
Rocky Enterprise Linux 9.2 Manual Pages on command 'podman-create.1'

$ man podman-create.1

podman-create(1)() podman-create(1)()

NAME

 podman-create - Create a new container

SYNOPSIS

 podman create [options] image [command [arg ...]]

 podman container create [options] image [command [arg ...]]

DESCRIPTION

 Creates a writable container layer over the specified image and prepares it for running

 the specified command. The container ID is then printed to STDOUT. This is similar to pod?

 man run -d except the container is never started. You can then use the podman start con?

 tainer command to start the container at any point.

 The initial status of the container created with podman create is 'created'.

 Default settings for flags are defined in containers.conf. Most settings for remote con?

 nections use the server's containers.conf, except when documented in man pages.

IMAGE

 The image is specified using transport:path format. If no transport is specified, the

 docker (container registry) transport will be used by default. For remote Podman, docker

 is the only allowed transport.

 dir:path

 An existing local directory path storing the manifest, layer tarballs and signatures as

 individual files. This is a non-standardized format, primarily useful for debugging or

 noninvasive container inspection.

 $ podman save --format docker-dir fedora -o /tmp/fedora Page 1/33

 $ podman create dir:/tmp/fedora echo hello

 docker://docker-reference (Default)

 An image reference stored in a remote container image registry. Example: "quay.io/pod?

 man/stable:latest". The reference can include a path to a specific registry; if it does

 not, the registries listed in registries.conf will be queried to find a matching image.

 By default, credentials from podman login (stored at $XDG_RUNTIME_DIR/containers/auth.json

 by default) will be used to authenticate; otherwise it falls back to using credentials in

 $HOME/.docker/config.json.

 $ podman create registry.fedoraproject.org/fedora:latest echo hello

 docker-archive:path[:docker-reference] An image stored in the docker save formatted file.

 docker-reference is only used when creating such a file, and it must not contain a digest.

 $ podman save --format docker-archive fedora -o /tmp/fedora

 $ podman create docker-archive:/tmp/fedora echo hello

 docker-daemon:docker-reference

 An image in docker-reference format stored in the docker daemon internal storage. The

 docker-reference can also be an image ID (docker-daemon:algo:digest).

 $ sudo docker pull fedora

 $ sudo podman create docker-daemon:docker.io/library/fedora echo hello

 oci-archive:path:tag

 An image in a directory compliant with the "Open Container Image Layout Specification"

 at the specified path and specified with a tag.

 $ podman save --format oci-archive fedora -o /tmp/fedora

 $ podman create oci-archive:/tmp/fedora echo hello

OPTIONS

 --add-host=host

 Add a custom host-to-IP mapping (host:ip)

 Add a line to /etc/hosts. The format is hostname:ip. The --add-host option can be set mul?

 tiple times.

 --annotation=key=value

 Add an annotation to the container. The format is key=value. The --annotation option can

 be set multiple times.

 --arch=ARCH

 Override the architecture, defaults to hosts, of the image to be pulled. For example, arm. Page 2/33

 --attach, -a=location

 Attach to STDIN, STDOUT or STDERR.

 In foreground mode (the default when -d is not specified), podman run can start the

 process in the container and attach the console to the process's standard input, output,

 and standard error. It can even pretend to be a TTY (this is what most command line exe?

 cutables expect) and pass along signals. The -a option can be set for each of stdin, std?

 out, and stderr.

 --authfile=path

 Path of the authentication file. Default is ${XDG_RUNTIME_DIR}/containers/auth.json

 Note: You can also override the default path of the authentication file by setting the

 REGISTRY_AUTH_FILE environment variable. export REGISTRY_AUTH_FILE=path

 --blkio-weight=weight

 Block IO weight (relative weight) accepts a weight value between 10 and 1000.

 --blkio-weight-device=weight

 Block IO weight (relative device weight, format: DEVICE_NAME:WEIGHT).

 --cap-add=capability

 Add Linux capabilities

 --cap-drop=capability

 Drop Linux capabilities

 --cgroupns=mode

 Set the cgroup namespace mode for the container.

 host: use the host's cgroup namespace inside the container.

 container:<NAME|ID>: join the namespace of the specified container.

 ns:<PATH>: join the namespace at the specified path.

 private: create a new cgroup namespace.

