
Rocky Enterprise Linux 9.2 Manual Pages on command 'perlvar.1'

$ man perlvar.1

PERLVAR(1) Perl Programmers Reference Guide PERLVAR(1)

NAME

 perlvar - Perl predefined variables

DESCRIPTION

 The Syntax of Variable Names

 Variable names in Perl can have several formats. Usually, they must begin with a letter

 or underscore, in which case they can be arbitrarily long (up to an internal limit of 251

 characters) and may contain letters, digits, underscores, or the special sequence "::" or

 "'". In this case, the part before the last "::" or "'" is taken to be a package

 qualifier; see perlmod. A Unicode letter that is not ASCII is not considered to be a

 letter unless "use?utf8" is in effect, and somewhat more complicated rules apply; see

 "Identifier parsing" in perldata for details.

 Perl variable names may also be a sequence of digits, a single punctuation character, or

 the two-character sequence: "^" (caret or CIRCUMFLEX ACCENT) followed by any one of the

 characters "[][A-Z^_?\]". These names are all reserved for special uses by Perl; for

 example, the all-digits names are used to hold data captured by backreferences after a

 regular expression match.

 Since Perl v5.6.0, Perl variable names may also be alphanumeric strings preceded by a

 caret. These must all be written in the form "${^Foo}"; the braces are not optional.

 "${^Foo}" denotes the scalar variable whose name is considered to be a control-"F"

 followed by two "o"'s. These variables are reserved for future special uses by Perl,

 except for the ones that begin with "^_" (caret-underscore). No name that begins with

 "^_" will acquire a special meaning in any future version of Perl; such names may Page 1/43

 therefore be used safely in programs. $^_ itself, however, is reserved.

 Perl identifiers that begin with digits or punctuation characters are exempt from the

 effects of the "package" declaration and are always forced to be in package "main"; they

 are also exempt from "strict 'vars'" errors. A few other names are also exempt in these

 ways:

 ENV STDIN

 INC STDOUT

 ARGV STDERR

 ARGVOUT

 SIG

 In particular, the special "${^_XYZ}" variables are always taken to be in package "main",

 regardless of any "package" declarations presently in scope.

SPECIAL VARIABLES

 The following names have special meaning to Perl. Most punctuation names have reasonable

 mnemonics, or analogs in the shells. Nevertheless, if you wish to use long variable

 names, you need only say:

 use English;

 at the top of your program. This aliases all the short names to the long names in the

 current package. Some even have medium names, generally borrowed from awk. For more

 info, please see English.

 Before you continue, note the sort order for variables. In general, we first list the

 variables in case-insensitive, almost-lexigraphical order (ignoring the "{" or "^"

 preceding words, as in "${^UNICODE}" or $^T), although $_ and @_ move up to the top of the

 pile. For variables with the same identifier, we list it in order of scalar, array, hash,

 and bareword.

 General Variables

 $ARG

 $_ The default input and pattern-searching space. The following pairs are

 equivalent:

 while (<>) {...} # equivalent only in while!

 while (defined($_ = <>)) {...}

 /^Subject:/

 $_ =~ /^Subject:/ Page 2/43

 tr/a-z/A-Z/

 $_ =~ tr/a-z/A-Z/

 chomp

 chomp($_)

 Here are the places where Perl will assume $_ even if you don't use it:

 ? The following functions use $_ as a default argument:

 abs, alarm, chomp, chop, chr, chroot, cos, defined, eval, evalbytes, exp, fc,

 glob, hex, int, lc, lcfirst, length, log, lstat, mkdir, oct, ord, pos, print,

 printf, quotemeta, readlink, readpipe, ref, require, reverse (in scalar context

 only), rmdir, say, sin, split (for its second argument), sqrt, stat, study, uc,

 ucfirst, unlink, unpack.

 ? All file tests ("-f", "-d") except for "-t", which defaults to STDIN. See "-X"

 in perlfunc

 ? The pattern matching operations "m//", "s///" and "tr///" (aka "y///") when

 used without an "=~" operator.

 ? The default iterator variable in a "foreach" loop if no other variable is

 supplied.

 ? The implicit iterator variable in the "grep()" and "map()" functions.

 ? The implicit variable of "given()".

 ? The default place to put the next value or input record when a "<FH>",

 "readline", "readdir" or "each" operation's result is tested by itself as the

 sole criterion of a "while" test. Outside a "while" test, this will not

 happen.

 $_ is a global variable.

 However, between perl v5.10.0 and v5.24.0, it could be used lexically by writing

 "my $_". Making $_ refer to the global $_ in the same scope was then possible

 with "our $_". This experimental feature was removed and is now a fatal error,

 but you may encounter it in older code.

 Mnemonic: underline is understood in certain operations.

 @ARG

 @_ Within a subroutine the array @_ contains the parameters passed to that

 subroutine. Inside a subroutine, @_ is the default array for the array operators

 "pop" and "shift". Page 3/43

 See perlsub.

 $LIST_SEPARATOR

 $" When an array or an array slice is interpolated into a double-quoted string or a

 similar context such as "/.../", its elements are separated by this value.

 Default is a space. For example, this:

 print "The array is: @array\n";

 is equivalent to this:

 print "The array is: " . join($", @array) . "\n";

 Mnemonic: works in double-quoted context.

 $PROCESS_ID

 $PID

 $$ The process number of the Perl running this script. Though you can set this

 variable, doing so is generally discouraged, although it can be invaluable for

 some testing purposes. It will be reset automatically across "fork()" calls.

 Note for Linux and Debian GNU/kFreeBSD users: Before Perl v5.16.0 perl would

 emulate POSIX semantics on Linux systems using LinuxThreads, a partial

 implementation of POSIX Threads that has since been superseded by the Native POSIX

 Thread Library (NPTL).

 LinuxThreads is now obsolete on Linux, and caching "getpid()" like this made

 embedding perl unnecessarily complex (since you'd have to manually update the

 value of $$), so now $$ and "getppid()" will always return the same values as the

 underlying C library.

 Debian GNU/kFreeBSD systems also used LinuxThreads up until and including the 6.0

 release, but after that moved to FreeBSD thread semantics, which are POSIX-like.

 To see if your system is affected by this discrepancy check if "getconf

 GNU_LIBPTHREAD_VERSION | grep -q NPTL" returns a false value. NTPL threads

 preserve the POSIX semantics.

 Mnemonic: same as shells.

 $PROGRAM_NAME

 $0 Contains the name of the program being executed.

 On some (but not all) operating systems assigning to $0 modifies the argument area

 that the "ps" program sees. On some platforms you may have to use special "ps"

 options or a different "ps" to see the changes. Modifying the $0 is more useful Page 4/43

 as a way of indicating the current program state than it is for hiding the program

 you're running.

 Note that there are platform-specific limitations on the maximum length of $0. In

 the most extreme case it may be limited to the space occupied by the original $0.

 In some platforms there may be arbitrary amount of padding, for example space

 characters, after the modified name as shown by "ps". In some platforms this

 padding may extend all the way to the original length of the argument area, no

 matter what you do (this is the case for example with Linux 2.2).

 Note for BSD users: setting $0 does not completely remove "perl" from the ps(1)

 output. For example, setting $0 to "foobar" may result in "perl: foobar (perl)"

 (whether both the "perl: " prefix and the " (perl)" suffix are shown depends on

 your exact BSD variant and version). This is an operating system feature, Perl

 cannot help it.

 In multithreaded scripts Perl coordinates the threads so that any thread may

 modify its copy of the $0 and the change becomes visible to ps(1) (assuming the

 operating system plays along). Note that the view of $0 the other threads have

 will not change since they have their own copies of it.

 If the program has been given to perl via the switches "-e" or "-E", $0 will

 contain the string "-e".

 On Linux as of perl v5.14.0 the legacy process name will be set with prctl(2), in

 addition to altering the POSIX name via "argv[0]" as perl has done since version

 4.000. Now system utilities that read the legacy process name such as ps, top and

 killall will recognize the name you set when assigning to $0. The string you

 supply will be cut off at 16 bytes, this is a limitation imposed by Linux.

 Mnemonic: same as sh and ksh.

 $REAL_GROUP_ID

 $GID

 $(The real gid of this process. If you are on a machine that supports membership in

 multiple groups simultaneously, gives a space separated list of groups you are in.

 The first number is the one returned by "getgid()", and the subsequent ones by

 "getgroups()", one of which may be the same as the first number.

 However, a value assigned to $(must be a single number used to set the real gid.

 So the value given by $(should not be assigned back to $(without being forced Page 5/43

 numeric, such as by adding zero. Note that this is different to the effective gid

 ($)) which does take a list.

 You can change both the real gid and the effective gid at the same time by using

 "POSIX::setgid()". Changes to $(require a check to $! to detect any possible

 errors after an attempted change.

 Mnemonic: parentheses are used to group things. The real gid is the group you

 left, if you're running setgid.

