
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlthrtut.1'

$ man perlthrtut.1

PERLTHRTUT(1)                    Perl Programmers Reference Guide                   PERLTHRTUT(1)

NAME

       perlthrtut - Tutorial on threads in Perl

DESCRIPTION

       This tutorial describes the use of Perl interpreter threads (sometimes referred to as

       ithreads).  In this model, each thread runs in its own Perl interpreter, and any data

       sharing between threads must be explicit.  The user-level interface for ithreads uses the

       threads class.

       NOTE: There was another older Perl threading flavor called the 5.005 model that used the

       threads class.  This old model was known to have problems, is deprecated, and was removed

       for release 5.10.  You are strongly encouraged to migrate any existing 5.005 threads code

       to the new model as soon as possible.

       You can see which (or neither) threading flavour you have by running "perl -V" and looking

       at the "Platform" section.  If you have "useithreads=define" you have ithreads, if you

       have "use5005threads=define" you have 5.005 threads.  If you have neither, you don't have

       any thread support built in.  If you have both, you are in trouble.

       The threads and threads::shared modules are included in the core Perl distribution.

       Additionally, they are maintained as a separate modules on CPAN, so you can check there

       for any updates.

What Is A Thread Anyway?

       A thread is a flow of control through a program with a single execution point.

       Sounds an awful lot like a process, doesn't it? Well, it should.  Threads are one of the

       pieces of a process.  Every process has at least one thread and, up until now, every Page 1/25



       process running Perl had only one thread.  With 5.8, though, you can create extra threads.

       We're going to show you how, when, and why.

Threaded Program Models

       There are three basic ways that you can structure a threaded program.  Which model you

       choose depends on what you need your program to do.  For many non-trivial threaded

       programs, you'll need to choose different models for different pieces of your program.

   Boss/Worker

       The boss/worker model usually has one boss thread and one or more worker threads.  The

       boss thread gathers or generates tasks that need to be done, then parcels those tasks out

       to the appropriate worker thread.

       This model is common in GUI and server programs, where a main thread waits for some event

       and then passes that event to the appropriate worker threads for processing.  Once the

       event has been passed on, the boss thread goes back to waiting for another event.

       The boss thread does relatively little work.  While tasks aren't necessarily performed

       faster than with any other method, it tends to have the best user-response times.

   Work Crew

       In the work crew model, several threads are created that do essentially the same thing to

       different pieces of data.  It closely mirrors classical parallel processing and vector

       processors, where a large array of processors do the exact same thing to many pieces of

       data.

       This model is particularly useful if the system running the program will distribute

       multiple threads across different processors.  It can also be useful in ray tracing or

       rendering engines, where the individual threads can pass on interim results to give the

       user visual feedback.

   Pipeline

       The pipeline model divides up a task into a series of steps, and passes the results of one

       step on to the thread processing the next.  Each thread does one thing to each piece of

       data and passes the results to the next thread in line.

       This model makes the most sense if you have multiple processors so two or more threads

       will be executing in parallel, though it can often make sense in other contexts as well.

       It tends to keep the individual tasks small and simple, as well as allowing some parts of

       the pipeline to block (on I/O or system calls, for example) while other parts keep going.

       If you're running different parts of the pipeline on different processors you may also Page 2/25



       take advantage of the caches on each processor.

       This model is also handy for a form of recursive programming where, rather than having a

       subroutine call itself, it instead creates another thread.  Prime and Fibonacci generators

       both map well to this form of the pipeline model. (A version of a prime number generator

       is presented later on.)

What kind of threads are Perl threads?

       If you have experience with other thread implementations, you might find that things

       aren't quite what you expect.  It's very important to remember when dealing with Perl

       threads that Perl Threads Are Not X Threads for all values of X.  They aren't POSIX

       threads, or DecThreads, or Java's Green threads, or Win32 threads.  There are

       similarities, and the broad concepts are the same, but if you start looking for

       implementation details you're going to be either disappointed or confused.  Possibly both.

       This is not to say that Perl threads are completely different from everything that's ever

       come before. They're not.  Perl's threading model owes a lot to other thread models,

       especially POSIX.  Just as Perl is not C, though, Perl threads are not POSIX threads.  So

       if you find yourself looking for mutexes, or thread priorities, it's time to step back a

       bit and think about what you want to do and how Perl can do it.

       However, it is important to remember that Perl threads cannot magically do things unless

       your operating system's threads allow it. So if your system blocks the entire process on

       "sleep()", Perl usually will, as well.

       Perl Threads Are Different.

Thread-Safe Modules

       The addition of threads has changed Perl's internals substantially. There are implications

       for people who write modules with XS code or external libraries. However, since Perl data

       is not shared among threads by default, Perl modules stand a high chance of being thread-

       safe or can be made thread-safe easily.  Modules that are not tagged as thread-safe should

       be tested or code reviewed before being used in production code.

       Not all modules that you might use are thread-safe, and you should always assume a module

       is unsafe unless the documentation says otherwise.  This includes modules that are

       distributed as part of the core.  Threads are a relatively new feature, and even some of

       the standard modules aren't thread-safe.

