
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlunicook.1'

$ man perlunicook.1

PERLUNICOOK(1) Perl Programmers Reference Guide PERLUNICOOK(1)

NAME

 perlunicook - cookbookish examples of handling Unicode in Perl

DESCRIPTION

 This manpage contains short recipes demonstrating how to handle common Unicode operations

 in Perl, plus one complete program at the end. Any undeclared variables in individual

 recipes are assumed to have a previous appropriate value in them.

EXAMPLES

 ? 0: Standard preamble

 Unless otherwise notes, all examples below require this standard preamble to work

 correctly, with the "#!" adjusted to work on your system:

 #!/usr/bin/env perl

 use utf8; # so literals and identifiers can be in UTF-8

 use v5.12; # or later to get "unicode_strings" feature

 use strict; # quote strings, declare variables

 use warnings; # on by default

 use warnings qw(FATAL utf8); # fatalize encoding glitches

 use open qw(:std :encoding(UTF-8)); # undeclared streams in UTF-8

 use charnames qw(:full :short); # unneeded in v5.16

 This does make even Unix programmers "binmode" your binary streams, or open them with

 ":raw", but that's the only way to get at them portably anyway.

 WARNING: "use autodie" (pre 2.26) and "use open" do not get along with each other.

 ? 1: Generic Unicode-savvy filter Page 1/18

 Always decompose on the way in, then recompose on the way out.

 use Unicode::Normalize;

 while (<>) {

 $_ = NFD($_); # decompose + reorder canonically

 ...

 } continue {

 print NFC($_); # recompose (where possible) + reorder canonically

 }

 ? 2: Fine-tuning Unicode warnings

 As of v5.14, Perl distinguishes three subclasses of UTF?8 warnings.

 use v5.14; # subwarnings unavailable any earlier

 no warnings "nonchar"; # the 66 forbidden non-characters

 no warnings "surrogate"; # UTF-16/CESU-8 nonsense

 no warnings "non_unicode"; # for codepoints over 0x10_FFFF

 ? 3: Declare source in utf8 for identifiers and literals

 Without the all-critical "use utf8" declaration, putting UTF?8 in your literals and

 identifiers won?t work right. If you used the standard preamble just given above, this

 already happened. If you did, you can do things like this:

 use utf8;

 my $measure = "?ngstr?m";

 my @?soft = qw(cp852 cp1251 cp1252);

 my @????????? = qw(???? ?????);

 my @? = qw(koi8-f koi8-u koi8-r);

 my $motto = "? ? ?"; # FAMILY, GROWING HEART, DROMEDARY CAMEL

 If you forget "use utf8", high bytes will be misunderstood as separate characters, and

 nothing will work right.

 ? 4: Characters and their numbers

 The "ord" and "chr" functions work transparently on all codepoints, not just on ASCII

 alone ? nor in fact, not even just on Unicode alone.

 # ASCII characters

 ord("A")

 chr(65)

 # characters from the Basic Multilingual Plane Page 2/18

 ord("?")

 chr(0x3A3)

 # beyond the BMP

 ord("?") # MATHEMATICAL ITALIC SMALL N

 chr(0x1D45B)

 # beyond Unicode! (up to MAXINT)

 ord("\x{20_0000}")

 chr(0x20_0000)

 ? 5: Unicode literals by character number

 In an interpolated literal, whether a double-quoted string or a regex, you may specify a

 character by its number using the "\x{HHHHHH}" escape.

 String: "\x{3a3}"

 Regex: /\x{3a3}/

 String: "\x{1d45b}"

 Regex: /\x{1d45b}/

 # even non-BMP ranges in regex work fine

 /[\x{1D434}-\x{1D467}]/

 ? 6: Get character name by number

 use charnames ();

 my $name = charnames::viacode(0x03A3);

 ? 7: Get character number by name

 use charnames ();

 my $number = charnames::vianame("GREEK CAPITAL LETTER SIGMA");

 ? 8: Unicode named characters

 Use the "\N{charname}" notation to get the character by that name for use in interpolated

 literals (double-quoted strings and regexes). In v5.16, there is an implicit

 use charnames qw(:full :short);

 But prior to v5.16, you must be explicit about which set of charnames you want. The

 ":full" names are the official Unicode character name, alias, or sequence, which all share

 a namespace.

 use charnames qw(:full :short latin greek);

 "\N{MATHEMATICAL ITALIC SMALL N}" # :full

 "\N{GREEK CAPITAL LETTER SIGMA}" # :full Page 3/18

 Anything else is a Perl-specific convenience abbreviation. Specify one or more scripts by

 names if you want short names that are script-specific.