 $EFFECTIVE_GROUP_ID

 $EGID

 $) The effective gid of this process. If you are on a machine that supports

 membership in multiple groups simultaneously, gives a space separated list of

 groups you are in. The first number is the one returned by "getegid()", and the

 subsequent ones by "getgroups()", one of which may be the same as the first

 number.

 Similarly, a value assigned to $) must also be a space-separated list of numbers.

 The first number sets the effective gid, and the rest (if any) are passed to

 "setgroups()". To get the effect of an empty list for "setgroups()", just repeat

 the new effective gid; that is, to force an effective gid of 5 and an effectively

 empty "setgroups()" list, say " $) = "5 5" ".

 You can change both the effective gid and the real gid at the same time by using

 "POSIX::setgid()" (use only a single numeric argument). Changes to $) require a

 check to $! to detect any possible errors after an attempted change.

 $<, $>, $(and $) can be set only on machines that support the corresponding

 set[re][ug]id() routine. $(and $) can be swapped only on machines supporting

 "setregid()".

 Mnemonic: parentheses are used to group things. The effective gid is the group

 that's right for you, if you're running setgid.

 $REAL_USER_ID

 $UID

 $< The real uid of this process. You can change both the real uid and the effective

 uid at the same time by using "POSIX::setuid()". Since changes to $< require a

 system call, check $! after a change attempt to detect any possible errors.

 Mnemonic: it's the uid you came from, if you're running setuid. Page 6/43

 $EFFECTIVE_USER_ID

 $EUID

 $> The effective uid of this process. For example:

 $< = $>; # set real to effective uid

 ($<,$>) = ($>,$<); # swap real and effective uids

 You can change both the effective uid and the real uid at the same time by using

 "POSIX::setuid()". Changes to $> require a check to $! to detect any possible

 errors after an attempted change.

 $< and $> can be swapped only on machines supporting "setreuid()".

 Mnemonic: it's the uid you went to, if you're running setuid.

 $SUBSCRIPT_SEPARATOR

 $SUBSEP

 $; The subscript separator for multidimensional array emulation. If you refer to a

 hash element as

 $foo{$x,$y,$z}

 it really means

 $foo{join($;, $x, $y, $z)}

 But don't put

 @foo{$x,$y,$z} # a slice--note the @

 which means

 ($foo{$x},$foo{$y},$foo{$z})

 Default is "\034", the same as SUBSEP in awk. If your keys contain binary data

 there might not be any safe value for $;.

 Consider using "real" multidimensional arrays as described in perllol.

 Mnemonic: comma (the syntactic subscript separator) is a semi-semicolon.

 $a

 $b Special package variables when using "sort()", see "sort" in perlfunc. Because of

 this specialness $a and $b don't need to be declared (using "use vars", or

 "our()") even when using the "strict 'vars'" pragma. Don't lexicalize them with

 "my $a" or "my $b" if you want to be able to use them in the "sort()" comparison

 block or function.

 %ENV The hash %ENV contains your current environment. Setting a value in "ENV" changes

 the environment for any child processes you subsequently "fork()" off. Page 7/43

 As of v5.18.0, both keys and values stored in %ENV are stringified.

 my $foo = 1;

 $ENV{'bar'} = \$foo;

 if(ref $ENV{'bar'}) {

 say "Pre 5.18.0 Behaviour";

 } else {

 say "Post 5.18.0 Behaviour";

 }

 Previously, only child processes received stringified values:

 my $foo = 1;

 $ENV{'bar'} = \$foo;

 # Always printed 'non ref'

 system($^X, '-e',

 q/print (ref $ENV{'bar'} ? 'ref' : 'non ref') /);

 This happens because you can't really share arbitrary data structures with foreign

 processes.

 $OLD_PERL_VERSION

 $] The revision, version, and subversion of the Perl interpreter, represented as a

 decimal of the form 5.XXXYYY, where XXX is the version / 1e3 and YYY is the

 subversion / 1e6. For example, Perl v5.10.1 would be "5.010001".

 This variable can be used to determine whether the Perl interpreter executing a

 script is in the right range of versions:

 warn "No PerlIO!\n" if "$]" < 5.008;

 When comparing $], numeric comparison operators should be used, but the variable

 should be stringified first to avoid issues where its original numeric value is

 inaccurate.

 See also the documentation of "use VERSION" and "require VERSION" for a convenient

 way to fail if the running Perl interpreter is too old.

 See "$^V" for a representation of the Perl version as a version object, which

 allows more flexible string comparisons.

 The main advantage of $] over $^V is that it works the same on any version of

 Perl. The disadvantages are that it can't easily be compared to versions in other

 formats (e.g. literal v-strings, "v1.2.3" or version objects) and numeric Page 8/43

 comparisons are subject to the binary floating point representation; it's good for

 numeric literal version checks and bad for comparing to a variable that hasn't

 been sanity-checked.

 The $OLD_PERL_VERSION form was added in Perl v5.20.0 for historical reasons but

 its use is discouraged. (If your reason to use $] is to run code on old perls then

 referring to it as $OLD_PERL_VERSION would be self-defeating.)

 Mnemonic: Is this version of perl in the right bracket?

 $SYSTEM_FD_MAX

 $^F The maximum system file descriptor, ordinarily 2. System file descriptors are

 passed to "exec()"ed processes, while higher file descriptors are not. Also,

 during an "open()", system file descriptors are preserved even if the "open()"

 fails (ordinary file descriptors are closed before the "open()" is attempted).

 The close-on-exec status of a file descriptor will be decided according to the

 value of $^F when the corresponding file, pipe, or socket was opened, not the time

 of the "exec()".

 @F The array @F contains the fields of each line read in when autosplit mode is

 turned on. See perlrun for the -a switch. This array is package-specific, and

 must be declared or given a full package name if not in package main when running

 under "strict 'vars'".

 @INC The array @INC contains the list of places that the "do EXPR", "require", or "use"

 constructs look for their library files. It initially consists of the arguments

 to any -I command-line switches, followed by the default Perl library, probably

 /usr/local/lib/perl. Prior to Perl 5.26, "." -which represents the current

 directory, was included in @INC; it has been removed. This change in behavior is

 documented in "PERL_USE_UNSAFE_INC" and it is not recommended that "." be re-added

 to @INC. If you need to modify @INC at runtime, you should use the "use lib"

 pragma to get the machine-dependent library properly loaded as well:

 use lib '/mypath/libdir/';

 use SomeMod;

 You can also insert hooks into the file inclusion system by putting Perl code

 directly into @INC. Those hooks may be subroutine references, array references or

 blessed objects. See "require" in perlfunc for details.

 %INC The hash %INC contains entries for each filename included via the "do", "require", Page 9/43

 or "use" operators. The key is the filename you specified (with module names

 converted to pathnames), and the value is the location of the file found. The

 "require" operator uses this hash to determine whether a particular file has

 already been included.

 If the file was loaded via a hook (e.g. a subroutine reference, see "require" in

 perlfunc for a description of these hooks), this hook is by default inserted into

 %INC in place of a filename. Note, however, that the hook may have set the %INC

 entry by itself to provide some more specific info.

 $INPLACE_EDIT

 $^I The current value of the inplace-edit extension. Use "undef" to disable inplace

 editing.

 Mnemonic: value of -i switch.

 @ISA Each package contains a special array called @ISA which contains a list of that

 class's parent classes, if any. This array is simply a list of scalars, each of

 which is a string that corresponds to a package name. The array is examined when

 Perl does method resolution, which is covered in perlobj.

 To load packages while adding them to @ISA, see the parent pragma. The discouraged

 base pragma does this as well, but should not be used except when compatibility

 with the discouraged fields pragma is required.

 $^M By default, running out of memory is an untrappable, fatal error. However, if

 suitably built, Perl can use the contents of $^M as an emergency memory pool after

 "die()"ing. Suppose that your Perl were compiled with "-DPERL_EMERGENCY_SBRK" and

 used Perl's malloc. Then

 $^M = 'a' x (1 << 16);

 would allocate a 64K buffer for use in an emergency. See the INSTALL file in the

 Perl distribution for information on how to add custom C compilation flags when

 compiling perl. To discourage casual use of this advanced feature, there is no

 English long name for this variable.

 This variable was added in Perl 5.004.

 $OSNAME

 $^O The name of the operating system under which this copy of Perl was built, as

 determined during the configuration process. For examples see "PLATFORMS" in

 perlport. Page 10/43

 The value is identical to $Config{'osname'}. See also Config and the -V command-

 line switch documented in perlrun.

 In Windows platforms, $^O is not very helpful: since it is always "MSWin32", it

 doesn't tell the difference between 95/98/ME/NT/2000/XP/CE/.NET. Use

 "Win32::GetOSName()" or Win32::GetOSVersion() (see Win32 and perlport) to

 distinguish between the variants.

 This variable was added in Perl 5.003.

 %SIG The hash %SIG contains signal handlers for signals. For example:

 sub handler { # 1st argument is signal name

 my($sig) = @_;

 print "Caught a SIG$sig--shutting down\n";

 close(LOG);

 exit(0);

 }

 $SIG{'INT'} = \&handler;

 $SIG{'QUIT'} = \&handler;

 ...