       Even if a module is thread-safe, it doesn't mean that the module is optimized to work well

       with threads. A module could possibly be rewritten to utilize the new features in threaded Page 3/25



       Perl to increase performance in a threaded environment.

       If you're using a module that's not thread-safe for some reason, you can protect yourself

       by using it from one, and only one thread at all.  If you need multiple threads to access

       such a module, you can use semaphores and lots of programming discipline to control access

       to it.  Semaphores are covered in "Basic semaphores".

       See also "Thread-Safety of System Libraries".

Thread Basics

       The threads module provides the basic functions you need to write threaded programs.  In

       the following sections, we'll cover the basics, showing you what you need to do to create

       a threaded program.   After that, we'll go over some of the features of the threads module

       that make threaded programming easier.

   Basic Thread Support

       Thread support is a Perl compile-time option. It's something that's turned on or off when

       Perl is built at your site, rather than when your programs are compiled. If your Perl

       wasn't compiled with thread support enabled, then any attempt to use threads will fail.

       Your programs can use the Config module to check whether threads are enabled. If your

       program can't run without them, you can say something like:

           use Config;

           $Config{useithreads} or

               die('Recompile Perl with threads to run this program.');

       A possibly-threaded program using a possibly-threaded module might have code like this:

           use Config;

           use MyMod;

           BEGIN {

               if ($Config{useithreads}) {

                   # We have threads

                   require MyMod_threaded;

                   import MyMod_threaded;

               } else {

                   require MyMod_unthreaded;

                   import MyMod_unthreaded;

               }

           } Page 4/25



       Since code that runs both with and without threads is usually pretty messy, it's best to

       isolate the thread-specific code in its own module.  In our example above, that's what

       "MyMod_threaded" is, and it's only imported if we're running on a threaded Perl.

   A Note about the Examples

       In a real situation, care should be taken that all threads are finished executing before

       the program exits.  That care has not been taken in these examples in the interest of

       simplicity.  Running these examples as is will produce error messages, usually caused by

       the fact that there are still threads running when the program exits.  You should not be

       alarmed by this.

   Creating Threads

       The threads module provides the tools you need to create new threads.  Like any other

       module, you need to tell Perl that you want to use it; "use threads;" imports all the

       pieces you need to create basic threads.

       The simplest, most straightforward way to create a thread is with "create()":

           use threads;

           my $thr = threads->create(\&sub1);

           sub sub1 {

               print("In the thread\n");

           }

       The "create()" method takes a reference to a subroutine and creates a new thread that

       starts executing in the referenced subroutine.  Control then passes both to the subroutine

       and the caller.

       If you need to, your program can pass parameters to the subroutine as part of the thread

       startup.  Just include the list of parameters as part of the "threads->create()" call,

       like this:

           use threads;

           my $Param3 = 'foo';

           my $thr1 = threads->create(\&sub1, 'Param 1', 'Param 2', $Param3);

           my @ParamList = (42, 'Hello', 3.14);

           my $thr2 = threads->create(\&sub1, @ParamList);

           my $thr3 = threads->create(\&sub1, qw(Param1 Param2 Param3));

           sub sub1 {

               my @InboundParameters = @_; Page 5/25



               print("In the thread\n");

               print('Got parameters >', join('<>',@InboundParameters), "<\n");

           }

       The last example illustrates another feature of threads.  You can spawn off several

       threads using the same subroutine.  Each thread executes the same subroutine, but in a

       separate thread with a separate environment and potentially separate arguments.

       "new()" is a synonym for "create()".

   Waiting For A Thread To Exit

       Since threads are also subroutines, they can return values.  To wait for a thread to exit

       and extract any values it might return, you can use the "join()" method:

           use threads;

           my ($thr) = threads->create(\&sub1);

           my @ReturnData = $thr->join();

           print('Thread returned ', join(', ', @ReturnData), "\n");

           sub sub1 { return ('Fifty-six', 'foo', 2); }

       In the example above, the "join()" method returns as soon as the thread ends.  In addition

       to waiting for a thread to finish and gathering up any values that the thread might have

       returned, "join()" also performs any OS cleanup necessary for the thread.  That cleanup

       might be important, especially for long-running programs that spawn lots of threads.  If

       you don't want the return values and don't want to wait for the thread to finish, you

       should call the "detach()" method instead, as described next.

       NOTE: In the example above, the thread returns a list, thus necessitating that the thread

       creation call be made in list context (i.e., "my ($thr)").  See "$thr->join()" in threads

       and "THREAD CONTEXT" in threads for more details on thread context and return values.

   Ignoring A Thread

       "join()" does three things: it waits for a thread to exit, cleans up after it, and returns

       any data the thread may have produced.  But what if you're not interested in the thread's

       return values, and you don't really care when the thread finishes? All you want is for the

       thread to get cleaned up after when it's done.

