1 times out of 32767...

 Setting an EVAL scope, savestack=3

 2 <ab> <c> | 7: EXACT <c>

 3 <abc> <> | 9: END

 Match successful!

 Freeing REx: 'a*b+c'

 Each step is of the form "n?<x>?<y>", with "<x>" the part of the string matched and "<y>"

 the part not yet matched. The "|??1:??STAR" says that Perl is at line number 1 in the

 compilation list above. See "Debugging Regular Expressions" in perldebguts for much more

 detail.

 An alternative method of debugging regexps is to embed "print" statements within the

 regexp. This provides a blow-by-blow account of the backtracking in an alternation:

 "that this" =~ m@(?{print "Start at position ", pos, "\n";})

 t(?{print "t1\n";})

 h(?{print "h1\n";})

 i(?{print "i1\n";})

 s(?{print "s1\n";})

 |

 t(?{print "t2\n";})

 h(?{print "h2\n";})

 a(?{print "a2\n";})

 t(?{print "t2\n";})

 (?{print "Done at position ", pos, "\n";}) Page 60/61

 @x;

 prints

 Start at position 0

 t1

 h1

 t2

 h2

 a2

 t2

 Done at position 4

SEE ALSO

 This is just a tutorial. For the full story on Perl regular expressions, see the perlre

 regular expressions reference page.

 For more information on the matching "m//" and substitution "s///" operators, see "Regexp

 Quote-Like Operators" in perlop. For information on the "split" operation, see "split" in

 perlfunc.

 For an excellent all-around resource on the care and feeding of regular expressions, see

 the book Mastering Regular Expressions by Jeffrey Friedl (published by O'Reilly, ISBN

 1556592-257-3).

AUTHOR AND COPYRIGHT

 Copyright (c) 2000 Mark Kvale. All rights reserved. Now maintained by Perl porters.

 This document may be distributed under the same terms as Perl itself.

 Acknowledgments

 The inspiration for the stop codon DNA example came from the ZIP code example in chapter 7

 of Mastering Regular Expressions.

 The author would like to thank Jeff Pinyan, Andrew Johnson, Peter Haworth, Ronald J

 Kimball, and Joe Smith for all their helpful comments.

perl v5.34.0 2023-11-23 PERLRETUT(1)

Page 61/61