 If the host uses cgroups v1, the default is set to host. On cgroups v2 the default is pri?

 vate.

 --cgroups=mode

 Determines whether the container will create CGroups. Valid values are enabled, disabled,

 no-conmon, split, which the default being enabled.

 The enabled option will create a new cgroup under the cgroup-parent. The disabled option

 will force the container to not create CGroups, and thus conflicts with CGroup options

 (--cgroupns and --cgroup-parent). The no-conmon option disables a new CGroup only for the Page 3/33

 conmon process. The split option splits the current cgroup in two sub-cgroups: one for

 conmon and one for the container payload. It is not possible to set --cgroup-parent with

 split.

 --cgroup-parent=path

 Path to cgroups under which the cgroup for the container will be created. If the path is

 not absolute, the path is considered to be relative to the cgroups path of the init

 process. Cgroups will be created if they do not already exist.

 --cgroup-conf=KEY=VALUE

 When running on cgroup v2, specify the cgroup file to write to and its value. For example

 --cgroup-conf=memory.high=1073741824 sets the memory.high limit to 1GB.

 --cidfile=id

 Write the container ID to the file

 --conmon-pidfile=path

 Write the pid of the conmon process to a file. conmon runs in a separate process than Pod?

 man, so this is necessary when using systemd to restart Podman containers. (This option

 is not available with the remote Podman client)

 --cpu-period=limit

 Set the CPU period for the Completely Fair Scheduler (CFS), which is a duration in mi?

 croseconds. Once the container's CPU quota is used up, it will not be scheduled to run un?

 til the current period ends. Defaults to 100000 microseconds.

 On some systems, changing the CPU limits may not be allowed for non-root users. For more

 details, see https://github.com/containers/podman/blob/master/troubleshooting.md#26-run?

 ning-containers-with-cpu-limits-fails-with-a-permissions-error

 --cpu-quota=limit

 Limit the CPU Completely Fair Scheduler (CFS) quota.

 Limit the container's CPU usage. By default, containers run with the full CPU resource.

 The limit is a number in microseconds. If you provide a number, the container will be al?

 lowed to use that much CPU time until the CPU period ends (controllable via --cpu-period).

 On some systems, changing the CPU limits may not be allowed for non-root users. For more

 details, see https://github.com/containers/podman/blob/master/troubleshooting.md#26-run?

 ning-containers-with-cpu-limits-fails-with-a-permissions-error

 --cpu-rt-period=microseconds

 Limit the CPU real-time period in microseconds Page 4/33

 Limit the container's Real Time CPU usage. This flag tell the kernel to restrict the con?

 tainer's Real Time CPU usage to the period you specify.

 This flag is not supported on cgroups V2 systems.

 --cpu-rt-runtime=microseconds

 Limit the CPU real-time runtime in microseconds

 Limit the containers Real Time CPU usage. This flag tells the kernel to limit the amount

 of time in a given CPU period Real Time tasks may consume. Ex: Period of 1,000,000us and

 Runtime of 950,000us means that this container could consume 95% of available CPU and

 leave the remaining 5% to normal priority tasks.

 The sum of all runtimes across containers cannot exceed the amount allotted to the parent

 cgroup.

 This flag is not supported on cgroups V2 systems.

 --cpu-shares=shares

 CPU shares (relative weight)

 By default, all containers get the same proportion of CPU cycles. This proportion can be

 modified by changing the container's CPU share weighting relative to the weighting of all

 other running containers.

 To modify the proportion from the default of 1024, use the --cpu-shares flag to set the

 weighting to 2 or higher.

 The proportion will only apply when CPU-intensive processes are running. When tasks in

 one container are idle, other containers can use the left-over CPU time. The actual amount

 of CPU time will vary depending on the number of containers running on the system.

 For example, consider three containers, one has a cpu-share of 1024 and two others have a

 cpu-share setting of 512. When processes in all three containers attempt to use 100% of

 CPU, the first container would receive 50% of the total CPU time. If you add a fourth con?

 tainer with a cpu-share of 1024, the first container only gets 33% of the CPU. The remain?

 ing containers receive 16.5%, 16.5% and 33% of the CPU.