       In this case, you use the "detach()" method.  Once a thread is detached, it'll run until

       it's finished; then Perl will clean up after it automatically.

           use threads;

           my $thr = threads->create(\&sub1);   # Spawn the thread Page 6/25



           $thr->detach();   # Now we officially don't care any more

           sleep(15);        # Let thread run for awhile

           sub sub1 {

               my $count = 0;

               while (1) {

                   $count++;

                   print("\$count is $count\n");

                   sleep(1);

               }

           }

       Once a thread is detached, it may not be joined, and any return data that it might have

       produced (if it was done and waiting for a join) is lost.

       "detach()" can also be called as a class method to allow a thread to detach itself:

           use threads;

           my $thr = threads->create(\&sub1);

           sub sub1 {

               threads->detach();

               # Do more work

           }

   Process and Thread Termination

       With threads one must be careful to make sure they all have a chance to run to completion,

       assuming that is what you want.

       An action that terminates a process will terminate all running threads.  die() and exit()

       have this property, and perl does an exit when the main thread exits, perhaps implicitly

       by falling off the end of your code, even if that's not what you want.

       As an example of this case, this code prints the message "Perl exited with active threads:

       2 running and unjoined":

           use threads;

           my $thr1 = threads->new(\&thrsub, "test1");

           my $thr2 = threads->new(\&thrsub, "test2");

           sub thrsub {

              my ($message) = @_;

              sleep 1; Page 7/25



              print "thread $message\n";

           }

       But when the following lines are added at the end:

           $thr1->join();

           $thr2->join();

       it prints two lines of output, a perhaps more useful outcome.

Threads And Data

       Now that we've covered the basics of threads, it's time for our next topic: Data.

       Threading introduces a couple of complications to data access that non-threaded programs

       never need to worry about.

   Shared And Unshared Data

       The biggest difference between Perl ithreads and the old 5.005 style threading, or for

       that matter, to most other threading systems out there, is that by default, no data is

       shared. When a new Perl thread is created, all the data associated with the current thread

       is copied to the new thread, and is subsequently private to that new thread!  This is

       similar in feel to what happens when a Unix process forks, except that in this case, the

       data is just copied to a different part of memory within the same process rather than a

       real fork taking place.

       To make use of threading, however, one usually wants the threads to share at least some

       data between themselves. This is done with the threads::shared module and the ":shared"

       attribute:

           use threads;

           use threads::shared;

           my $foo :shared = 1;

           my $bar = 1;

           threads->create(sub { $foo++; $bar++; })->join();

           print("$foo\n");  # Prints 2 since $foo is shared

           print("$bar\n");  # Prints 1 since $bar is not shared

       In the case of a shared array, all the array's elements are shared, and for a shared hash,

       all the keys and values are shared. This places restrictions on what may be assigned to

       shared array and hash elements: only simple values or references to shared variables are

       allowed - this is so that a private variable can't accidentally become shared. A bad

       assignment will cause the thread to die. For example: Page 8/25



           use threads;

           use threads::shared;

           my $var          = 1;

           my $svar :shared = 2;

           my %hash :shared;

           ... create some threads ...

           $hash{a} = 1;       # All threads see exists($hash{a})

                               # and $hash{a} == 1

           $hash{a} = $var;    # okay - copy-by-value: same effect as previous

           $hash{a} = $svar;   # okay - copy-by-value: same effect as previous

           $hash{a} = \$svar;  # okay - a reference to a shared variable

           $hash{a} = \$var;   # This will die

           delete($hash{a});   # okay - all threads will see !exists($hash{a})

       Note that a shared variable guarantees that if two or more threads try to modify it at the

       same time, the internal state of the variable will not become corrupted. However, there

       are no guarantees beyond this, as explained in the next section.

   Thread Pitfalls: Races

       While threads bring a new set of useful tools, they also bring a number of pitfalls.  One

       pitfall is the race condition:

           use threads;

           use threads::shared;

           my $x :shared = 1;

           my $thr1 = threads->create(\&sub1);

           my $thr2 = threads->create(\&sub2);

           $thr1->join();

           $thr2->join();

           print("$x\n");

           sub sub1 { my $foo = $x; $x = $foo + 1; }

           sub sub2 { my $bar = $x; $x = $bar + 1; }

       What do you think $x will be? The answer, unfortunately, is it depends. Both "sub1()" and

       "sub2()" access the global variable $x, once to read and once to write.  Depending on

       factors ranging from your thread implementation's scheduling algorithm to the phase of the

       moon, $x can be 2 or 3. Page 9/25



       Race conditions are caused by unsynchronized access to shared data.  Without explicit

       synchronization, there's no way to be sure that nothing has happened to the shared data

       between the time you access it and the time you update it.  Even this simple code fragment

       has the possibility of error:

           use threads;

           my $x :shared = 2;

           my $y :shared;

           my $z :shared;

           my $thr1 = threads->create(sub { $y = $x; $x = $y + 1; });

           my $thr2 = threads->create(sub { $z = $x; $x = $z + 1; });

           $thr1->join();

           $thr2->join();

       Two threads both access $x.  Each thread can potentially be interrupted at any point, or

       be executed in any order.  At the end, $x could be 3 or 4, and both $y and $z could be 2

       or 3.