 "\N{Greek:Sigma}" # :short

 "\N{ae}" # latin

 "\N{epsilon}" # greek

 The v5.16 release also supports a ":loose" import for loose matching of character names,

 which works just like loose matching of property names: that is, it disregards case,

 whitespace, and underscores:

 "\N{euro sign}" # :loose (from v5.16)

 Starting in v5.32, you can also use

 qr/\p{name=euro sign}/

 to get official Unicode named characters in regular expressions. Loose matching is always

 done for these.

 ? 9: Unicode named sequences

 These look just like character names but return multiple codepoints. Notice the %vx

 vector-print functionality in "printf".

 use charnames qw(:full);

 my $seq = "\N{LATIN CAPITAL LETTER A WITH MACRON AND GRAVE}";

 printf "U+%v04X\n", $seq;

 U+0100.0300

 ? 10: Custom named characters

 Use ":alias" to give your own lexically scoped nicknames to existing characters, or even

 to give unnamed private-use characters useful names.

 use charnames ":full", ":alias" => {

 ecute => "LATIN SMALL LETTER E WITH ACUTE",

 "APPLE LOGO" => 0xF8FF, # private use character

 };

 "\N{ecute}"

 "\N{APPLE LOGO}"

 ? 11: Names of CJK codepoints

 Sinograms like ???? come back with character names of "CJK UNIFIED IDEOGRAPH-6771" and

 "CJK UNIFIED IDEOGRAPH-4EAC", because their ?names? vary. The CPAN "Unicode::Unihan"

 module has a large database for decoding these (and a whole lot more), provided you know Page 4/18

 how to understand its output.

 # cpan -i Unicode::Unihan

 use Unicode::Unihan;

 my $str = "??";

 my $unhan = Unicode::Unihan->new;

 for my $lang (qw(Mandarin Cantonese Korean JapaneseOn JapaneseKun)) {

 printf "CJK $str in %-12s is ", $lang;

 say $unhan->$lang($str);

 }

 prints:

 CJK ?? in Mandarin is DONG1JING1

 CJK ?? in Cantonese is dung1ging1

 CJK ?? in Korean is TONGKYENG

 CJK ?? in JapaneseOn is TOUKYOU KEI KIN

 CJK ?? in JapaneseKun is HIGASHI AZUMAMIYAKO

 If you have a specific romanization scheme in mind, use the specific module:

 # cpan -i Lingua::JA::Romanize::Japanese

 use Lingua::JA::Romanize::Japanese;

 my $k2r = Lingua::JA::Romanize::Japanese->new;

 my $str = "??";

 say "Japanese for $str is ", $k2r->chars($str);

 prints

 Japanese for ?? is toukyou

 ? 12: Explicit encode/decode

 On rare occasion, such as a database read, you may be given encoded text you need to

 decode.

 use Encode qw(encode decode);

 my $chars = decode("shiftjis", $bytes, 1);

 # OR

 my $bytes = encode("MIME-Header-ISO_2022_JP", $chars, 1);

 For streams all in the same encoding, don't use encode/decode; instead set the file

 encoding when you open the file or immediately after with "binmode" as described later

 below. Page 5/18

 ? 13: Decode program arguments as utf8

 $ perl -CA ...

 or

 $ export PERL_UNICODE=A

 or

 use Encode qw(decode);

 @ARGV = map { decode('UTF-8', $_, 1) } @ARGV;

 ? 14: Decode program arguments as locale encoding

 # cpan -i Encode::Locale

 use Encode qw(locale);

 use Encode::Locale;