 On a multi-core system, the shares of CPU time are distributed over all CPU cores. Even if

 a container is limited to less than 100% of CPU time, it can use 100% of each individual

 CPU core.

 For example, consider a system with more than three cores. If you start one container {C0}

 with -c=512 running one process, and another container {C1} with -c=1024 running two pro?

 cesses, this can result in the following division of CPU shares: Page 5/33

 PID container CPU CPU share 100 {C0} 0 100% of CPU0 101

 {C1} 1 100% of CPU1 102 {C1} 2 100% of CPU2

 --cpus=number

 Number of CPUs. The default is 0.0 which means no limit. This is shorthand for --cpu-pe?

 riod and --cpu-quota, so you may only set either

 --cpus or --cpu-period and --cpu-quota.

 On some systems, changing the CPU limits may not be allowed for non-root users. For more

 details, see https://github.com/containers/podman/blob/master/troubleshooting.md#26-run?

 ning-containers-with-cpu-limits-fails-with-a-permissions-error

 --cpuset-cpus=cpus

 CPUs in which to allow execution (0-3, 0,1)

 --cpuset-mems=nodes

 Memory nodes (MEMs) in which to allow execution (0-3, 0,1). Only effective on NUMA sys?

 tems.

 If you have four memory nodes on your system (0-3), use --cpuset-mems=0,1 then processes

 in your container will only use memory from the first two memory nodes.

 --device=host-device[:container-device][:permissions]

 Add a host device to the container. Optional permissions parameter can be used to specify

 device permissions, it is combination of r for read, w for write, and m for mknod(2).

 Example: --device=/dev/sdc:/dev/xvdc:rwm.

 Note: if _hostdevice is a symbolic link then it will be resolved first. The container

 will only store the major and minor numbers of the host device.

 Note: if the user only has access rights via a group, accessing the device from inside a

 rootless container will fail. Use the --group-add keep-groups flag to pass the user's sup?

 plementary group access into the container.

 Podman may load kernel modules required for using the specified device. The devices that

 podman will load modules when necessary are: /dev/fuse.

 --device-cgroup-rule="type major:minor mode"

 Add a rule to the cgroup allowed devices list. The rule is expected to be in the format

 specified in the Linux kernel documentation (Documentation/cgroup-v1/devices.txt):

 - type: a (all), c (char), or b (block);

 - major and minor: either a number, or * for all;

 - mode: a composition of r (read), w (write), and m (mknod(2)). Page 6/33

 --device-read-bps=path

 Limit read rate (bytes per second) from a device (e.g. --device-read-bps=/dev/sda:1mb)

 --device-read-iops=path

 Limit read rate (IO per second) from a device (e.g. --device-read-iops=/dev/sda:1000)

 --device-write-bps=path

 Limit write rate (bytes per second) to a device (e.g. --device-write-bps=/dev/sda:1mb)

 --device-write-iops=path

 Limit write rate (IO per second) to a device (e.g. --device-write-iops=/dev/sda:1000)

 --disable-content-trust

 This is a Docker specific option to disable image verification to a Docker registry and is

 not supported by Podman. This flag is a NOOP and provided solely for scripting compatibil?

 ity.

 --dns=dns

 Set custom DNS servers. Invalid if using --dns and --network that is set to 'none' or con?

 tainer:<name|id>.

 This option can be used to override the DNS configuration passed to the container. Typi?

 cally this is necessary when the host DNS configuration is invalid for the container

 (e.g., 127.0.0.1). When this is the case the --dns flags is necessary for every run.

 The special value none can be specified to disable creation of /etc/resolv.conf in the

 container by Podman. The /etc/resolv.conf file in the image will be used without changes.

 --dns-opt=option

 Set custom DNS options. Invalid if using --dns-opt and --network that is set to 'none' or

 container:<name|id>.

 --dns-search=domain

 Set custom DNS search domains. Invalid if using --dns-search and --network that is set to

 'none' or container:<name|id>. (Use --dns-search=. if you don't wish to set the search do?

 main)

 --entrypoint="command" | '["command", arg1 , ...]'