       Even "$x += 5" or "$x++" are not guaranteed to be atomic.

       Whenever your program accesses data or resources that can be accessed by other threads,

       you must take steps to coordinate access or risk data inconsistency and race conditions.

       Note that Perl will protect its internals from your race conditions, but it won't protect

       you from you.

Synchronization and control

       Perl provides a number of mechanisms to coordinate the interactions between themselves and

       their data, to avoid race conditions and the like.  Some of these are designed to resemble

       the common techniques used in thread libraries such as "pthreads"; others are Perl-

       specific. Often, the standard techniques are clumsy and difficult to get right (such as

       condition waits). Where possible, it is usually easier to use Perlish techniques such as

       queues, which remove some of the hard work involved.

   Controlling access: lock()

       The "lock()" function takes a shared variable and puts a lock on it.  No other thread may

       lock the variable until the variable is unlocked by the thread holding the lock. Unlocking

       happens automatically when the locking thread exits the block that contains the call to

       the "lock()" function.  Using "lock()" is straightforward: This example has several

       threads doing some calculations in parallel, and occasionally updating a running total: Page 10/25



           use threads;

           use threads::shared;

           my $total :shared = 0;

           sub calc {

               while (1) {

                   my $result;

                   # (... do some calculations and set $result ...)

                   {

                       lock($total);  # Block until we obtain the lock

                       $total += $result;

                   } # Lock implicitly released at end of scope

                   last if $result == 0;

               }

           }

           my $thr1 = threads->create(\&calc);

           my $thr2 = threads->create(\&calc);

           my $thr3 = threads->create(\&calc);

           $thr1->join();

           $thr2->join();

           $thr3->join();

           print("total=$total\n");

       "lock()" blocks the thread until the variable being locked is available.  When "lock()"

       returns, your thread can be sure that no other thread can lock that variable until the

       block containing the lock exits.

       It's important to note that locks don't prevent access to the variable in question, only

       lock attempts.  This is in keeping with Perl's longstanding tradition of courteous

       programming, and the advisory file locking that "flock()" gives you.

       You may lock arrays and hashes as well as scalars.  Locking an array, though, will not

       block subsequent locks on array elements, just lock attempts on the array itself.

       Locks are recursive, which means it's okay for a thread to lock a variable more than once.

       The lock will last until the outermost "lock()" on the variable goes out of scope. For

       example:

           my $x :shared; Page 11/25



           doit();

           sub doit {

               {

                   {

                       lock($x); # Wait for lock

                       lock($x); # NOOP - we already have the lock

                       {

                           lock($x); # NOOP

                           {

                               lock($x); # NOOP

                               lockit_some_more();

                           }

                       }

                   } # *** Implicit unlock here ***

               }

           }

           sub lockit_some_more {

               lock($x); # NOOP

           } # Nothing happens here

       Note that there is no "unlock()" function - the only way to unlock a variable is to allow

       it to go out of scope.

       A lock can either be used to guard the data contained within the variable being locked, or

       it can be used to guard something else, like a section of code. In this latter case, the

       variable in question does not hold any useful data, and exists only for the purpose of

       being locked. In this respect, the variable behaves like the mutexes and basic semaphores

       of traditional thread libraries.

   A Thread Pitfall: Deadlocks

       Locks are a handy tool to synchronize access to data, and using them properly is the key

       to safe shared data.  Unfortunately, locks aren't without their dangers, especially when

       multiple locks are involved.  Consider the following code:

           use threads;

           my $x :shared = 4;

           my $y :shared = 'foo'; Page 12/25



           my $thr1 = threads->create(sub {

               lock($x);

               sleep(20);

               lock($y);

           });

           my $thr2 = threads->create(sub {

               lock($y);

               sleep(20);

               lock($x);

           });

       This program will probably hang until you kill it.  The only way it won't hang is if one

       of the two threads acquires both locks first.  A guaranteed-to-hang version is more

       complicated, but the principle is the same.

       The first thread will grab a lock on $x, then, after a pause during which the second

       thread has probably had time to do some work, try to grab a lock on $y.  Meanwhile, the

       second thread grabs a lock on $y, then later tries to grab a lock on $x.  The second lock

       attempt for both threads will block, each waiting for the other to release its lock.

       This condition is called a deadlock, and it occurs whenever two or more threads are trying

       to get locks on resources that the others own.  Each thread will block, waiting for the

       other to release a lock on a resource.  That never happens, though, since the thread with

       the resource is itself waiting for a lock to be released.

       There are a number of ways to handle this sort of problem.  The best way is to always have

       all threads acquire locks in the exact same order.  If, for example, you lock variables

       $x, $y, and $z, always lock $x before $y, and $y before $z.  It's also best to hold on to

       locks for as short a period of time to minimize the risks of deadlock.

       The other synchronization primitives described below can suffer from similar problems.