 # use "locale" as an arg to encode/decode

 @ARGV = map { decode(locale => $_, 1) } @ARGV;

 ? 15: Declare STD{IN,OUT,ERR} to be utf8

 Use a command-line option, an environment variable, or else call "binmode" explicitly:

 $ perl -CS ...

 or

 $ export PERL_UNICODE=S

 or

 use open qw(:std :encoding(UTF-8));

 or

 binmode(STDIN, ":encoding(UTF-8)");

 binmode(STDOUT, ":utf8");

 binmode(STDERR, ":utf8");

 ? 16: Declare STD{IN,OUT,ERR} to be in locale encoding

 # cpan -i Encode::Locale

 use Encode;

 use Encode::Locale;

 # or as a stream for binmode or open

 binmode STDIN, ":encoding(console_in)" if -t STDIN;

 binmode STDOUT, ":encoding(console_out)" if -t STDOUT;

 binmode STDERR, ":encoding(console_out)" if -t STDERR;

 ? 17: Make file I/O default to utf8 Page 6/18

 Files opened without an encoding argument will be in UTF-8:

 $ perl -CD ...

 or

 $ export PERL_UNICODE=D

 or

 use open qw(:encoding(UTF-8));

 ? 18: Make all I/O and args default to utf8

 $ perl -CSDA ...

 or

 $ export PERL_UNICODE=SDA

 or

 use open qw(:std :encoding(UTF-8));

 use Encode qw(decode);

 @ARGV = map { decode('UTF-8', $_, 1) } @ARGV;

 ? 19: Open file with specific encoding

 Specify stream encoding. This is the normal way to deal with encoded text, not by calling

 low-level functions.

 # input file

 open(my $in_file, "< :encoding(UTF-16)", "wintext");

 OR

 open(my $in_file, "<", "wintext");

 binmode($in_file, ":encoding(UTF-16)");

 THEN

 my $line = <$in_file>;

 # output file

 open($out_file, "> :encoding(cp1252)", "wintext");

 OR

 open(my $out_file, ">", "wintext");

 binmode($out_file, ":encoding(cp1252)");

 THEN

 print $out_file "some text\n";

 More layers than just the encoding can be specified here. For example, the incantation

 ":raw :encoding(UTF-16LE) :crlf" includes implicit CRLF handling. Page 7/18

 ? 20: Unicode casing

 Unicode casing is very different from ASCII casing.

 uc("henry ?") # "HENRY ?"

 uc("tsch??") # "TSCH?SS" notice ? => SS

 # both are true:

 "tsch??" =~ /TSCH?SS/i # notice ? => SS

 "???????" =~ /???????/i # notice ?,?,? sameness

 ? 21: Unicode case-insensitive comparisons

 Also available in the CPAN Unicode::CaseFold module, the new "fc" ?foldcase? function from

 v5.16 grants access to the same Unicode casefolding as the "/i" pattern modifier has

 always used:

 use feature "fc"; # fc() function is from v5.16

 # sort case-insensitively

 my @sorted = sort { fc($a) cmp fc($b) } @list;

 # both are true:

 fc("tsch??") eq fc("TSCH?SS")

 fc("???????") eq fc("???????")

 ? 22: Match Unicode linebreak sequence in regex

 A Unicode linebreak matches the two-character CRLF grapheme or any of seven vertical

 whitespace characters. Good for dealing with textfiles coming from different operating

 systems.

 \R

 s/\R/\n/g; # normalize all linebreaks to \n

 ? 23: Get character category

 Find the general category of a numeric codepoint.

 use Unicode::UCD qw(charinfo);

 my $cat = charinfo(0x3A3)->{category}; # "Lu"

 ? 24: Disabling Unicode-awareness in builtin charclasses

 Disable "\w", "\b", "\s", "\d", and the POSIX classes from working correctly on Unicode

 either in this scope, or in just one regex.

 use v5.14;

 use re "/a";

 # OR Page 8/18

 my($num) = $str =~ /(\d+)/a;

 Or use specific un-Unicode properties, like "\p{ahex}" and "\p{POSIX_Digit"}. Properties

 still work normally no matter what charset modifiers ("/d /u /l /a /aa") should be effect.