 $SIG{'INT'} = 'DEFAULT'; # restore default action

 $SIG{'QUIT'} = 'IGNORE'; # ignore SIGQUIT

 Using a value of 'IGNORE' usually has the effect of ignoring the signal, except

 for the "CHLD" signal. See perlipc for more about this special case. Using an

 empty string or "undef" as the value has the same effect as 'DEFAULT'.

 Here are some other examples:

 $SIG{"PIPE"} = "Plumber"; # assumes main::Plumber (not

 # recommended)

 $SIG{"PIPE"} = \&Plumber; # just fine; assume current

 # Plumber

 $SIG{"PIPE"} = *Plumber; # somewhat esoteric

 $SIG{"PIPE"} = Plumber(); # oops, what did Plumber()

 # return??

 Be sure not to use a bareword as the name of a signal handler, lest you

 inadvertently call it.

 Using a string that doesn't correspond to any existing function or a glob that Page 11/43

 doesn't contain a code slot is equivalent to 'IGNORE', but a warning is emitted

 when the handler is being called (the warning is not emitted for the internal

 hooks described below).

 If your system has the "sigaction()" function then signal handlers are installed

 using it. This means you get reliable signal handling.

 The default delivery policy of signals changed in Perl v5.8.0 from immediate (also

 known as "unsafe") to deferred, also known as "safe signals". See perlipc for

 more information.

 Certain internal hooks can be also set using the %SIG hash. The routine indicated

 by $SIG{__WARN__} is called when a warning message is about to be printed. The

 warning message is passed as the first argument. The presence of a "__WARN__"

 hook causes the ordinary printing of warnings to "STDERR" to be suppressed. You

 can use this to save warnings in a variable, or turn warnings into fatal errors,

 like this:

 local $SIG{__WARN__} = sub { die $_[0] };

 eval $proggie;

 As the 'IGNORE' hook is not supported by "__WARN__", its effect is the same as

 using 'DEFAULT'. You can disable warnings using the empty subroutine:

 local $SIG{__WARN__} = sub {};

 The routine indicated by $SIG{__DIE__} is called when a fatal exception is about

 to be thrown. The error message is passed as the first argument. When a

 "__DIE__" hook routine returns, the exception processing continues as it would

 have in the absence of the hook, unless the hook routine itself exits via a "goto

 &sub", a loop exit, or a "die()". The "__DIE__" handler is explicitly disabled

 during the call, so that you can die from a "__DIE__" handler. Similarly for

 "__WARN__".

 The $SIG{__DIE__} hook is called even inside an "eval()". It was never intended to

 happen this way, but an implementation glitch made this possible. This used to be

 deprecated, as it allowed strange action at a distance like rewriting a pending

 exception in $@. Plans to rectify this have been scrapped, as users found that

 rewriting a pending exception is actually a useful feature, and not a bug.

 The $SIG{__DIE__} doesn't support 'IGNORE'; it has the same effect as 'DEFAULT'.

 "__DIE__"/"__WARN__" handlers are very special in one respect: they may be called Page 12/43

 to report (probable) errors found by the parser. In such a case the parser may be

 in inconsistent state, so any attempt to evaluate Perl code from such a handler

 will probably result in a segfault. This means that warnings or errors that

 result from parsing Perl should be used with extreme caution, like this:

 require Carp if defined $^S;

 Carp::confess("Something wrong") if defined &Carp::confess;

 die "Something wrong, but could not load Carp to give "

 . "backtrace...\n\t"

 . "To see backtrace try starting Perl with -MCarp switch";

 Here the first line will load "Carp" unless it is the parser who called the

 handler. The second line will print backtrace and die if "Carp" was available.

 The third line will be executed only if "Carp" was not available.

 Having to even think about the $^S variable in your exception handlers is simply

 wrong. $SIG{__DIE__} as currently implemented invites grievous and difficult to

 track down errors. Avoid it and use an "END{}" or CORE::GLOBAL::die override

 instead.

 See "die" in perlfunc, "warn" in perlfunc, "eval" in perlfunc, and warnings for

 additional information.

 $BASETIME

 $^T The time at which the program began running, in seconds since the epoch (beginning

 of 1970). The values returned by the -M, -A, and -C filetests are based on this

 value.

 $PERL_VERSION

 $^V The revision, version, and subversion of the Perl interpreter, represented as a

 version object.

 This variable first appeared in perl v5.6.0; earlier versions of perl will see an

 undefined value. Before perl v5.10.0 $^V was represented as a v-string rather

 than a version object.

 $^V can be used to determine whether the Perl interpreter executing a script is in

 the right range of versions. For example:

 warn "Hashes not randomized!\n" if !$^V or $^V lt v5.8.1

 While version objects overload stringification, to portably convert $^V into its

 string representation, use "sprintf()"'s "%vd" conversion, which works for both Page 13/43

 v-strings or version objects:

 printf "version is v%vd\n", $^V; # Perl's version

 See the documentation of "use VERSION" and "require VERSION" for a convenient way

 to fail if the running Perl interpreter is too old.

 See also "$]" for a decimal representation of the Perl version.

 The main advantage of $^V over $] is that, for Perl v5.10.0 or later, it overloads

 operators, allowing easy comparison against other version representations (e.g.

 decimal, literal v-string, "v1.2.3", or objects). The disadvantage is that prior

 to v5.10.0, it was only a literal v-string, which can't be easily printed or

 compared, whereas the behavior of $] is unchanged on all versions of Perl.

 Mnemonic: use ^V for a version object.

 ${^WIN32_SLOPPY_STAT}

 This variable no longer has any function.

 This variable was added in Perl v5.10.0 and removed in Perl v5.34.0.

 $EXECUTABLE_NAME

 $^X The name used to execute the current copy of Perl, from C's "argv[0]" or (where

 supported) /proc/self/exe.

 Depending on the host operating system, the value of $^X may be a relative or

 absolute pathname of the perl program file, or may be the string used to invoke

 perl but not the pathname of the perl program file. Also, most operating systems

 permit invoking programs that are not in the PATH environment variable, so there

 is no guarantee that the value of $^X is in PATH. For VMS, the value may or may

 not include a version number.

 You usually can use the value of $^X to re-invoke an independent copy of the same

 perl that is currently running, e.g.,

 @first_run = `$^X -le "print int rand 100 for 1..100"`;

 But recall that not all operating systems support forking or capturing of the

 output of commands, so this complex statement may not be portable.

 It is not safe to use the value of $^X as a path name of a file, as some operating

 systems that have a mandatory suffix on executable files do not require use of the

 suffix when invoking a command. To convert the value of $^X to a path name, use

 the following statements:

 # Build up a set of file names (not command names). Page 14/43

 use Config;

 my $this_perl = $^X;

 if ($^O ne 'VMS') {

 $this_perl .= $Config{_exe}

 unless $this_perl =~ m/$Config{_exe}$/i;

 }

 Because many operating systems permit anyone with read access to the Perl program

 file to make a copy of it, patch the copy, and then execute the copy, the

 security-conscious Perl programmer should take care to invoke the installed copy

 of perl, not the copy referenced by $^X. The following statements accomplish this

 goal, and produce a pathname that can be invoked as a command or referenced as a

 file.

 use Config;

 my $secure_perl_path = $Config{perlpath};

 if ($^O ne 'VMS') {

 $secure_perl_path .= $Config{_exe}

 unless $secure_perl_path =~ m/$Config{_exe}$/i;

 }

 Variables related to regular expressions

 Most of the special variables related to regular expressions are side effects. Perl sets

 these variables when it has a successful match, so you should check the match result

 before using them. For instance:

 if(/P(A)TT(ER)N/) {

 print "I found $1 and $2\n";

 }

 These variables are read-only and dynamically-scoped, unless we note otherwise.

 The dynamic nature of the regular expression variables means that their value is limited

 to the block that they are in, as demonstrated by this bit of code:

 my $outer = 'Wallace and Grommit';

 my $inner = 'Mutt and Jeff';

 my $pattern = qr/(\S+) and (\S+)/;

 sub show_n { print "\$1 is $1; \$2 is $2\n" }

 { Page 15/43

 OUTER:

 show_n() if $outer =~ m/$pattern/;

 INNER: {

 show_n() if $inner =~ m/$pattern/;

 }

 show_n();

 }

 The output shows that while in the "OUTER" block, the values of $1 and $2 are from the

 match against $outer. Inside the "INNER" block, the values of $1 and $2 are from the

 match against $inner, but only until the end of the block (i.e. the dynamic scope). After

 the "INNER" block completes, the values of $1 and $2 return to the values for the match

 against $outer even though we have not made another match:

 $1 is Wallace; $2 is Grommit

 $1 is Mutt; $2 is Jeff

 $1 is Wallace; $2 is Grommit

 Performance issues

 Traditionally in Perl, any use of any of the three variables "$`", $& or "$'" (or their

 "use English" equivalents) anywhere in the code, caused all subsequent successful pattern

 matches to make a copy of the matched string, in case the code might subsequently access

 one of those variables. This imposed a considerable performance penalty across the whole

 program, so generally the use of these variables has been discouraged.