   Queues: Passing Data Around

       A queue is a special thread-safe object that lets you put data in one end and take it out

       the other without having to worry about synchronization issues.  They're pretty

       straightforward, and look like this:

           use threads;

           use Thread::Queue;

           my $DataQueue = Thread::Queue->new(); Page 13/25



           my $thr = threads->create(sub {

               while (my $DataElement = $DataQueue->dequeue()) {

                   print("Popped $DataElement off the queue\n");

               }

           });

           $DataQueue->enqueue(12);

           $DataQueue->enqueue("A", "B", "C");

           sleep(10);

           $DataQueue->enqueue(undef);

           $thr->join();

       You create the queue with "Thread::Queue->new()".  Then you can add lists of scalars onto

       the end with "enqueue()", and pop scalars off the front of it with "dequeue()".  A queue

       has no fixed size, and can grow as needed to hold everything pushed on to it.

       If a queue is empty, "dequeue()" blocks until another thread enqueues something.  This

       makes queues ideal for event loops and other communications between threads.

   Semaphores: Synchronizing Data Access

       Semaphores are a kind of generic locking mechanism. In their most basic form, they behave

       very much like lockable scalars, except that they can't hold data, and that they must be

       explicitly unlocked. In their advanced form, they act like a kind of counter, and can

       allow multiple threads to have the lock at any one time.

   Basic semaphores

       Semaphores have two methods, "down()" and "up()": "down()" decrements the resource count,

       while "up()" increments it. Calls to "down()" will block if the semaphore's current count

       would decrement below zero.  This program gives a quick demonstration:

           use threads;

           use Thread::Semaphore;

           my $semaphore = Thread::Semaphore->new();

           my $GlobalVariable :shared = 0;

           $thr1 = threads->create(\&sample_sub, 1);

           $thr2 = threads->create(\&sample_sub, 2);

           $thr3 = threads->create(\&sample_sub, 3);

           sub sample_sub {

               my $SubNumber = shift(@_); Page 14/25



               my $TryCount = 10;

               my $LocalCopy;

               sleep(1);

               while ($TryCount--) {

                   $semaphore->down();

                   $LocalCopy = $GlobalVariable;

                   print("$TryCount tries left for sub $SubNumber "

                        ."(\$GlobalVariable is $GlobalVariable)\n");

                   sleep(2);

                   $LocalCopy++;

                   $GlobalVariable = $LocalCopy;

                   $semaphore->up();

               }

           }

           $thr1->join();

           $thr2->join();

           $thr3->join();

       The three invocations of the subroutine all operate in sync.  The semaphore, though, makes

       sure that only one thread is accessing the global variable at once.

   Advanced Semaphores

       By default, semaphores behave like locks, letting only one thread "down()" them at a time.

       However, there are other uses for semaphores.

       Each semaphore has a counter attached to it. By default, semaphores are created with the

       counter set to one, "down()" decrements the counter by one, and "up()" increments by one.

       However, we can override any or all of these defaults simply by passing in different

       values:

           use threads;

           use Thread::Semaphore;

           my $semaphore = Thread::Semaphore->new(5);

                           # Creates a semaphore with the counter set to five

           my $thr1 = threads->create(\&sub1);

           my $thr2 = threads->create(\&sub1);

           sub sub1 { Page 15/25



               $semaphore->down(5); # Decrements the counter by five

               # Do stuff here

               $semaphore->up(5); # Increment the counter by five

           }

           $thr1->detach();

           $thr2->detach();

       If "down()" attempts to decrement the counter below zero, it blocks until the counter is

       large enough.  Note that while a semaphore can be created with a starting count of zero,

       any "up()" or "down()" always changes the counter by at least one, and so

       "$semaphore->down(0)" is the same as "$semaphore->down(1)".

       The question, of course, is why would you do something like this? Why create a semaphore

       with a starting count that's not one, or why decrement or increment it by more than one?

       The answer is resource availability.  Many resources that you want to manage access for

       can be safely used by more than one thread at once.

       For example, let's take a GUI driven program.  It has a semaphore that it uses to

       synchronize access to the display, so only one thread is ever drawing at once.  Handy, but

       of course you don't want any thread to start drawing until things are properly set up.  In

       this case, you can create a semaphore with a counter set to zero, and up it when things

       are ready for drawing.

       Semaphores with counters greater than one are also useful for establishing quotas.  Say,

       for example, that you have a number of threads that can do I/O at once.  You don't want

       all the threads reading or writing at once though, since that can potentially swamp your

       I/O channels, or deplete your process's quota of filehandles.  You can use a semaphore

       initialized to the number of concurrent I/O requests (or open files) that you want at any

       one time, and have your threads quietly block and unblock themselves.

       Larger increments or decrements are handy in those cases where a thread needs to check out

       or return a number of resources at once.

   Waiting for a Condition

       The functions "cond_wait()" and "cond_signal()" can be used in conjunction with locks to

       notify co-operating threads that a resource has become available. They are very similar in

       use to the functions found in "pthreads". However for most purposes, queues are simpler to

       use and more intuitive. See threads::shared for more details.

   Giving up control Page 16/25



       There are times when you may find it useful to have a thread explicitly give up the CPU to

       another thread.  You may be doing something processor-intensive and want to make sure that

       the user-interface thread gets called frequently.  Regardless, there are times that you

       might want a thread to give up the processor.