 ? 25: Match Unicode properties in regex with \p, \P

 These all match a single codepoint with the given property. Use "\P" in place of "\p" to

 match one codepoint lacking that property.

 \pL, \pN, \pS, \pP, \pM, \pZ, \pC

 \p{Sk}, \p{Ps}, \p{Lt}

 \p{alpha}, \p{upper}, \p{lower}

 \p{Latin}, \p{Greek}

 \p{script_extensions=Latin}, \p{scx=Greek}

 \p{East_Asian_Width=Wide}, \p{EA=W}

 \p{Line_Break=Hyphen}, \p{LB=HY}

 \p{Numeric_Value=4}, \p{NV=4}

 ? 26: Custom character properties

 Define at compile-time your own custom character properties for use in regexes.

 # using private-use characters

 sub In_Tengwar { "E000\tE07F\n" }

 if (/\p{In_Tengwar}/) { ... }

 # blending existing properties

 sub Is_GraecoRoman_Title {<<'END_OF_SET'}

 +utf8::IsLatin

 +utf8::IsGreek

 &utf8::IsTitle

 END_OF_SET

 if (/\p{Is_GraecoRoman_Title}/ { ... }

 ? 27: Unicode normalization

 Typically render into NFD on input and NFC on output. Using NFKC or NFKD functions

 improves recall on searches, assuming you've already done to the same text to be searched.

 Note that this is about much more than just pre- combined compatibility glyphs; it also

 reorders marks according to their canonical combining classes and weeds out singletons.

 use Unicode::Normalize;

 my $nfd = NFD($orig); Page 9/18

 my $nfc = NFC($orig);

 my $nfkd = NFKD($orig);

 my $nfkc = NFKC($orig);

 ? 28: Convert non-ASCII Unicode numerics

 Unless you?ve used "/a" or "/aa", "\d" matches more than ASCII digits only, but Perl?s

 implicit string-to-number conversion does not current recognize these. Here?s how to

 convert such strings manually.

 use v5.14; # needed for num() function

 use Unicode::UCD qw(num);

 my $str = "got ? and ???? and ? and here";

 my @nums = ();

 while ($str =~ /(\d+|\N)/g) { # not just ASCII!

 push @nums, num($1);

 }

 say "@nums"; # 12 4567 0.875

 use charnames qw(:full);

 my $nv = num("\N{RUMI DIGIT ONE}\N{RUMI DIGIT TWO}");

 ? 29: Match Unicode grapheme cluster in regex

 Programmer-visible ?characters? are codepoints matched by "/./s", but user-visible

 ?characters? are graphemes matched by "/\X/".

 # Find vowel *plus* any combining diacritics,underlining,etc.

 my $nfd = NFD($orig);

 $nfd =~ / (?=[aeiou]) \X /xi

 ? 30: Extract by grapheme instead of by codepoint (regex)

 # match and grab five first graphemes

 my($first_five) = $str =~ /^ (\X{5}) /x;

 ? 31: Extract by grapheme instead of by codepoint (substr)

 # cpan -i Unicode::GCString

 use Unicode::GCString;

 my $gcs = Unicode::GCString->new($str);

 my $first_five = $gcs->substr(0, 5);

 ? 32: Reverse string by grapheme

 Reversing by codepoint messes up diacritics, mistakenly converting "cr?me br?l?e" into Page 10/18

 "?elurb emerc" instead of into "e?l?rb em?rc"; so reverse by grapheme instead. Both

 these approaches work right no matter what normalization the string is in:

 $str = join("", reverse $str =~ /\X/g);

 # OR: cpan -i Unicode::GCString

 use Unicode::GCString;

 $str = reverse Unicode::GCString->new($str);