 Overwrite the default ENTRYPOINT of the image

 This option allows you to overwrite the default entrypoint of the image. The ENTRYPOINT

 of an image is similar to a COMMAND because it specifies what executable to run when the

 container starts, but it is (purposely) more difficult to override. The ENTRYPOINT gives a

 container its default nature or behavior, so that when you set an ENTRYPOINT you can run Page 7/33

 the container as if it were that binary, complete with default options, and you can pass

 in more options via the COMMAND. But, sometimes an operator may want to run something else

 inside the container, so you can override the default ENTRYPOINT at runtime by using a

 --entrypoint and a string to specify the new ENTRYPOINT.

 You need to specify multi option commands in the form of a json string.

 --env, -e=env

 Set environment variables

 This option allows arbitrary environment variables that are available for the process to

 be launched inside of the container. If an environment variable is specified without a

 value, Podman will check the host environment for a value and set the variable only if it

 is set on the host. If an environment variable ending in * is specified, Podman will

 search the host environment for variables starting with the prefix and will add those

 variables to the container. If an environment variable with a trailing ***** is specified,

 then a value must be supplied.

 See Environment ?#environment? note below for precedence and examples.

 --env-host=true|false

 Use host environment inside of the container. See Environment note below for precedence.

 (This option is not available with the remote Podman client)

 --env-file=file

 Read in a line delimited file of environment variables. See Environment note below for

 precedence.

 --expose=port

 Expose a port, or a range of ports (e.g. --expose=3300-3310) to set up port redirection on

 the host system.

 --gidmap=container_gid:host_gid:amount

 GID map for the user namespace. Using this flag will run the container with user namespace

 enabled. It conflicts with the --userns and --subgidname flags.

 The following example maps uids 0-2000 in the container to the uids 30000-31999 on the

 host and gids 0-2000 in the container to the gids 30000-31999 on the host.

 --gidmap=0:30000:2000

 --group-add=group|keep-groups

 Add additional groups to assign to primary user running within the container process.

 ? keep-groups is a special flag that tells Podman to keep the supplementary group Page 8/33

 access.

 Allows container to use the user's supplementary group access. If file systems or devices

 are only accessible by the rootless user's group, this flag tells the OCI runtime to pass

 the group access into the container. Currently only available with the crun OCI runtime.

 Note: keep-groups is exclusive, you cannot add any other groups with this flag. (Not

 available for remote commands)

 --health-cmd="command" | '["command", arg1 , ...]'

 Set or alter a healthcheck command for a container. The command is a command to be exe?

 cuted inside your container that determines your container health. The command is required

 for other healthcheck options to be applied. A value of none disables existing

 healthchecks.

 Multiple options can be passed in the form of a JSON array; otherwise, the command will be

 interpreted as an argument to /bin/sh -c.

 --health-interval=interval

 Set an interval for the healthchecks (a value of disable results in no automatic timer

 setup) (default "30s")

 --health-retries=retries

 The number of retries allowed before a healthcheck is considered to be unhealthy. The de?

 fault value is 3.

 --health-start-period=period

 The initialization time needed for a container to bootstrap. The value can be expressed in

 time format like 2m3s. The default value is 0s

 --health-timeout=timeout

 The maximum time allowed to complete the healthcheck before an interval is considered

 failed. Like start-period, the value can be expressed in a time format such as 1m22s. The

 default value is 30s.

 --hostname=name, -h

 Container host name

 Sets the container host name that is available inside the container. Can only be used with

 a private UTS namespace --uts=private (default). If --pod is specified and the pod shares

 the UTS namespace (default) the pod's hostname will be used.

 --help

 Print usage statement Page 9/33

 --http-proxy=true|false

 By default proxy environment variables are passed into the container if set for the Podman

 process. This can be disabled by setting the --http-proxy option to false. The environment

 variables passed in include http_proxy, https_proxy, ftp_proxy, no_proxy, and also the up?

 per case versions of those. This option is only needed when the host system must use a

 proxy but the container should not use any proxy. Proxy environment variables specified

 for the container in any other way will override the values that would have been passed

 through from the host. (Other ways to specify the proxy for the container include passing

 the values with the --env flag, or hard coding the proxy environment at container build

 time.) (This option is not available with the remote Podman client)

 For example, to disable passing these environment variables from host to container:

 --http-proxy=false

 Defaults to true

 --image-volume, builtin-volume=bind|tmpfs|ignore

 Tells Podman how to handle the builtin image volumes. Default is bind.