 In Perl 5.6.0 the "@-" and "@+" dynamic arrays were introduced that supply the indices of

 successful matches. So you could for example do this:

 $str =~ /pattern/;

 print $`, $&, $'; # bad: performance hit

 print # good: no performance hit

 substr($str, 0, $-[0]),

 substr($str, $-[0], $+[0]-$-[0]),

 substr($str, $+[0]);

 In Perl 5.10.0 the "/p" match operator flag and the "${^PREMATCH}", "${^MATCH}", and

 "${^POSTMATCH}" variables were introduced, that allowed you to suffer the penalties only

 on patterns marked with "/p".

 In Perl 5.18.0 onwards, perl started noting the presence of each of the three variables Page 16/43

 separately, and only copied that part of the string required; so in

 $`; $&; "abcdefgh" =~ /d/

 perl would only copy the "abcd" part of the string. That could make a big difference in

 something like

 $str = 'x' x 1_000_000;

 $&; # whoops

 $str =~ /x/g # one char copied a million times, not a million chars

 In Perl 5.20.0 a new copy-on-write system was enabled by default, which finally fixes all

 performance issues with these three variables, and makes them safe to use anywhere.

 The "Devel::NYTProf" and "Devel::FindAmpersand" modules can help you find uses of these

 problematic match variables in your code.

 $<digits> ($1, $2, ...)

 Contains the subpattern from the corresponding set of capturing parentheses from

 the last successful pattern match, not counting patterns matched in nested blocks

 that have been exited already.

 Note there is a distinction between a capture buffer which matches the empty

 string a capture buffer which is optional. Eg, "(x?)" and "(x)?" The latter may be

 undef, the former not.

 These variables are read-only and dynamically-scoped.

 Mnemonic: like \digits.

 @{^CAPTURE}

 An array which exposes the contents of the capture buffers, if any, of the last

 successful pattern match, not counting patterns matched in nested blocks that have

 been exited already.

 Note that the 0 index of @{^CAPTURE} is equivalent to $1, the 1 index is

 equivalent to $2, etc.

 if ("foal"=~/(.)(.)(.)(.)/) {

 print join "-", @{^CAPTURE};

 }

 should output "f-o-a-l".

 See also "$<digits> ($1, $2, ...)", "%{^CAPTURE}" and "%{^CAPTURE_ALL}".

 Note that unlike most other regex magic variables there is no single letter

 equivalent to "@{^CAPTURE}". Page 17/43

 This variable was added in 5.25.7

 $MATCH

 $& The string matched by the last successful pattern match (not counting any matches

 hidden within a BLOCK or "eval()" enclosed by the current BLOCK).

 See "Performance issues" above for the serious performance implications of using

 this variable (even once) in your code.

 This variable is read-only and dynamically-scoped.

 Mnemonic: like "&" in some editors.

 ${^MATCH}

 This is similar to $& ($MATCH) except that it does not incur the performance

 penalty associated with that variable.

 See "Performance issues" above.

 In Perl v5.18 and earlier, it is only guaranteed to return a defined value when

 the pattern was compiled or executed with the "/p" modifier. In Perl v5.20, the

 "/p" modifier does nothing, so "${^MATCH}" does the same thing as $MATCH.

 This variable was added in Perl v5.10.0.

 This variable is read-only and dynamically-scoped.

 $PREMATCH

 $` The string preceding whatever was matched by the last successful pattern match,

 not counting any matches hidden within a BLOCK or "eval" enclosed by the current

 BLOCK.

 See "Performance issues" above for the serious performance implications of using

 this variable (even once) in your code.

 This variable is read-only and dynamically-scoped.

 Mnemonic: "`" often precedes a quoted string.

 ${^PREMATCH}

 This is similar to "$`" ($PREMATCH) except that it does not incur the performance

 penalty associated with that variable.

 See "Performance issues" above.

 In Perl v5.18 and earlier, it is only guaranteed to return a defined value when

 the pattern was compiled or executed with the "/p" modifier. In Perl v5.20, the

 "/p" modifier does nothing, so "${^PREMATCH}" does the same thing as $PREMATCH.

 This variable was added in Perl v5.10.0. Page 18/43

 This variable is read-only and dynamically-scoped.

 $POSTMATCH

 $' The string following whatever was matched by the last successful pattern match

 (not counting any matches hidden within a BLOCK or "eval()" enclosed by the

 current BLOCK). Example:

 local $_ = 'abcdefghi';

 /def/;

 print "$`:$&:$'\n"; # prints abc:def:ghi

 See "Performance issues" above for the serious performance implications of using

 this variable (even once) in your code.

 This variable is read-only and dynamically-scoped.

 Mnemonic: "'" often follows a quoted string.

 ${^POSTMATCH}

 This is similar to "$'" ($POSTMATCH) except that it does not incur the performance

 penalty associated with that variable.

 See "Performance issues" above.

 In Perl v5.18 and earlier, it is only guaranteed to return a defined value when

 the pattern was compiled or executed with the "/p" modifier. In Perl v5.20, the

 "/p" modifier does nothing, so "${^POSTMATCH}" does the same thing as $POSTMATCH.

 This variable was added in Perl v5.10.0.

 This variable is read-only and dynamically-scoped.

 $LAST_PAREN_MATCH

 $+ The text matched by the highest used capture group of the last successful search

 pattern. It is logically equivalent to the highest numbered capture variable ($1,

 $2, ...) which has a defined value.

 This is useful if you don't know which one of a set of alternative patterns

 matched. For example:

 /Version: (.*)|Revision: (.*)/ && ($rev = $+);

 This variable is read-only and dynamically-scoped.

 Mnemonic: be positive and forward looking.

 $LAST_SUBMATCH_RESULT

 $^N The text matched by the used group most-recently closed (i.e. the group with the

 rightmost closing parenthesis) of the last successful search pattern. This is Page 19/43

 subtly different from $+. For example in

 "ab" =~ /^((.)(.))$/

 we have

 $1,$^N have the value "ab"

 $2 has the value "a"

 $3,$+ have the value "b"

 This is primarily used inside "(?{...})" blocks for examining text recently

 matched. For example, to effectively capture text to a variable (in addition to

 $1, $2, etc.), replace "(...)" with

 (?:(...)(?{ $var = $^N }))

 By setting and then using $var in this way relieves you from having to worry about

 exactly which numbered set of parentheses they are.

 This variable was added in Perl v5.8.0.

 Mnemonic: the (possibly) Nested parenthesis that most recently closed.

 @LAST_MATCH_END

 @+ This array holds the offsets of the ends of the last successful submatches in the

 currently active dynamic scope. $+[0] is the offset into the string of the end of

 the entire match. This is the same value as what the "pos" function returns when

 called on the variable that was matched against. The nth element of this array

 holds the offset of the nth submatch, so $+[1] is the offset past where $1 ends,

 $+[2] the offset past where $2 ends, and so on. You can use $#+ to determine how

 many subgroups were in the last successful match. See the examples given for the

 "@-" variable.

 This variable was added in Perl v5.6.0.

 %{^CAPTURE}

 %LAST_PAREN_MATCH

 %+ Similar to "@+", the "%+" hash allows access to the named capture buffers, should

 they exist, in the last successful match in the currently active dynamic scope.

 For example, $+{foo} is equivalent to $1 after the following match:

 'foo' =~ /(?<foo>foo)/;

 The keys of the "%+" hash list only the names of buffers that have captured (and

 that are thus associated to defined values).

 If multiple distinct capture groups have the same name, then $+{NAME} will refer Page 20/43

 to the leftmost defined group in the match.

 The underlying behaviour of "%+" is provided by the Tie::Hash::NamedCapture

 module.

 Note: "%-" and "%+" are tied views into a common internal hash associated with the

 last successful regular expression. Therefore mixing iterative access to them via

 "each" may have unpredictable results. Likewise, if the last successful match

 changes, then the results may be surprising.

 This variable was added in Perl v5.10.0. The "%{^CAPTURE}" alias was added in

 5.25.7.

 This variable is read-only and dynamically-scoped.

 @LAST_MATCH_START

 @- "$-[0]" is the offset of the start of the last successful match. "$-[n]" is the

 offset of the start of the substring matched by n-th subpattern, or undef if the

 subpattern did not match.

 Thus, after a match against $_, $& coincides with "substr $_, $-[0], $+[0] -

 $-[0]". Similarly, $n coincides with "substr $_, $-[n], $+[n] - $-[n]" if "$-[n]"

 is defined, and $+ coincides with "substr $_, $-[$#-], $+[$#-] - $-[$#-]". One

 can use "$#-" to find the last matched subgroup in the last successful match.

 Contrast with $#+, the number of subgroups in the regular expression. Compare

 with "@+".

 This array holds the offsets of the beginnings of the last successful submatches

 in the currently active dynamic scope. "$-[0]" is the offset into the string of

 the beginning of the entire match. The nth element of this array holds the offset

 of the nth submatch, so "$-[1]" is the offset where $1 begins, "$-[2]" the offset

 where $2 begins, and so on.