 ? 33: String length in graphemes

 The string "br?l?e" has six graphemes but up to eight codepoints. This counts by

 grapheme, not by codepoint:

 my $str = "br?l?e";

 my $count = 0;

 while ($str =~ /\X/g) { $count++ }

 # OR: cpan -i Unicode::GCString

 use Unicode::GCString;

 my $gcs = Unicode::GCString->new($str);

 my $count = $gcs->length;

 ? 34: Unicode column-width for printing

 Perl?s "printf", "sprintf", and "format" think all codepoints take up 1 print column, but

 many take 0 or 2. Here to show that normalization makes no difference, we print out both

 forms:

 use Unicode::GCString;

 use Unicode::Normalize;

 my @words = qw/cr?me br?l?e/;

 @words = map { NFC($_), NFD($_) } @words;

 for my $str (@words) {

 my $gcs = Unicode::GCString->new($str);

 my $cols = $gcs->columns;

 my $pad = " " x (10 - $cols);

 say str, $pad, " |";

 }

 generates this to show that it pads correctly no matter the normalization:

 cr?me |

 creme | Page 11/18

 br?l?e |

 brulee |

 ? 35: Unicode collation

 Text sorted by numeric codepoint follows no reasonable alphabetic order; use the UCA for

 sorting text.

 use Unicode::Collate;

 my $col = Unicode::Collate->new();

 my @list = $col->sort(@old_list);

 See the ucsort program from the Unicode::Tussle CPAN module for a convenient command-line

 interface to this module.

 ? 36: Case- and accent-insensitive Unicode sort

 Specify a collation strength of level 1 to ignore case and diacritics, only looking at the

 basic character.

 use Unicode::Collate;

 my $col = Unicode::Collate->new(level => 1);

 my @list = $col->sort(@old_list);

 ? 37: Unicode locale collation

 Some locales have special sorting rules.

 # either use v5.12, OR: cpan -i Unicode::Collate::Locale

 use Unicode::Collate::Locale;

 my $col = Unicode::Collate::Locale->new(locale => "de__phonebook");

 my @list = $col->sort(@old_list);

 The ucsort program mentioned above accepts a "--locale" parameter.

 ? 38: Making "cmp" work on text instead of codepoints

 Instead of this:

 @srecs = sort {

 $b->{AGE} <=> $a->{AGE}

 ||

 $a->{NAME} cmp $b->{NAME}

 } @recs;

 Use this:

 my $coll = Unicode::Collate->new();

 for my $rec (@recs) { Page 12/18

 $rec->{NAME_key} = $coll->getSortKey($rec->{NAME});

 }

 @srecs = sort {

 $b->{AGE} <=> $a->{AGE}

 ||

 $a->{NAME_key} cmp $b->{NAME_key}

 } @recs;

 ? 39: Case- and accent-insensitive comparisons

 Use a collator object to compare Unicode text by character instead of by codepoint.

 use Unicode::Collate;

 my $es = Unicode::Collate->new(

 level => 1,

 normalization => undef

);

 # now both are true:

 $es->eq("Garc?a", "GARCIA");

 $es->eq("M?rquez", "MARQUEZ");

 ? 40: Case- and accent-insensitive locale comparisons

 Same, but in a specific locale.

 my $de = Unicode::Collate::Locale->new(

 locale => "de__phonebook",

);

 # now this is true:

 $de->eq("tsch??", "TSCHUESS"); # notice ? => UE, ? => SS

 ? 41: Unicode linebreaking

 Break up text into lines according to Unicode rules.

 # cpan -i Unicode::LineBreak

 use Unicode::LineBreak;

 use charnames qw(:full);

 my $para = "This is a super\N{HYPHEN}long string. " x 20;

 my $fmt = Unicode::LineBreak->new;

 print $fmt->break($para), "\n";

 ? 42: Unicode text in DBM hashes, the tedious way Page 13/18

 Using a regular Perl string as a key or value for a DBM hash will trigger a wide character

 exception if any codepoints won?t fit into a byte. Here?s how to manually manage the

 translation:

 use DB_File;

 use Encode qw(encode decode);

 tie %dbhash, "DB_File", "pathname";