 ? bind: An anonymous named volume will be created and mounted into the container.

 ? tmpfs: The volume is mounted onto the container as a tmpfs, which allows the

 users to create content that disappears when the container is stopped.

 ? ignore: All volumes are just ignored and no action is taken.

 --init

 Run an init inside the container that forwards signals and reaps processes.

 --init-ctr=type (pods only)

 When using pods, create an init style container, which is run after the infra container is

 started but before regular pod containers are started. Init containers are useful for

 running setup operations for the pod's applications.

 Valid values for init-ctr type are always or once. The always value means the container

 will run with each and every pod start, whereas the once value means the container will

 only run once when the pod is started and then the container is removed.

 Init containers are only run on pod start. Restarting a pod will not execute any init

 containers should they be present. Furthermore, init containers can only be created in a

 pod when that pod is not running.

 --init-path=path

 Path to the container-init binary. Page 10/33

 --interactive, -i=true|false

 Keep STDIN open even if not attached. The default is false.

 --ip6=ip

 Not implemented

 --ip=ip

 Specify a static IP address for the container, for example 10.88.64.128. This option can

 only be used if the container is joined to only a single network - i.e., --network=_net?

 work-name_ is used at most once - and if the container is not joining another container's

 network namespace via --network=container:_id_. The address must be within the CNI net?

 work's IP address pool (default 10.88.0.0/16).

 --ipc=ipc

 Default is to create a private IPC namespace (POSIX SysV IPC) for the container

 container:<name|id>: reuses another container shared memory, semaphores and mes?

 sage queues host: use the host shared memory,semaphores and message queues in?

 side the container. Note: the host mode gives the container full access to local shared

 memory and is therefore considered insecure. ns:<path> path to an IPC namespace

 to join.

 --kernel-memory=number[unit]

 Kernel memory limit (format: <number>[<unit>], where unit = b (bytes), k (kilobytes), m

 (megabytes), or g (gigabytes))

 Constrains the kernel memory available to a container. If a limit of 0 is specified (not

 using --kernel-memory), the container's kernel memory is not limited. If you specify a

 limit, it may be rounded up to a multiple of the operating system's page size and the

 value can be very large, millions of trillions.

 This flag is not supported on cgroups V2 systems.

 --label, -l=label

 Add metadata to a container (e.g., --label com.example.key=value)

 --label-file=file

 Read in a line delimited file of labels

 --link-local-ip=ip

 Not implemented

 --log-driver="k8s-file"

 Logging driver for the container. Currently available options are k8s-file, journald, and Page 11/33

 none, with json-file aliased to k8s-file for scripting compatibility.

 --log-opt=name=value

 Set custom logging configuration. The following *name*s are supported:

 ? path: specify a path to the log file (e.g. --log-opt path=/var/log/container/my?

 container.json);

 ? max-size: specify a max size of the log file (e.g. --log-opt max-size=10mb);

 ? tag: specify a custom log tag for the container (e.g. --log-opt tag="{{.Image?

 Name}}".

 It supports the same keys as podman inspect --format.

 This option is currently supported only by the journald log driver.

 --log-opt tag="{{.ImageName}}"

 It supports the same keys as podman inspect --format.

 It is currently supported only by the journald log driver.

 --mac-address=address

 Container MAC address (e.g. 92:d0:c6:0a:29:33)

 Remember that the MAC address in an Ethernet network must be unique. The IPv6 link-local

 address will be based on the device's MAC address according to RFC4862.

 --memory, -m=limit

 Memory limit (format: <number>[<unit>], where unit = b (bytes), k (kilobytes), m

 (megabytes), or g (gigabytes))

 Allows you to constrain the memory available to a container. If the host supports swap

 memory, then the -m memory setting can be larger than physical RAM. If a limit of 0 is

 specified (not using -m), the container's memory is not limited. The actual limit may be

 rounded up to a multiple of the operating system's page size (the value would be very

 large, that's millions of trillions).

 --memory-reservation=limit

 Memory soft limit (format: <number>[<unit>], where unit = b (bytes), k (kilobytes), m

 (megabytes), or g (gigabytes))

 After setting memory reservation, when the system detects memory contention or low memory,

 containers are forced to restrict their consumption to their reservation. So you should

 always set the value below --memory, otherwise the hard limit will take precedence. By de?

 fault, memory reservation will be the same as memory limit.