 After a match against some variable $var:

 "$`" is the same as "substr($var, 0, $-[0])"

 $& is the same as "substr($var, $-[0], $+[0] - $-[0])"

 "$'" is the same as "substr($var, $+[0])"

 $1 is the same as "substr($var, $-[1], $+[1] - $-[1])"

 $2 is the same as "substr($var, $-[2], $+[2] - $-[2])"

 $3 is the same as "substr($var, $-[3], $+[3] - $-[3])"

 This variable was added in Perl v5.6.0. Page 21/43

 %{^CAPTURE_ALL}

 %- Similar to "%+", this variable allows access to the named capture groups in the

 last successful match in the currently active dynamic scope. To each capture

 group name found in the regular expression, it associates a reference to an array

 containing the list of values captured by all buffers with that name (should there

 be several of them), in the order where they appear.

 Here's an example:

 if ('1234' =~ /(?<A>1)(?2)(?<A>3)(?4)/) {

 foreach my $bufname (sort keys %-) {

 my $ary = $-{$bufname};

 foreach my $idx (0..$#$ary) {

 print "\$-{$bufname}[$idx] : ",

 (defined($ary->[$idx])

 ? "'$ary->[$idx]'"

 : "undef"),

 "\n";

 }

 }

 }

 would print out:

 $-{A}[0] : '1'

 $-{A}[1] : '3'

 $-{B}[0] : '2'

 $-{B}[1] : '4'

 The keys of the "%-" hash correspond to all buffer names found in the regular

 expression.

 The behaviour of "%-" is implemented via the Tie::Hash::NamedCapture module.

 Note: "%-" and "%+" are tied views into a common internal hash associated with the

 last successful regular expression. Therefore mixing iterative access to them via

 "each" may have unpredictable results. Likewise, if the last successful match

 changes, then the results may be surprising.

 This variable was added in Perl v5.10.0. The "%{^CAPTURE_ALL}" alias was added in

 5.25.7. Page 22/43

 This variable is read-only and dynamically-scoped.

 $LAST_REGEXP_CODE_RESULT

 $^R The result of evaluation of the last successful "(?{ code })" regular expression

 assertion (see perlre). May be written to.

 This variable was added in Perl 5.005.

 ${^RE_COMPILE_RECURSION_LIMIT}

 The current value giving the maximum number of open but unclosed parenthetical

 groups there may be at any point during a regular expression compilation. The

 default is currently 1000 nested groups. You may adjust it depending on your

 needs and the amount of memory available.

 This variable was added in Perl v5.30.0.

 ${^RE_DEBUG_FLAGS}

 The current value of the regex debugging flags. Set to 0 for no debug output even

 when the "re 'debug'" module is loaded. See re for details.

 This variable was added in Perl v5.10.0.

 ${^RE_TRIE_MAXBUF}

 Controls how certain regex optimisations are applied and how much memory they

 utilize. This value by default is 65536 which corresponds to a 512kB temporary

 cache. Set this to a higher value to trade memory for speed when matching large

 alternations. Set it to a lower value if you want the optimisations to be as

 conservative of memory as possible but still occur, and set it to a negative value

 to prevent the optimisation and conserve the most memory. Under normal situations

 this variable should be of no interest to you.

 This variable was added in Perl v5.10.0.

 Variables related to filehandles

 Variables that depend on the currently selected filehandle may be set by calling an

 appropriate object method on the "IO::Handle" object, although this is less efficient than

 using the regular built-in variables. (Summary lines below for this contain the word

 HANDLE.) First you must say

 use IO::Handle;

 after which you may use either

 method HANDLE EXPR

 or more safely, Page 23/43

 HANDLE->method(EXPR)

 Each method returns the old value of the "IO::Handle" attribute. The methods each take an

 optional EXPR, which, if supplied, specifies the new value for the "IO::Handle" attribute

 in question. If not supplied, most methods do nothing to the current value--except for

 "autoflush()", which will assume a 1 for you, just to be different.

 Because loading in the "IO::Handle" class is an expensive operation, you should learn how

 to use the regular built-in variables.

 A few of these variables are considered "read-only". This means that if you try to assign

 to this variable, either directly or indirectly through a reference, you'll raise a run-

 time exception.

 You should be very careful when modifying the default values of most special variables

 described in this document. In most cases you want to localize these variables before

 changing them, since if you don't, the change may affect other modules which rely on the

 default values of the special variables that you have changed. This is one of the correct

 ways to read the whole file at once:

 open my $fh, "<", "foo" or die $!;

 local $/; # enable localized slurp mode

 my $content = <$fh>;

 close $fh;

 But the following code is quite bad:

 open my $fh, "<", "foo" or die $!;

 undef $/; # enable slurp mode

 my $content = <$fh>;

 close $fh;

 since some other module, may want to read data from some file in the default "line mode",

 so if the code we have just presented has been executed, the global value of $/ is now

 changed for any other code running inside the same Perl interpreter.

 Usually when a variable is localized you want to make sure that this change affects the

 shortest scope possible. So unless you are already inside some short "{}" block, you

 should create one yourself. For example:

 my $content = '';

 open my $fh, "<", "foo" or die $!;

 { Page 24/43

 local $/;

 $content = <$fh>;

 }

 close $fh;

 Here is an example of how your own code can go broken:

 for (1..3){

 $\ = "\r\n";

 nasty_break();

 print "$_";

 }

 sub nasty_break {

 $\ = "\f";

 # do something with $_

 }

 You probably expect this code to print the equivalent of

 "1\r\n2\r\n3\r\n"

 but instead you get:

 "1\f2\f3\f"

 Why? Because "nasty_break()" modifies "$\" without localizing it first. The value you set

 in "nasty_break()" is still there when you return. The fix is to add "local()" so the

 value doesn't leak out of "nasty_break()":

 local $\ = "\f";

 It's easy to notice the problem in such a short example, but in more complicated code you

 are looking for trouble if you don't localize changes to the special variables.

 $ARGV Contains the name of the current file when reading from "<>".

 @ARGV The array @ARGV contains the command-line arguments intended for the script.

 $#ARGV is generally the number of arguments minus one, because $ARGV[0] is the

 first argument, not the program's command name itself. See "$0" for the command

 name.

 ARGV The special filehandle that iterates over command-line filenames in @ARGV.

 Usually written as the null filehandle in the angle operator "<>". Note that

 currently "ARGV" only has its magical effect within the "<>" operator; elsewhere

 it is just a plain filehandle corresponding to the last file opened by "<>". In Page 25/43

 particular, passing "*ARGV" as a parameter to a function that expects a

 filehandle may not cause your function to automatically read the contents of all

 the files in @ARGV.

 ARGVOUT The special filehandle that points to the currently open output file when doing

 edit-in-place processing with -i. Useful when you have to do a lot of inserting

 and don't want to keep modifying $_. See perlrun for the -i switch.

 IO::Handle->output_field_separator(EXPR)

 $OUTPUT_FIELD_SEPARATOR

 $OFS

 $, The output field separator for the print operator. If defined, this value is

 printed between each of print's arguments. Default is "undef".

 You cannot call "output_field_separator()" on a handle, only as a static method.

 See IO::Handle.

 Mnemonic: what is printed when there is a "," in your print statement.

 HANDLE->input_line_number(EXPR)

 $INPUT_LINE_NUMBER

 $NR

 $. Current line number for the last filehandle accessed.

 Each filehandle in Perl counts the number of lines that have been read from it.

 (Depending on the value of $/, Perl's idea of what constitutes a line may not

 match yours.) When a line is read from a filehandle (via "readline()" or "<>"),

 or when "tell()" or "seek()" is called on it, $. becomes an alias to the line

 counter for that filehandle.

 You can adjust the counter by assigning to $., but this will not actually move the

 seek pointer. Localizing $. will not localize the filehandle's line count.

 Instead, it will localize perl's notion of which filehandle $. is currently

 aliased to.

 $. is reset when the filehandle is closed, but not when an open filehandle is

 reopened without an intervening "close()". For more details, see "I/O Operators"

 in perlop. Because "<>" never does an explicit close, line numbers increase

 across "ARGV" files (but see examples in "eof" in perlfunc).

 You can also use "HANDLE->input_line_number(EXPR)" to access the line counter for

 a given filehandle without having to worry about which handle you last accessed. Page 26/43

 Mnemonic: many programs use "." to mean the current line number.