       Perl's threading package provides the "yield()" function that does this. "yield()" is

       pretty straightforward, and works like this:

           use threads;

           sub loop {

               my $thread = shift;

               my $foo = 50;

               while($foo--) { print("In thread $thread\n"); }

               threads->yield();

               $foo = 50;

               while($foo--) { print("In thread $thread\n"); }

           }

           my $thr1 = threads->create(\&loop, 'first');

           my $thr2 = threads->create(\&loop, 'second');

           my $thr3 = threads->create(\&loop, 'third');

       It is important to remember that "yield()" is only a hint to give up the CPU, it depends

       on your hardware, OS and threading libraries what actually happens.  On many operating

       systems, yield() is a no-op.  Therefore it is important to note that one should not build

       the scheduling of the threads around "yield()" calls. It might work on your platform but

       it won't work on another platform.

General Thread Utility Routines

       We've covered the workhorse parts of Perl's threading package, and with these tools you

       should be well on your way to writing threaded code and packages.  There are a few useful

       little pieces that didn't really fit in anyplace else.

   What Thread Am I In?

       The "threads->self()" class method provides your program with a way to get an object

       representing the thread it's currently in.  You can use this object in the same way as the

       ones returned from thread creation.

   Thread IDs

       "tid()" is a thread object method that returns the thread ID of the thread the object Page 17/25



       represents.  Thread IDs are integers, with the main thread in a program being 0.

       Currently Perl assigns a unique TID to every thread ever created in your program,

       assigning the first thread to be created a TID of 1, and increasing the TID by 1 for each

       new thread that's created.  When used as a class method, "threads->tid()" can be used by a

       thread to get its own TID.

   Are These Threads The Same?

       The "equal()" method takes two thread objects and returns true if the objects represent

       the same thread, and false if they don't.

       Thread objects also have an overloaded "==" comparison so that you can do comparison on

       them as you would with normal objects.

   What Threads Are Running?

       "threads->list()" returns a list of thread objects, one for each thread that's currently

       running and not detached.  Handy for a number of things, including cleaning up at the end

       of your program (from the main Perl thread, of course):

           # Loop through all the threads

           foreach my $thr (threads->list()) {

               $thr->join();

           }

       If some threads have not finished running when the main Perl thread ends, Perl will warn

       you about it and die, since it is impossible for Perl to clean up itself while other

       threads are running.

       NOTE:  The main Perl thread (thread 0) is in a detached state, and so does not appear in

       the list returned by "threads->list()".

A Complete Example

       Confused yet? It's time for an example program to show some of the things we've covered.

       This program finds prime numbers using threads.

          1 #!/usr/bin/perl

          2 # prime-pthread, courtesy of Tom Christiansen

          3

          4 use strict;

          5 use warnings;

          6

          7 use threads; Page 18/25



          8 use Thread::Queue;

          9

         10 sub check_num {

         11     my ($upstream, $cur_prime) = @_;

         12     my $kid;

         13     my $downstream = Thread::Queue->new();

         14     while (my $num = $upstream->dequeue()) {

         15         next unless ($num % $cur_prime);

         16         if ($kid) {

         17             $downstream->enqueue($num);

         18         } else {

         19             print("Found prime: $num\n");

         20             $kid = threads->create(\&check_num, $downstream, $num);

         21             if (! $kid) {

         22                 warn("Sorry.  Ran out of threads.\n");

         23                 last;

         24             }

         25         }

         26     }

         27     if ($kid) {

         28         $downstream->enqueue(undef);

         29         $kid->join();

         30     }

         31 }

         32

         33 my $stream = Thread::Queue->new(3..1000, undef);

         34 check_num($stream, 2);

       This program uses the pipeline model to generate prime numbers.  Each thread in the

       pipeline has an input queue that feeds numbers to be checked, a prime number that it's

       responsible for, and an output queue into which it funnels numbers that have failed the

       check.  If the thread has a number that's failed its check and there's no child thread,

       then the thread must have found a new prime number.  In that case, a new child thread is

       created for that prime and stuck on the end of the pipeline. Page 19/25



       This probably sounds a bit more confusing than it really is, so let's go through this

       program piece by piece and see what it does.  (For those of you who might be trying to

       remember exactly what a prime number is, it's a number that's only evenly divisible by

       itself and 1.)

       The bulk of the work is done by the "check_num()" subroutine, which takes a reference to

       its input queue and a prime number that it's responsible for.  After pulling in the input

       queue and the prime that the subroutine is checking (line 11), we create a new queue (line

       13) and reserve a scalar for the thread that we're likely to create later (line 12).

       The while loop from line 14 to line 26 grabs a scalar off the input queue and checks

       against the prime this thread is responsible for.  Line 15 checks to see if there's a

       remainder when we divide the number to be checked by our prime.  If there is one, the

       number must not be evenly divisible by our prime, so we need to either pass it on to the

       next thread if we've created one (line 17) or create a new thread if we haven't.