 --memory-swap=limit Page 12/33

 A limit value equal to memory plus swap. Must be used with the -m (--memory) flag. The

 swap LIMIT should always be larger than -m (--memory) value. By default, the swap LIMIT

 will be set to double the value of --memory.

 The format of LIMIT is <number>[<unit>]. Unit can be b (bytes), k (kilobytes), m

 (megabytes), or g (gigabytes). If you don't specify a unit, b is used. Set LIMIT to -1 to

 enable unlimited swap.

 --memory-swappiness=number

 Tune a container's memory swappiness behavior. Accepts an integer between 0 and 100.

 This flag is not supported on cgroups V2 systems.

 --mount=type=TYPE,TYPE-SPECIFIC-OPTION[,...]

 Attach a filesystem mount to the container

 Current supported mount TYPEs are bind, volume, image, tmpfs and devpts. [1] ?#Footnote1?

 e.g.

 type=bind,source=/path/on/host,destination=/path/in/container

 type=bind,src=/path/on/host,dst=/path/in/container,relabel=shared

 type=volume,source=vol1,destination=/path/in/container,ro=true

 type=tmpfs,tmpfs-size=512M,destination=/path/in/container

 type=image,source=fedora,destination=/fedora-image,rw=true

 type=devpts,destination=/dev/pts

 Common Options:

 ? src, source: mount source spec for bind and volume. Mandatory for bind.

 ? dst, destination, target: mount destination spec.

 Options specific to volume:

 ? ro, readonly: true or false (default).

 Options specific to image:

 ? rw, readwrite: true or false (default).

 Options specific to bind:

 ? ro, readonly: true or false (default).

 ? bind-propagation: shared, slave, private, unbindable, rshared, rslave, runbindable, or rprivate(default). See

also mount(2).

 . bind-nonrecursive: do not setup a recursive bind mount. By default it is recursive.

 . relabel: shared, private.

 Options specific to tmpfs: Page 13/33

 ? ro, readonly: true or false (default).

 ? tmpfs-size: Size of the tmpfs mount in bytes. Unlimited by default in Linux.

 ? tmpfs-mode: File mode of the tmpfs in octal. (e.g. 700 or 0700.) Defaults to 1777 in Linux.

 ? tmpcopyup: Enable copyup from the image directory at the same location to the tmpfs. Used by default.

 ? notmpcopyup: Disable copying files from the image to the tmpfs.

 --name=name

 Assign a name to the container

 The operator can identify a container in three ways: UUID long identifier

 (?f78375b1c487e03c9438c729345e54db9d20cfa2ac1fc3494b6eb60872e74778?) UUID short identifier

 (?f78375b1c487?) Name (?jonah?)

 podman generates a UUID for each container, and if a name is not assigned to the container

 with --name then it will generate a random string name. The name is useful any place you

 need to identify a container. This works for both background and foreground containers.

 --network=mode, --net

 Set the network mode for the container. Invalid if using --dns, --dns-opt, or --dns-search

 with --network that is set to none or container:id. If used together with --pod, the con?

 tainer will not join the pod's network namespace.

 Valid mode values are:

 ? bridge: Create a network stack on the default bridge. This is the default for

 rootfull containers.

 ? none: Create a network namespace for the container but do not configure network

 interfaces for it, thus the container has no network connectivity.

 ? container:id: Reuse another container's network stack.

 ? host: Do not create a network namespace, the container will use the host's net?

 work. Note: The host mode gives the container full access to local system ser?

 vices such as D-bus and is therefore considered insecure.

 ? network: Connect to a user-defined network, multiple networks should be comma-

 separated.

 ? ns:path: Path to a network namespace to join.

 ? private: Create a new namespace for the container. This will use the bridge mode

 for rootfull containers and slirp4netns for rootless ones.

 ? slirp4netns[:OPTIONS,...]: use slirp4netns(1) to create a user network stack.

 This is the default for rootless containers. It is possible to specify these ad? Page 14/33

 ditional options:

 ? allow_host_loopback=true|false: Allow the slirp4netns to reach the host loop?

 back IP (10.0.2.2, which is added to /etc/hosts as host.containers.internal for

 your convenience). Default is false.

