
Rocky Enterprise Linux 9.2 Manual Pages on command 'pidfd_send_signal.2'

$ man pidfd_send_signal.2

PIDFD_SEND_SIGNAL(2) Linux Programmer's Manual PIDFD_SEND_SIGNAL(2)

NAME

 pidfd_send_signal - send a signal to a process specified by a file descriptor

SYNOPSIS

 #include <signal.h>

 int pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

 unsigned int flags);

DESCRIPTION

 The pidfd_send_signal() system call sends the signal sig to the target process referred to

 by pidfd, a PID file descriptor that refers to a process.

 If the info argument points to a siginfo_t buffer, that buffer should be populated as de?

 scribed in rt_sigqueueinfo(2).

 If the info argument is a NULL pointer, this is equivalent to specifying a pointer to a

 siginfo_t buffer whose fields match the values that are implicitly supplied when a signal

 is sent using kill(2):

 * si_signo is set to the signal number;

 * si_errno is set to 0;

 * si_code is set to SI_USER;

 * si_pid is set to the caller's PID; and

 * si_uid is set to the caller's real user ID.

 The calling process must either be in the same PID namespace as the process referred to by

 pidfd, or be in an ancestor of that namespace.

 The flags argument is reserved for future use; currently, this argument must be specified Page 1/4

 as 0.

RETURN VALUE

 On success, pidfd_send_signal() returns 0. On error, -1 is returned and errno is set to

 indicate the cause of the error.

ERRORS

 EBADF pidfd is not a valid PID file descriptor.

 EINVAL sig is not a valid signal.

 EINVAL The calling process is not in a PID namespace from which it can send a signal to

 the target process.

 EINVAL flags is not 0.

 EPERM The calling process does not have permission to send the signal to the target

 process.

 EPERM pidfd doesn't refer to the calling process, and info.si_code is invalid (see

 rt_sigqueueinfo(2)).

 ESRCH The target process does not exist (i.e., it has terminated and been waited on).

VERSIONS

 pidfd_send_signal() first appeared in Linux 5.1.

CONFORMING TO

 pidfd_send_signal() is Linux specific.

NOTES

 Currently, there is no glibc wrapper for this system call; call it using syscall(2).

 PID file descriptors

 The pidfd argument is a PID file descriptor, a file descriptor that refers to process.

 Such a file descriptor can be obtained in any of the following ways:

 * by opening a /proc/[pid] directory;

 * using pidfd_open(2); or

 * via the PID file descriptor that is returned by a call to clone(2) or clone3(2) that

 specifies the CLONE_PIDFD flag.

 The pidfd_send_signal() system call allows the avoidance of race conditions that occur

 when using traditional interfaces (such as kill(2)) to signal a process. The problem is

 that the traditional interfaces specify the target process via a process ID (PID), with

 the result that the sender may accidentally send a signal to the wrong process if the

 originally intended target process has terminated and its PID has been recycled for an? Page 2/4

 other process. By contrast, a PID file descriptor is a stable reference to a specific

 process; if that process terminates, pidfd_send_signal() fails with the error ESRCH.

EXAMPLES

 #define _GNU_SOURCE

 #include <limits.h>

 #include <signal.h>

 #include <fcntl.h>

 #include <stdio.h>

 #include <string.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <sys/syscall.h>

 #ifndef __NR_pidfd_send_signal

 #define __NR_pidfd_send_signal 424

 #endif

 static int

 pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

 unsigned int flags)

 {

 return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags);

 }

 int

 main(int argc, char *argv[])

 {

 siginfo_t info;

 char path[PATH_MAX];

 int pidfd, sig;

 if (argc != 3) {

 fprintf(stderr, "Usage: %s <pid> <signal>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 sig = atoi(argv[2]);

 /* Obtain a PID file descriptor by opening the /proc/PID directory Page 3/4

 of the target process */

 snprintf(path, sizeof(path), "/proc/%s", argv[1]);

 pidfd = open(path, O_RDONLY);

 if (pidfd == -1) {

 perror("open");

 exit(EXIT_FAILURE);

 }

 /* Populate a 'siginfo_t' structure for use with

 pidfd_send_signal() */

 memset(&info, 0, sizeof(info));

 info.si_code = SI_QUEUE;

 info.si_signo = sig;

 info.si_errno = 0;

 info.si_uid = getuid();

 info.si_pid = getpid();

 info.si_value.sival_int = 1234;

 /* Send the signal */

 if (pidfd_send_signal(pidfd, sig, &info, 0) == -1) {

 perror("pidfd_send_signal");

 exit(EXIT_FAILURE);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 clone(2), kill(2), pidfd_open(2), rt_sigqueueinfo(2), sigaction(2), pid_namespaces(7),

 signal(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PIDFD_SEND_SIGNAL(2)

Page 4/4