 # STORE

 # assume $uni_key and $uni_value are abstract Unicode strings

 my $enc_key = encode("UTF-8", $uni_key, 1);

 my $enc_value = encode("UTF-8", $uni_value, 1);

 $dbhash{$enc_key} = $enc_value;

 # FETCH

 # assume $uni_key holds a normal Perl string (abstract Unicode)

 my $enc_key = encode("UTF-8", $uni_key, 1);

 my $enc_value = $dbhash{$enc_key};

 my $uni_value = decode("UTF-8", $enc_value, 1);

 ? 43: Unicode text in DBM hashes, the easy way

 Here?s how to implicitly manage the translation; all encoding and decoding is done

 automatically, just as with streams that have a particular encoding attached to them:

 use DB_File;

 use DBM_Filter;

 my $dbobj = tie %dbhash, "DB_File", "pathname";

 $dbobj->Filter_Value("utf8"); # this is the magic bit

 # STORE

 # assume $uni_key and $uni_value are abstract Unicode strings

 $dbhash{$uni_key} = $uni_value;

 # FETCH

 # $uni_key holds a normal Perl string (abstract Unicode)

 my $uni_value = $dbhash{$uni_key};

 ? 44: PROGRAM: Demo of Unicode collation and printing

 Here?s a full program showing how to make use of locale-sensitive sorting, Unicode casing,

 and managing print widths when some of the characters take up zero or two columns, not

 just one column each time. When run, the following program produces this nicely aligned Page 14/18

 output:

 Cr?me Br?l?e....... ?2.00

 ?clair............. ?1.60

 Fideu?............. ?4.20

 Hamburger.......... ?6.00

 Jam?n Serrano...... ?4.45

 Lingui?a........... ?7.00

 P?t?............... ?4.15

 Pears.............. ?2.00

 P?ches............. ?2.25

 Sm?rbr?d........... ?5.75

 Sp?tzle............ ?5.50

 Xori?o............. ?3.00

 ?????.............. ?6.50

 ???............. ?4.00

 ???............. ?2.65

 ?????......... ?8.00

 ???????..... ?1.85

 ??............... ?9.99

 ??............... ?7.50

 Here's that program; tested on v5.14.

 #!/usr/bin/env perl

 # umenu - demo sorting and printing of Unicode food

 #

 # (obligatory and increasingly long preamble)

 #

 use utf8;

 use v5.14; # for locale sorting

 use strict;

 use warnings;

 use warnings qw(FATAL utf8); # fatalize encoding faults

 use open qw(:std :encoding(UTF-8)); # undeclared streams in UTF-8

 use charnames qw(:full :short); # unneeded in v5.16 Page 15/18

 # std modules

 use Unicode::Normalize; # std perl distro as of v5.8

 use List::Util qw(max); # std perl distro as of v5.10

 use Unicode::Collate::Locale; # std perl distro as of v5.14

 # cpan modules

 use Unicode::GCString; # from CPAN

 # forward defs

 sub pad($$$);

 sub colwidth(_);

 sub entitle(_);

 my %price = (

 "?????" => 6.50, # gyros

 "pears" => 2.00, # like um, pears

 "lingui?a" => 7.00, # spicy sausage, Portuguese

 "xori?o" => 3.00, # chorizo sausage, Catalan

 "hamburger" => 6.00, # burgermeister meisterburger

 "?clair" => 1.60, # dessert, French

 "sm?rbr?d" => 5.75, # sandwiches, Norwegian

 "sp?tzle" => 5.50, # Bayerisch noodles, little sparrows

 "??" => 7.50, # bao1 zi5, steamed pork buns, Mandarin

 "jam?n serrano" => 4.45, # country ham, Spanish

 "p?ches" => 2.25, # peaches, French

 "???????" => 1.85, # cream-filled pastry like eclair

 "???" => 4.00, # makgeolli, Korean rice wine

 "??" => 9.99, # sushi, Japanese

 "???" => 2.65, # omochi, rice cakes, Japanese

 "cr?me br?l?e" => 2.00, # crema catalana

 "fideu?" => 4.20, # more noodles, Valencian

 # (Catalan=fideuada)

 "p?t?" => 4.15, # gooseliver paste, French

 "?????" => 8.00, # okonomiyaki, Japanese

);