 IO::Handle->input_record_separator(EXPR)

 $INPUT_RECORD_SEPARATOR

 $RS

 $/ The input record separator, newline by default. This influences Perl's idea of

 what a "line" is. Works like awk's RS variable, including treating empty lines as

 a terminator if set to the null string (an empty line cannot contain any spaces or

 tabs). You may set it to a multi-character string to match a multi-character

 terminator, or to "undef" to read through the end of file. Setting it to "\n\n"

 means something slightly different than setting to "", if the file contains

 consecutive empty lines. Setting to "" will treat two or more consecutive empty

 lines as a single empty line. Setting to "\n\n" will blindly assume that the next

 input character belongs to the next paragraph, even if it's a newline.

 local $/; # enable "slurp" mode

 local $_ = <FH>; # whole file now here

 s/\n[\t]+/ /g;

 Remember: the value of $/ is a string, not a regex. awk has to be better for

 something. :-)

 Setting $/ to an empty string -- the so-called paragraph mode -- merits special

 attention. When $/ is set to "" and the entire file is read in with that setting,

 any sequence of one or more consecutive newlines at the beginning of the file is

 discarded. With the exception of the final record in the file, each sequence of

 characters ending in two or more newlines is treated as one record and is read in

 to end in exactly two newlines. If the last record in the file ends in zero or

 one consecutive newlines, that record is read in with that number of newlines. If

 the last record ends in two or more consecutive newlines, it is read in with two

 newlines like all preceding records.

 Suppose we wrote the following string to a file:

 my $string = "\n\n\n";

 $string .= "alpha beta\ngamma delta\n\n\n";

 $string .= "epsilon zeta eta\n\n";

 $string .= "theta\n";

 my $file = 'simple_file.txt'; Page 27/43

 open my $OUT, '>', $file or die;

 print $OUT $string;

 close $OUT or die;

 Now we read that file in paragraph mode:

 local $/ = ""; # paragraph mode

 open my $IN, '<', $file or die;

 my @records = <$IN>;

 close $IN or die;

 @records will consist of these 3 strings:

 (

 "alpha beta\ngamma delta\n\n",

 "epsilon zeta eta\n\n",

 "theta\n",

)

 Setting $/ to a reference to an integer, scalar containing an integer, or scalar

 that's convertible to an integer will attempt to read records instead of lines,

 with the maximum record size being the referenced integer number of characters.

 So this:

 local $/ = \32768; # or \"32768", or \$var_containing_32768

 open my $fh, "<", $myfile or die $!;

 local $_ = <$fh>;

 will read a record of no more than 32768 characters from $fh. If you're not

 reading from a record-oriented file (or your OS doesn't have record-oriented

 files), then you'll likely get a full chunk of data with every read. If a record

 is larger than the record size you've set, you'll get the record back in pieces.

 Trying to set the record size to zero or less is deprecated and will cause $/ to

 have the value of "undef", which will cause reading in the (rest of the) whole

 file.

 As of 5.19.9 setting $/ to any other form of reference will throw a fatal

 exception. This is in preparation for supporting new ways to set $/ in the future.

 On VMS only, record reads bypass PerlIO layers and any associated buffering, so

 you must not mix record and non-record reads on the same filehandle. Record mode

 mixes with line mode only when the same buffering layer is in use for both modes. Page 28/43

 You cannot call "input_record_separator()" on a handle, only as a static method.

 See IO::Handle.

 See also "Newlines" in perlport. Also see "$.".

 Mnemonic: / delimits line boundaries when quoting poetry.

 IO::Handle->output_record_separator(EXPR)

 $OUTPUT_RECORD_SEPARATOR

 $ORS

 $\ The output record separator for the print operator. If defined, this value is

 printed after the last of print's arguments. Default is "undef".

 You cannot call "output_record_separator()" on a handle, only as a static method.

 See IO::Handle.

 Mnemonic: you set "$\" instead of adding "\n" at the end of the print. Also, it's

 just like $/, but it's what you get "back" from Perl.

 HANDLE->autoflush(EXPR)

 $OUTPUT_AUTOFLUSH

 $| If set to nonzero, forces a flush right away and after every write or print on the

 currently selected output channel. Default is 0 (regardless of whether the

 channel is really buffered by the system or not; $| tells you only whether you've

 asked Perl explicitly to flush after each write). STDOUT will typically be line

 buffered if output is to the terminal and block buffered otherwise. Setting this

 variable is useful primarily when you are outputting to a pipe or socket, such as

 when you are running a Perl program under rsh and want to see the output as it's

 happening. This has no effect on input buffering. See "getc" in perlfunc for

 that. See "select" in perlfunc on how to select the output channel. See also

 IO::Handle.

 Mnemonic: when you want your pipes to be piping hot.

 ${^LAST_FH}

 This read-only variable contains a reference to the last-read filehandle. This is

 set by "<HANDLE>", "readline", "tell", "eof" and "seek". This is the same handle

 that $. and "tell" and "eof" without arguments use. It is also the handle used

 when Perl appends ", <STDIN> line 1" to an error or warning message.

 This variable was added in Perl v5.18.0.

 Variables related to formats Page 29/43

 The special variables for formats are a subset of those for filehandles. See perlform for

 more information about Perl's formats.

 $ACCUMULATOR

 $^A The current value of the "write()" accumulator for "format()" lines. A format

 contains "formline()" calls that put their result into $^A. After calling its

 format, "write()" prints out the contents of $^A and empties. So you never really

 see the contents of $^A unless you call "formline()" yourself and then look at it.

 See perlform and "formline PICTURE,LIST" in perlfunc.

 IO::Handle->format_formfeed(EXPR)

 $FORMAT_FORMFEED

 $^L What formats output as a form feed. The default is "\f".

 You cannot call "format_formfeed()" on a handle, only as a static method. See

 IO::Handle.

 HANDLE->format_page_number(EXPR)

 $FORMAT_PAGE_NUMBER

 $% The current page number of the currently selected output channel.

 Mnemonic: "%" is page number in nroff.

 HANDLE->format_lines_left(EXPR)

 $FORMAT_LINES_LEFT

 $- The number of lines left on the page of the currently selected output channel.

 Mnemonic: lines_on_page - lines_printed.

 IO::Handle->format_line_break_characters EXPR

 $FORMAT_LINE_BREAK_CHARACTERS

 $: The current set of characters after which a string may be broken to fill

 continuation fields (starting with "^") in a format. The default is "?\n-", to

 break on a space, newline, or a hyphen.

 You cannot call "format_line_break_characters()" on a handle, only as a static

 method. See IO::Handle.

 Mnemonic: a "colon" in poetry is a part of a line.

 HANDLE->format_lines_per_page(EXPR)

 $FORMAT_LINES_PER_PAGE

 $= The current page length (printable lines) of the currently selected output

 channel. The default is 60. Page 30/43

 Mnemonic: = has horizontal lines.

 HANDLE->format_top_name(EXPR)

 $FORMAT_TOP_NAME

 $^ The name of the current top-of-page format for the currently selected output

 channel. The default is the name of the filehandle with "_TOP" appended. For

 example, the default format top name for the "STDOUT" filehandle is "STDOUT_TOP".

 Mnemonic: points to top of page.

 HANDLE->format_name(EXPR)

 $FORMAT_NAME

 $~ The name of the current report format for the currently selected output channel.

 The default format name is the same as the filehandle name. For example, the

 default format name for the "STDOUT" filehandle is just "STDOUT".

 Mnemonic: brother to $^.

 Error Variables

 The variables $@, $!, $^E, and $? contain information about different types of error

 conditions that may appear during execution of a Perl program. The variables are shown

 ordered by the "distance" between the subsystem which reported the error and the Perl

 process. They correspond to errors detected by the Perl interpreter, C library, operating

 system, or an external program, respectively.

 To illustrate the differences between these variables, consider the following Perl

 expression, which uses a single-quoted string. After execution of this statement, perl

 may have set all four special error variables:

 eval q{

 open my $pipe, "/cdrom/install |" or die $!;

 my @res = <$pipe>;

 close $pipe or die "bad pipe: $?, $!";

 };

 When perl executes the "eval()" expression, it translates the "open()", "<PIPE>", and

 "close" calls in the C run-time library and thence to the operating system kernel. perl

 sets $! to the C library's "errno" if one of these calls fails.

 $@ is set if the string to be "eval"-ed did not compile (this may happen if "open" or

 "close" were imported with bad prototypes), or if Perl code executed during evaluation

 "die()"d. In these cases the value of $@ is the compile error, or the argument to "die" Page 31/43

 (which will interpolate $! and $?). (See also Fatal, though.)

 Under a few operating systems, $^E may contain a more verbose error indicator, such as in

 this case, "CDROM tray not closed." Systems that do not support extended error messages

 leave $^E the same as $!.

 Finally, $? may be set to a non-0 value if the external program /cdrom/install fails. The

 upper eight bits reflect specific error conditions encountered by the program (the

 program's "exit()" value). The lower eight bits reflect mode of failure, like signal

 death and core dump information. See wait(2) for details. In contrast to $! and $^E,

 which are set only if an error condition is detected, the variable $? is set on each

 "wait" or pipe "close", overwriting the old value. This is more like $@, which on every

 "eval()" is always set on failure and cleared on success.

 For more details, see the individual descriptions at $@, $!, $^E, and $?.

 ${^CHILD_ERROR_NATIVE}

 The native status returned by the last pipe close, backtick ("``") command,

 successful call to "wait()" or "waitpid()", or from the "system()" operator. On

 POSIX-like systems this value can be decoded with the WIFEXITED, WEXITSTATUS,

 WIFSIGNALED, WTERMSIG, WIFSTOPPED, and WSTOPSIG functions provided by the POSIX

 module.

