FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'pidfd_send_signal.2'

$ man pidfd_send_signal.2
PIDFD_SEND_SIGNAL(2) Linux Programmer's Manual PIDFD_SEND_SIGNAL(2)
NAME

pidfd_send_signal - send a signal to a process specified by a file descriptor
SYNOPSIS

#include <signal.h>

int pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

unsigned int flags);

DESCRIPTION

The pidfd_send_signal() system call sends the signal sig to the target process referred to

by pidfd, a PID file descriptor that refers to a process.

If the info argument points to a siginfo_t buffer, that buffer should be populated as de?

scribed in rt_sigqueueinfo(2).

If the info argumentis a NULL pointer, this is equivalent to specifying a pointer to a

siginfo_t buffer whose fields match the values that are implicitly supplied when a signal

is sent using kill(2):

* si_signo is set to the signal number;

* si_errno is set to O;

* si_code is setto SI_USER,;

* si_pid is set to the caller's PID; and

* si_uid is set to the caller's real user ID.

The calling process must either be in the same PID namespace as the process referred to by

pidfd, or be in an ancestor of that namespace.

The flags argument is reserved for future use; currently, this argument must be specified Page 1/4



as 0.
RETURN VALUE
On success, pidfd_send_signal() returns 0. On error, -1 is returned and errno is set to
indicate the cause of the error.
ERRORS
EBADF pidfd is not a valid PID file descriptor.
EINVAL sig is not a valid signal.
EINVAL The calling process is not in a PID namespace from which it can send a signal to
the target process.
EINVAL flags is not 0.
EPERM The calling process does not have permission to send the signal to the target
process.
EPERM pidfd doesn't refer to the calling process, and info.si_code is invalid (see
rt_sigqueueinfo(2)).
ESRCH The target process does not exist (i.e., it has terminated and been waited on).
VERSIONS
pidfd_send_signal() first appeared in Linux 5.1.
CONFORMING TO
pidfd_send_signal() is Linux specific.
NOTES
Currently, there is no glibc wrapper for this system call; call it using syscall(2).
PID file descriptors
The pidfd argument is a PID file descriptor, a file descriptor that refers to process.
Such a file descriptor can be obtained in any of the following ways:
* by opening a /proc/[pid] directory;
* using pidfd_open(2); or
* via the PID file descriptor that is returned by a call to clone(2) or clone3(2) that
specifies the CLONE_PIDFD flag.
The pidfd_send_signal() system call allows the avoidance of race conditions that occur
when using traditional interfaces (such as kill(2)) to signal a process. The problem is
that the traditional interfaces specify the target process via a process ID (PID), with
the result that the sender may accidentally send a signal to the wrong process if the

originally intended target process has terminated and its PID has been recycled for an? Page 2/4



other process. By contrast, a PID file descriptor is a stable reference to a specific

process; if that process terminates, pidfd_send_signal() fails with the error ESRCH.
EXAMPLES

#define _GNU_SOURCE

#include <limits.h>

#include <signal.h>

#include <fcntl.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include <sys/syscall.h>

#ifndef __ NR_pidfd_send_signal

#define _ NR_pidfd_send_signal 424

#endif

static int

pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

unsigned int flags)

return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags);
}
int
main(int argc, char *argv[])
{
siginfo_t info;
char path[PATH_MAX];
int pidfd, sig;
if (argc = 3) {
fprintf(stderr, "Usage: %s <pid> <signal>\n", argv[0]);
exit(EXIT_FAILURE);
}
sig = atoi(argv[2]);

/* Obtain a PID file descriptor by opening the /proc/PID directory Page 3/4



of the target process */

snprintf(path, sizeof(path), "/proc/%s", argv[1]);

pidfd = open(path, O_RDONLY);

if (pidfd ==-1) {
perror("open”);
exit(EXIT_FAILURE);

}

[* Populate a 'siginfo_t' structure for use with
pidfd_send_signal() */

memset(&info, 0, sizeof(info));

info.si_code = SI_ QUEUE;

info.si_signo = sig;

info.si_errno = 0;

info.si_uid = getuid();

info.si_pid = getpid();

info.si_value.sival_int = 1234;

/* Send the signal */

if (pidfd_send_signal(pidfd, sig, &info, 0) == -1) {
perror("pidfd_send_signal);
exit(EXIT_FAILURE);

}
exit(EXIT_SUCCESS);

}

SEE ALSO
clone(2), kill(2), pidfd_open(2), rt_sigqueueinfo(2), sigaction(2), pid_namespaces(7),
signal(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PIDFD_SEND_SIGNAL(2)

Page 4/4