 ? mtu=MTU: Specify the MTU to use for this network. (Default is 65520).

 ? cidr=CIDR: Specify ip range to use for this network. (Default is 10.0.2.0/24).

 ? enable_ipv6=true|false: Enable IPv6. Default is false. (Required for out?

 bound_addr6).

 ? outbound_addr=INTERFACE: Specify the outbound interface slirp should bind to

 (ipv4 traffic only).

 ? outbound_addr=IPv4: Specify the outbound ipv4 address slirp should bind to.

 ? outbound_addr6=INTERFACE: Specify the outbound interface slirp should bind to

 (ipv6 traffic only).

 ? outbound_addr6=IPv6: Specify the outbound ipv6 address slirp should bind to.

 ? port_handler=rootlesskit: Use rootlesskit for port forwarding. Default. Note:

 Rootlesskit changes the source IP address of incoming packets to a IP address

 in the container network namespace, usually 10.0.2.100. If your application re?

 quires the real source IP address, e.g. web server logs, use the slirp4netns

 port handler. The rootlesskit port handler is also used for rootless containers

 when connected to user-defined networks.

 ? port_handler=slirp4netns: Use the slirp4netns port forwarding, it is slower

 than rootlesskit but preserves the correct source IP address. This port handler

 cannot be used for user-defined networks.

 --network-alias=alias

 Add network-scoped alias for the container. NOTE: A container will only have access to

 aliases on the first network that it joins. This is a limitation that will be removed in a

 later release.

 --no-healthcheck=true|false

 Disable any defined healthchecks for container.

 --no-hosts=true|false

 Do not create /etc/hosts for the container. By default, Podman will manage /etc/hosts,

 adding the container's own IP address and any hosts from --add-host.

 --no-hosts disables this, and the image's /etc/host will be preserved unmodified. Page 15/33

 This option conflicts with --add-host.

 --oom-kill-disable=true|false

 Whether to disable OOM Killer for the container or not.

 --oom-score-adj=num

 Tune the host's OOM preferences for containers (accepts -1000 to 1000)

 --os=OS

 Override the OS, defaults to hosts, of the image to be pulled. For example, windows.

 --personality=persona

 Personality sets the execution domain via Linux personality(2).

 --pid=pid

 Set the PID mode for the container Default is to create a private PID namespace for the

 container - container:<name|id>: join another container's PID namespace - host: use the

 host's PID namespace for the container. Note: the host mode gives the container full ac?

 cess to local PID and is therefore considered insecure. - ns: join the specified PID

 namespace - private: create a new namespace for the container (default)

 --pids-limit=limit

 Tune the container's pids limit. Set -1 to have unlimited pids for the container. (default

 "4096" on systems that support PIDS cgroups).

 --platform=OS/ARCH

 Specify the platform for selecting the image. (Conflicts with --arch and --os) The

 --platform option can be used to override the current architecture and operating system.

 --pod=name

 Run container in an existing pod. If you want Podman to make the pod for you, preference

 the pod name with new:. To make a pod with more granular options, use the podman pod cre?

 ate command before creating a container.

 --pod-id-file=path

 Run container in an existing pod and read the pod's ID from the specified file. If a con?

 tainer is run within a pod, and the pod has an infra-container, the infra-container will

 be started before the container is.

 --privileged=true|false

 Give extended privileges to this container. The default is false.

 By default, Podman containers are ?unprivileged? (=false) and cannot, for example, modify

 parts of the operating system. This is because by default a container is not allowed to Page 16/33

 access any devices. A ?privileged? container is given access to all devices.

 When the operator executes a privileged container, Podman enables access to all devices on

 the host, turns off graphdriver mount options, as well as turning off most of the security

 measures protecting the host from the container.

 Rootless containers cannot have more privileges than the account that launched them.

 --publish, -p=port

 Publish a container's port, or range of ports, to the host

 Format: ip:hostPort:containerPort | ip::containerPort | hostPort:containerPort | contain?

 erPort Both hostPort and containerPort can be specified as a range of ports. When speci?

 fying ranges for both, the number of container ports in the range must match the number of

 host ports in the range. (e.g., podman run -p 1234-1236:1222-1224 --name thisWorks -t

 busybox but not podman run -p 1230-1236:1230-1240 --name RangeContainerPortsBig?

 gerThanRangeHostPorts -t busybox) With host IP: podman run -p 127.0.0.1:$HOSTPORT:$CON?