 Under VMS this reflects the actual VMS exit status; i.e. it is the same as $? when

 the pragma "use vmsish 'status'" is in effect.

 This variable was added in Perl v5.10.0.

 $EXTENDED_OS_ERROR

 $^E Error information specific to the current operating system. At the moment, this

 differs from "$!" under only VMS, OS/2, and Win32 (and for MacPerl). On all other

 platforms, $^E is always just the same as $!.

 Under VMS, $^E provides the VMS status value from the last system error. This is

 more specific information about the last system error than that provided by $!.

 This is particularly important when $! is set to EVMSERR.

 Under OS/2, $^E is set to the error code of the last call to OS/2 API either via

 CRT, or directly from perl.

 Under Win32, $^E always returns the last error information reported by the Win32

 call "GetLastError()" which describes the last error from within the Win32 API.

 Most Win32-specific code will report errors via $^E. ANSI C and Unix-like calls Page 32/43

 set "errno" and so most portable Perl code will report errors via $!.

 Caveats mentioned in the description of "$!" generally apply to $^E, also.

 This variable was added in Perl 5.003.

 Mnemonic: Extra error explanation.

 $EXCEPTIONS_BEING_CAUGHT

 $^S Current state of the interpreter.

 $^S State

 --------- -------------------------------------

 undef Parsing module, eval, or main program

 true (1) Executing an eval

 false (0) Otherwise

 The first state may happen in $SIG{__DIE__} and $SIG{__WARN__} handlers.

 The English name $EXCEPTIONS_BEING_CAUGHT is slightly misleading, because the

 "undef" value does not indicate whether exceptions are being caught, since

 compilation of the main program does not catch exceptions.

 This variable was added in Perl 5.004.

 $WARNING

 $^W The current value of the warning switch, initially true if -w was used, false

 otherwise, but directly modifiable.

 See also warnings.

 Mnemonic: related to the -w switch.

 ${^WARNING_BITS}

 The current set of warning checks enabled by the "use warnings" pragma. It has

 the same scoping as the $^H and "%^H" variables. The exact values are considered

 internal to the warnings pragma and may change between versions of Perl.

 This variable was added in Perl v5.6.0.

 $OS_ERROR

 $ERRNO

 $! When referenced, $! retrieves the current value of the C "errno" integer variable.

 If $! is assigned a numerical value, that value is stored in "errno". When

 referenced as a string, $! yields the system error string corresponding to

 "errno".

 Many system or library calls set "errno" if they fail, to indicate the cause of Page 33/43

 failure. They usually do not set "errno" to zero if they succeed and may set

 "errno" to a non-zero value on success. This means "errno", hence $!, is

 meaningful only immediately after a failure:

 if (open my $fh, "<", $filename) {

 # Here $! is meaningless.

 ...

 }

 else {

 # ONLY here is $! meaningful.

 ...

 # Already here $! might be meaningless.

 }

 # Since here we might have either success or failure,

 # $! is meaningless.

 Here, meaningless means that $! may be unrelated to the outcome of the "open()"

 operator. Assignment to $! is similarly ephemeral. It can be used immediately

 before invoking the "die()" operator, to set the exit value, or to inspect the

 system error string corresponding to error n, or to restore $! to a meaningful

 state.

 Perl itself may set "errno" to a non-zero on failure even if no system call is

 performed.

 Mnemonic: What just went bang?

 %OS_ERROR

 %ERRNO

 %! Each element of "%!" has a true value only if $! is set to that value. For

 example, $!{ENOENT} is true if and only if the current value of $! is "ENOENT";

 that is, if the most recent error was "No such file or directory" (or its moral

 equivalent: not all operating systems give that exact error, and certainly not all

 languages). The specific true value is not guaranteed, but in the past has

 generally been the numeric value of $!. To check if a particular key is

 meaningful on your system, use "exists $!{the_key}"; for a list of legal keys, use

 "keys %!". See Errno for more information, and also see "$!".

 This variable was added in Perl 5.005. Page 34/43

 $CHILD_ERROR

 $? The status returned by the last pipe close, backtick ("``") command, successful

 call to "wait()" or "waitpid()", or from the "system()" operator. This is just

 the 16-bit status word returned by the traditional Unix "wait()" system call (or

 else is made up to look like it). Thus, the exit value of the subprocess is

 really ("$? >> 8"), and "$? & 127" gives which signal, if any, the process died

 from, and "$? & 128" reports whether there was a core dump.

 Additionally, if the "h_errno" variable is supported in C, its value is returned

 via $? if any "gethost*()" function fails.

 If you have installed a signal handler for "SIGCHLD", the value of $? will usually

 be wrong outside that handler.

 Inside an "END" subroutine $? contains the value that is going to be given to

 "exit()". You can modify $? in an "END" subroutine to change the exit status of

 your program. For example:

 END {

 $? = 1 if $? == 255; # die would make it 255

 }

 Under VMS, the pragma "use vmsish 'status'" makes $? reflect the actual VMS exit

 status, instead of the default emulation of POSIX status; see "$?" in perlvms for

 details.

 Mnemonic: similar to sh and ksh.

 $EVAL_ERROR

 $@ The Perl error from the last "eval" operator, i.e. the last exception that was

 caught. For "eval BLOCK", this is either a runtime error message or the string or

 reference "die" was called with. The "eval STRING" form also catches syntax

 errors and other compile time exceptions.

 If no error occurs, "eval" sets $@ to the empty string.

 Warning messages are not collected in this variable. You can, however, set up a

 routine to process warnings by setting $SIG{__WARN__} as described in "%SIG".

 Mnemonic: Where was the error "at"?

 Variables related to the interpreter state

 These variables provide information about the current interpreter state.

 $COMPILING Page 35/43

 $^C The current value of the flag associated with the -c switch. Mainly of use with

 -MO=... to allow code to alter its behavior when being compiled, such as for

 example to "AUTOLOAD" at compile time rather than normal, deferred loading.

 Setting "$^C = 1" is similar to calling "B::minus_c".

 This variable was added in Perl v5.6.0.

 $DEBUGGING

 $^D The current value of the debugging flags. May be read or set. Like its command-

 line equivalent, you can use numeric or symbolic values, e.g. "$^D = 10" or "$^D =

 "st"". See "-Dnumber" in perlrun. The contents of this variable also affects the

 debugger operation. See "Debugger Internals" in perldebguts.

 Mnemonic: value of -D switch.

 ${^ENCODING}

 This variable is no longer supported.

 It used to hold the object reference to the "Encode" object that was used to

 convert the source code to Unicode.

 Its purpose was to allow your non-ASCII Perl scripts not to have to be written in

 UTF-8; this was useful before editors that worked on UTF-8 encoded text were

 common, but that was long ago. It caused problems, such as affecting the

 operation of other modules that weren't expecting it, causing general mayhem.

 If you need something like this functionality, it is recommended that use you a

 simple source filter, such as Filter::Encoding.

 If you are coming here because code of yours is being adversely affected by

 someone's use of this variable, you can usually work around it by doing this:

 local ${^ENCODING};

 near the beginning of the functions that are getting broken. This undefines the

 variable during the scope of execution of the including function.

 This variable was added in Perl 5.8.2 and removed in 5.26.0. Setting it to

 anything other than "undef" was made fatal in Perl 5.28.0.

 ${^GLOBAL_PHASE}

 The current phase of the perl interpreter.

 Possible values are:

 CONSTRUCT

 The "PerlInterpreter*" is being constructed via "perl_construct". This Page 36/43

 value is mostly there for completeness and for use via the underlying C

 variable "PL_phase". It's not really possible for Perl code to be

 executed unless construction of the interpreter is finished.

 START This is the global compile-time. That includes, basically, every "BEGIN"

 block executed directly or indirectly from during the compile-time of the

 top-level program.

 This phase is not called "BEGIN" to avoid confusion with "BEGIN"-blocks,

 as those are executed during compile-time of any compilation unit, not

 just the top-level program. A new, localised compile-time entered at run-

 time, for example by constructs as "eval "use SomeModule"" are not global

 interpreter phases, and therefore aren't reflected by "${^GLOBAL_PHASE}".

 CHECK Execution of any "CHECK" blocks.

 INIT Similar to "CHECK", but for "INIT"-blocks, not "CHECK" blocks.

 RUN The main run-time, i.e. the execution of "PL_main_root".

 END Execution of any "END" blocks.

 DESTRUCT

 Global destruction.

 Also note that there's no value for UNITCHECK-blocks. That's because those are

 run for each compilation unit individually, and therefore is not a global

 interpreter phase.

 Not every program has to go through each of the possible phases, but transition

 from one phase to another can only happen in the order described in the above

 list.