       The new thread creation is line 20.  We pass on to it a reference to the queue we've

       created, and the prime number we've found.  In lines 21 through 24, we check to make sure

       that our new thread got created, and if not, we stop checking any remaining numbers in the

       queue.

       Finally, once the loop terminates (because we got a 0 or "undef" in the queue, which

       serves as a note to terminate), we pass on the notice to our child, and wait for it to

       exit if we've created a child (lines 27 and 30).

       Meanwhile, back in the main thread, we first create a queue (line 33) and queue up all the

       numbers from 3 to 1000 for checking, plus a termination notice.  Then all we have to do to

       get the ball rolling is pass the queue and the first prime to the "check_num()" subroutine

       (line 34).

       That's how it works.  It's pretty simple; as with many Perl programs, the explanation is

       much longer than the program.

Different implementations of threads

       Some background on thread implementations from the operating system viewpoint.  There are

       three basic categories of threads: user-mode threads, kernel threads, and multiprocessor

       kernel threads.

       User-mode threads are threads that live entirely within a program and its libraries.  In

       this model, the OS knows nothing about threads.  As far as it's concerned, your process is

       just a process. Page 20/25



       This is the easiest way to implement threads, and the way most OSes start.  The big

       disadvantage is that, since the OS knows nothing about threads, if one thread blocks they

       all do.  Typical blocking activities include most system calls, most I/O, and things like

       "sleep()".

       Kernel threads are the next step in thread evolution.  The OS knows about kernel threads,

       and makes allowances for them.  The main difference between a kernel thread and a user-

       mode thread is blocking.  With kernel threads, things that block a single thread don't

       block other threads.  This is not the case with user-mode threads, where the kernel blocks

       at the process level and not the thread level.

       This is a big step forward, and can give a threaded program quite a performance boost over

       non-threaded programs.  Threads that block performing I/O, for example, won't block

       threads that are doing other things.  Each process still has only one thread running at

       once, though, regardless of how many CPUs a system might have.

       Since kernel threading can interrupt a thread at any time, they will uncover some of the

       implicit locking assumptions you may make in your program.  For example, something as

       simple as "$x = $x + 2" can behave unpredictably with kernel threads if $x is visible to

       other threads, as another thread may have changed $x between the time it was fetched on

       the right hand side and the time the new value is stored.

       Multiprocessor kernel threads are the final step in thread support.  With multiprocessor

       kernel threads on a machine with multiple CPUs, the OS may schedule two or more threads to

       run simultaneously on different CPUs.

       This can give a serious performance boost to your threaded program, since more than one

       thread will be executing at the same time.  As a tradeoff, though, any of those nagging

       synchronization issues that might not have shown with basic kernel threads will appear

       with a vengeance.

       In addition to the different levels of OS involvement in threads, different OSes (and

       different thread implementations for a particular OS) allocate CPU cycles to threads in

       different ways.

       Cooperative multitasking systems have running threads give up control if one of two things

       happen.  If a thread calls a yield function, it gives up control.  It also gives up

       control if the thread does something that would cause it to block, such as perform I/O.

       In a cooperative multitasking implementation, one thread can starve all the others for CPU

       time if it so chooses. Page 21/25



       Preemptive multitasking systems interrupt threads at regular intervals while the system

       decides which thread should run next.  In a preemptive multitasking system, one thread

       usually won't monopolize the CPU.

       On some systems, there can be cooperative and preemptive threads running simultaneously.

       (Threads running with realtime priorities often behave cooperatively, for example, while

       threads running at normal priorities behave preemptively.)

       Most modern operating systems support preemptive multitasking nowadays.

Performance considerations

       The main thing to bear in mind when comparing Perl's ithreads to other threading models is

       the fact that for each new thread created, a complete copy of all the variables and data

       of the parent thread has to be taken. Thus, thread creation can be quite expensive, both

       in terms of memory usage and time spent in creation. The ideal way to reduce these costs

       is to have a relatively short number of long-lived threads, all created fairly early on

       (before the base thread has accumulated too much data). Of course, this may not always be

       possible, so compromises have to be made. However, after a thread has been created, its

       performance and extra memory usage should be little different than ordinary code.

       Also note that under the current implementation, shared variables use a little more memory

       and are a little slower than ordinary variables.

Process-scope Changes

       Note that while threads themselves are separate execution threads and Perl data is thread-

       private unless explicitly shared, the threads can affect process-scope state, affecting

       all the threads.

       The most common example of this is changing the current working directory using "chdir()".

       One thread calls "chdir()", and the working directory of all the threads changes.

       Even more drastic example of a process-scope change is "chroot()": the root directory of

       all the threads changes, and no thread can undo it (as opposed to "chdir()").

       Further examples of process-scope changes include "umask()" and changing uids and gids.

       Thinking of mixing "fork()" and threads?  Please lie down and wait until the feeling

       passes.  Be aware that the semantics of "fork()" vary between platforms.  For example,

       some Unix systems copy all the current threads into the child process, while others only

       copy the thread that called "fork()". You have been warned!