 my $width = 5 + max map { colwidth } keys %price; Page 16/18

 # So the Asian stuff comes out in an order that someone

 # who reads those scripts won't freak out over; the

 # CJK stuff will be in JIS X 0208 order that way.

 my $coll = Unicode::Collate::Locale->new(locale => "ja");

 for my $item ($coll->sort(keys %price)) {

 print pad(entitle($item), $width, ".");

 printf " ?%.2f\n", $price{$item};

 }

 sub pad($$$) {

 my($str, $width, $padchar) = @_;

 return $str . ($padchar x ($width - colwidth($str)));

 }

 sub colwidth(_) {

 my($str) = @_;

 return Unicode::GCString->new($str)->columns;

 }

 sub entitle(_) {

 my($str) = @_;

 $str =~ s{ (?=\pL)(\S) (\S*) }

 { ucfirst($1) . lc($2) }xge;

 return $str;

 }

SEE ALSO

 See these manpages, some of which are CPAN modules: perlunicode, perluniprops, perlre,

 perlrecharclass, perluniintro, perlunitut, perlunifaq, PerlIO, DB_File, DBM_Filter,

 DBM_Filter::utf8, Encode, Encode::Locale, Unicode::UCD, Unicode::Normalize,

 Unicode::GCString, Unicode::LineBreak, Unicode::Collate, Unicode::Collate::Locale,

 Unicode::Unihan, Unicode::CaseFold, Unicode::Tussle, Lingua::JA::Romanize::Japanese,

 Lingua::ZH::Romanize::Pinyin, Lingua::KO::Romanize::Hangul.

 The Unicode::Tussle CPAN module includes many programs to help with working with Unicode,

 including these programs to fully or partly replace standard utilities: tcgrep instead of

 egrep, uniquote instead of cat -v or hexdump, uniwc instead of wc, unilook instead of

 look, unifmt instead of fmt, and ucsort instead of sort. For exploring Unicode character Page 17/18

 names and character properties, see its uniprops, unichars, and uninames programs. It

 also supplies these programs, all of which are general filters that do Unicode-y things:

 unititle and unicaps; uniwide and uninarrow; unisupers and unisubs; nfd, nfc, nfkd, and

 nfkc; and uc, lc, and tc.

 Finally, see the published Unicode Standard (page numbers are from version 6.0.0),

 including these specific annexes and technical reports:

 ?3.13 Default Case Algorithms, page 113; ?4.2 Case, pages 120?122; Case Mappings, page

 166?172, especially Caseless Matching starting on page 170.

 UAX #44: Unicode Character Database

 UTS #18: Unicode Regular Expressions

 UAX #15: Unicode Normalization Forms

 UTS #10: Unicode Collation Algorithm

 UAX #29: Unicode Text Segmentation

 UAX #14: Unicode Line Breaking Algorithm

 UAX #11: East Asian Width

AUTHOR

 Tom Christiansen <tchrist@perl.com> wrote this, with occasional kibbitzing from Larry Wall

 and Jeffrey Friedl in the background.

COPYRIGHT AND LICENCE

 Copyright ? 2012 Tom Christiansen.

 This program is free software; you may redistribute it and/or modify it under the same

 terms as Perl itself.

 Most of these examples taken from the current edition of the ?Camel Book?; that is, from

 the 4?? Edition of Programming Perl, Copyright ? 2012 Tom Christiansen <et al.>,

 2012-02-13 by O?Reilly Media. The code itself is freely redistributable, and you are

 encouraged to transplant, fold, spindle, and mutilate any of the examples in this manpage

 however you please for inclusion into your own programs without any encumbrance

 whatsoever. Acknowledgement via code comment is polite but not required.

REVISION HISTORY

 v1.0.0 ? first public release, 2012-02-27

perl v5.34.0 2023-11-23 PERLUNICOOK(1)

Page 18/18