 An example of all of the phases Perl code can see:

 BEGIN { print "compile-time: ${^GLOBAL_PHASE}\n" }

 INIT { print "init-time: ${^GLOBAL_PHASE}\n" }

 CHECK { print "check-time: ${^GLOBAL_PHASE}\n" }

 {

 package Print::Phase;

 sub new {

 my ($class, $time) = @_;

 return bless \$time, $class;

 } Page 37/43

 sub DESTROY {

 my $self = shift;

 print "$$self: ${^GLOBAL_PHASE}\n";

 }

 }

 print "run-time: ${^GLOBAL_PHASE}\n";

 my $runtime = Print::Phase->new(

 "lexical variables are garbage collected before END"

);

 END { print "end-time: ${^GLOBAL_PHASE}\n" }

 our $destruct = Print::Phase->new(

 "package variables are garbage collected after END"

);

 This will print out

 compile-time: START

 check-time: CHECK

 init-time: INIT

 run-time: RUN

 lexical variables are garbage collected before END: RUN

 end-time: END

 package variables are garbage collected after END: DESTRUCT

 This variable was added in Perl 5.14.0.

 $^H WARNING: This variable is strictly for internal use only. Its availability,

 behavior, and contents are subject to change without notice.

 This variable contains compile-time hints for the Perl interpreter. At the end of

 compilation of a BLOCK the value of this variable is restored to the value when

 the interpreter started to compile the BLOCK.

 When perl begins to parse any block construct that provides a lexical scope (e.g.,

 eval body, required file, subroutine body, loop body, or conditional block), the

 existing value of $^H is saved, but its value is left unchanged. When the

 compilation of the block is completed, it regains the saved value. Between the

 points where its value is saved and restored, code that executes within BEGIN

 blocks is free to change the value of $^H. Page 38/43

 This behavior provides the semantic of lexical scoping, and is used in, for

 instance, the "use strict" pragma.

 The contents should be an integer; different bits of it are used for different

 pragmatic flags. Here's an example:

 sub add_100 { $^H |= 0x100 }

 sub foo {

 BEGIN { add_100() }

 bar->baz($boon);

 }

 Consider what happens during execution of the BEGIN block. At this point the

 BEGIN block has already been compiled, but the body of "foo()" is still being

 compiled. The new value of $^H will therefore be visible only while the body of

 "foo()" is being compiled.

 Substitution of "BEGIN { add_100() }" block with:

 BEGIN { require strict; strict->import('vars') }

 demonstrates how "use strict 'vars'" is implemented. Here's a conditional version

 of the same lexical pragma:

 BEGIN {

 require strict; strict->import('vars') if $condition

 }

 This variable was added in Perl 5.003.

 %^H The "%^H" hash provides the same scoping semantic as $^H. This makes it useful

 for implementation of lexically scoped pragmas. See perlpragma. All the entries

 are stringified when accessed at runtime, so only simple values can be

 accommodated. This means no pointers to objects, for example.

 When putting items into "%^H", in order to avoid conflicting with other users of

 the hash there is a convention regarding which keys to use. A module should use

 only keys that begin with the module's name (the name of its main package) and a

 "/" character. For example, a module "Foo::Bar" should use keys such as

 "Foo::Bar/baz".

 This variable was added in Perl v5.6.0.

 ${^OPEN}

 An internal variable used by PerlIO. A string in two parts, separated by a "\0" Page 39/43

 byte, the first part describes the input layers, the second part describes the

 output layers.

 This is the mechanism that applies the lexical effects of the open pragma, and the

 main program scope effects of the "io" or "D" options for the -C command-line

 switch and PERL_UNICODE environment variable.

 The functions "accept()", "open()", "pipe()", "readpipe()" (as well as the related

 "qx" and "`STRING`" operators), "socket()", "socketpair()", and "sysopen()" are

 affected by the lexical value of this variable. The implicit "ARGV" handle opened

 by "readline()" (or the related "<>" and "<<>>" operators) on passed filenames is

 also affected (but not if it opens "STDIN"). If this variable is not set, these

 functions will set the default layers as described in "Defaults and how to

 override them" in PerlIO.

 "open()" ignores this variable (and the default layers) when called with 3

 arguments and explicit layers are specified. Indirect calls to these functions

 via modules like IO::Handle are not affected as they occur in a different lexical

 scope. Directory handles such as opened by "opendir()" are not currently

 affected.

 This variable was added in Perl v5.8.0.

 $PERLDB

 $^P The internal variable for debugging support. The meanings of the various bits are

 subject to change, but currently indicate:

 0x01 Debug subroutine enter/exit.

 0x02 Line-by-line debugging. Causes "DB::DB()" subroutine to be called for each

 statement executed. Also causes saving source code lines (like 0x400).

 0x04 Switch off optimizations.

 0x08 Preserve more data for future interactive inspections.

 0x10 Keep info about source lines on which a subroutine is defined.

 0x20 Start with single-step on.

 0x40 Use subroutine address instead of name when reporting.

 0x80 Report "goto &subroutine" as well.

 0x100 Provide informative "file" names for evals based on the place they were

 compiled.

 0x200 Provide informative names to anonymous subroutines based on the place they Page 40/43

 were compiled.

 0x400 Save source code lines into "@{"_<$filename"}".

 0x800 When saving source, include evals that generate no subroutines.

 0x1000

 When saving source, include source that did not compile.

 Some bits may be relevant at compile-time only, some at run-time only. This is a

 new mechanism and the details may change. See also perldebguts.

 ${^TAINT}

 Reflects if taint mode is on or off. 1 for on (the program was run with -T), 0

 for off, -1 when only taint warnings are enabled (i.e. with -t or -TU).

 This variable is read-only.

 This variable was added in Perl v5.8.0.

 ${^SAFE_LOCALES}

 Reflects if safe locale operations are available to this perl (when the value is

 1) or not (the value is 0). This variable is always 1 if the perl has been

 compiled without threads. It is also 1 if this perl is using thread-safe locale

 operations. Note that an individual thread may choose to use the global locale

 (generally unsafe) by calling "switch_to_global_locale" in perlapi. This variable

 currently is still set to 1 in such threads.

 This variable is read-only.

 This variable was added in Perl v5.28.0.

 ${^UNICODE}

 Reflects certain Unicode settings of Perl. See perlrun documentation for the "-C"

 switch for more information about the possible values.

 This variable is set during Perl startup and is thereafter read-only.

 This variable was added in Perl v5.8.2.

 ${^UTF8CACHE}

 This variable controls the state of the internal UTF-8 offset caching code. 1 for

 on (the default), 0 for off, -1 to debug the caching code by checking all its

 results against linear scans, and panicking on any discrepancy.

 This variable was added in Perl v5.8.9. It is subject to change or removal

 without notice, but is currently used to avoid recalculating the boundaries of

 multi-byte UTF-8-encoded characters. Page 41/43

 ${^UTF8LOCALE}

 This variable indicates whether a UTF-8 locale was detected by perl at startup.

 This information is used by perl when it's in adjust-utf8ness-to-locale mode (as

 when run with the "-CL" command-line switch); see perlrun for more info on this.

 This variable was added in Perl v5.8.8.

 Deprecated and removed variables

 Deprecating a variable announces the intent of the perl maintainers to eventually remove

 the variable from the language. It may still be available despite its status. Using a

 deprecated variable triggers a warning.

 Once a variable is removed, its use triggers an error telling you the variable is

 unsupported.

 See perldiag for details about error messages.

 $# $# was a variable that could be used to format printed numbers. After a

 deprecation cycle, its magic was removed in Perl v5.10.0 and using it now triggers

 a warning: "$# is no longer supported".

 This is not the sigil you use in front of an array name to get the last index,

 like $#array. That's still how you get the last index of an array in Perl. The

 two have nothing to do with each other.

 Deprecated in Perl 5.

 Removed in Perl v5.10.0.

 $* $* was a variable that you could use to enable multiline matching. After a

 deprecation cycle, its magic was removed in Perl v5.10.0. Using it now triggers a

 warning: "$* is no longer supported". You should use the "/s" and "/m" regexp

 modifiers instead.

 Deprecated in Perl 5.

 Removed in Perl v5.10.0.

 $[This variable stores the index of the first element in an array, and of the first

 character in a substring. The default is 0, but you could theoretically set it to

 1 to make Perl behave more like awk (or Fortran) when subscripting and when

 evaluating the index() and substr() functions.

 As of release 5 of Perl, assignment to $[is treated as a compiler directive, and

 cannot influence the behavior of any other file. (That's why you can only assign

 compile-time constants to it.) Its use is highly discouraged. Page 42/43

 Prior to Perl v5.10.0, assignment to $[could be seen from outer lexical scopes in

 the same file, unlike other compile-time directives (such as strict). Using

 local() on it would bind its value strictly to a lexical block. Now it is always

 lexically scoped.

 As of Perl v5.16.0, it is implemented by the arybase module.

 As of Perl v5.30.0, or under "use v5.16", or "no feature "array_base"", $[no

 longer has any effect, and always contains 0. Assigning 0 to it is permitted, but

 any other value will produce an error.

 Mnemonic: [begins subscripts.

 Deprecated in Perl v5.12.0.

perl v5.34.0 2023-11-23 PERLVAR(1)

Page 43/43