       Similarly, mixing signals and threads may be problematic.  Implementations are platform-

       dependent, and even the POSIX semantics may not be what you expect (and Perl doesn't even Page 22/25



       give you the full POSIX API).  For example, there is no way to guarantee that a signal

       sent to a multi-threaded Perl application will get intercepted by any particular thread.

       (However, a recently added feature does provide the capability to send signals between

       threads.  See "THREAD SIGNALLING" in threads for more details.)

Thread-Safety of System Libraries

       Whether various library calls are thread-safe is outside the control of Perl.  Calls often

       suffering from not being thread-safe include: "localtime()", "gmtime()",  functions

       fetching user, group and network information (such as "getgrent()", "gethostent()",

       "getnetent()" and so on), "readdir()", "rand()", and "srand()". In general, calls that

       depend on some global external state.

       If the system Perl is compiled in has thread-safe variants of such calls, they will be

       used.  Beyond that, Perl is at the mercy of the thread-safety or -unsafety of the calls.

       Please consult your C library call documentation.

       On some platforms the thread-safe library interfaces may fail if the result buffer is too

       small (for example the user group databases may be rather large, and the reentrant

       interfaces may have to carry around a full snapshot of those databases).  Perl will start

       with a small buffer, but keep retrying and growing the result buffer until the result

       fits.  If this limitless growing sounds bad for security or memory consumption reasons you

       can recompile Perl with "PERL_REENTRANT_MAXSIZE" defined to the maximum number of bytes

       you will allow.

Conclusion

       A complete thread tutorial could fill a book (and has, many times), but with what we've

       covered in this introduction, you should be well on your way to becoming a threaded Perl

       expert.

SEE ALSO

       Annotated POD for threads:

       <https://web.archive.org/web/20171028020148/http://annocpan.org/?mode=search&field=Module&name=threads>

       Latest version of threads on CPAN: <https://metacpan.org/pod/threads>

       Annotated POD for threads::shared:

      

<https://web.archive.org/web/20171028020148/http://annocpan.org/?mode=search&field=Module&name=threads%3A%3As

hared>

       Latest version of threads::shared on CPAN: <https://metacpan.org/pod/threads::shared> Page 23/25



       Perl threads mailing list: <https://lists.perl.org/list/ithreads.html>

Bibliography

       Here's a short bibliography courtesy of J?rgen Christoffel:

   Introductory Texts

       Birrell, Andrew D. An Introduction to Programming with Threads. Digital Equipment

       Corporation, 1989, DEC-SRC Research Report #35 online as

       <https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-35.pdf> (highly recommended)

       Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A Guide to Concurrency,

       Communication, and Multithreading. Prentice-Hall, 1996.

       Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with Pthreads. Prentice Hall,

       1997, ISBN 0-13-443698-9 (a well-written introduction to threads).

       Nelson, Greg (editor). Systems Programming with Modula-3.  Prentice Hall, 1991, ISBN

       0-13-590464-1.

       Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell.  Pthreads Programming.

       O'Reilly & Associates, 1996, ISBN 156592-115-1 (covers POSIX threads).

   OS-Related References

       Boykin, Joseph, David Kirschen, Alan Langerman, and Susan LoVerso. Programming under Mach.

       Addison-Wesley, 1994, ISBN 0-201-52739-1.

       Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall, 1995, ISBN

       0-13-219908-4 (great textbook).

       Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts, 4th ed. Addison-

       Wesley, 1995, ISBN 0-201-59292-4

   Other References

       Arnold, Ken and James Gosling. The Java Programming Language, 2nd ed. Addison-Wesley,

       1998, ISBN 0-201-31006-6.

       comp.programming.threads FAQ, <http://www.serpentine.com/~bos/threads-faq/>

       Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage Collection on

       Virtually Shared Memory Architectures" in Memory Management: Proc. of the International

       Workshop IWMM 92, St. Malo, France, September 1992, Yves Bekkers and Jacques Cohen, eds.

       Springer, 1992, ISBN 3540-55940-X (real-life thread applications).

       Artur Bergman, "Where Wizards Fear To Tread", June 11, 2002,

       <http://www.perl.com/pub/a/2002/06/11/threads.html>

Acknowledgements Page 24/25



       Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy Sarathy, Ilya

       Zakharevich, Benjamin Sugars, J?rgen Christoffel, Joshua Pritikin, and Alan Burlison, for

       their help in reality-checking and polishing this article.  Big thanks to Tom Christiansen

       for his rewrite of the prime number generator.

AUTHOR

       Dan Sugalski <dan@sidhe.org>

       Slightly modified by Arthur Bergman to fit the new thread model/module.

       Reworked slightly by J?rg Walter <jwalt@cpan.org> to be more concise about thread-safety

       of Perl code.

       Rearranged slightly by Elizabeth Mattijsen <liz@dijkmat.nl> to put less emphasis on

       yield().

Copyrights

       The original version of this article originally appeared in The Perl Journal #10, and is

       copyright 1998 The Perl Journal. It appears courtesy of Jon Orwant and The Perl Journal.

       This document may be distributed under the same terms as Perl itself.

perl v5.34.0                                2023-11-23                              PERLTHRTUT(1)

Page 25/25