 TAINERPORT --name CONTAINER -t someimage If host IP is set to 0.0.0.0 or not set at all,

 the port will be bound on all IPs on the host. Host port does not have to be specified

 (e.g. podman run -p 127.0.0.1::80). If it is not, the container port will be randomly as?

 signed a port on the host. Use podman port to see the actual mapping: podman port CON?

 TAINER $CONTAINERPORT

 Note: if a container will be run within a pod, it is not necessary to publish the port for

 the containers in the pod. The port must only be published by the pod itself. Pod network

 stacks act like the network stack on the host - you have a variety of containers in the

 pod, and programs in the container, all sharing a single interface and IP address, and as?

 sociated ports. If one container binds to a port, no other container can use that port

 within the pod while it is in use. Containers in the pod can also communicate over local?

 host by having one container bind to localhost in the pod, and another connect to that

 port.

 --publish-all, -P=true|false

 Publish all exposed ports to random ports on the host interfaces. The default is false.

 When set to true publish all exposed ports to the host interfaces. The default is false.

 If the operator uses -P (or -p) then Podman will make the exposed port accessible on the

 host and the ports will be available to any client that can reach the host. When using -P,

 Podman will bind any exposed port to a random port on the host within an ephemeral port

 range defined by /proc/sys/net/ipv4/ip_local_port_range. To find the mapping between the Page 17/33

 host ports and the exposed ports, use podman port.

 --pull=missing

 Pull image before creating ("always"|"missing"|"never") (default "missing").

 'missing': default value, attempt to pull the latest image from the registries

 listed in registries.conf if a local image does not exist.Raise an error if the image is

 not in any listed registry and is not present locally.

 'always': Pull the image from the first registry it is found in as listed in reg?

 istries.conf. Raise an error if not found in the registries, even if the image is present

 locally.

 'never': do not pull the image from the registry, use only the local version. Raise

 an error if the image is not present locally.

 Defaults to missing.

 --quiet, -q

 Suppress output information when pulling images

 --read-only=true|false

 Mount the container's root filesystem as read only.

 By default a container will have its root filesystem writable allowing processes to write

 files anywhere. By specifying the --read-only flag the container will have its root

 filesystem mounted as read only prohibiting any writes.

 --read-only-tmpfs=true|false

 If container is running in --read-only mode, then mount a read-write tmpfs on /run, /tmp,

 and /var/tmp. The default is true

 --replace=true|false

 If another container with the same name already exists, replace and remove it. The default

 is false.

 --requires=container

 Specify one or more requirements. A requirement is a dependency container that will be

 started before this container. Containers can be specified by name or ID, with multiple

 containers being separated by commas.

 --restart=policy

 Restart policy to follow when containers exit. Restart policy will not take effect if a

 container is stopped via the podman kill or podman stop commands.

 Valid values are: Page 18/33

 ? no : Do not restart containers on exit

 ? on-failure[:max_retries] : Restart containers when they exit with a non-0 exit

 code, retrying indefinitely or until the optional max_retries count is hit

 ? always : Restart containers when they exit, regardless of sta?

 tus, retrying indefinitely

 ? unless-stopped : Identical to always

 Please note that restart will not restart containers after a system reboot. If this func?

 tionality is required in your environment, you can invoke Podman from a systemd unit file,

 or create an init script for whichever init system is in use. To generate systemd unit

 files, please see podman generate systemd

 --rm=true|false

 Automatically remove the container when it exits. The default is false.

 --rootfs

 If specified, the first argument refers to an exploded container on the file system.

 This is useful to run a container without requiring any image management, the rootfs of

 the container is assumed to be managed externally.

 --sdnotify=container|conmon|ignore

 Determines how to use the NOTIFY_SOCKET, as passed with systemd and Type=notify.

 Default is container, which means allow the OCI runtime to proxy the socket into the con?

 tainer to receive ready notification. Podman will set the MAINPID to conmon's pid. The

 conmon option sets MAINPID to conmon's pid, and sends READY when the container has

 started. The socket is never passed to the runtime or the container. The ignore option

 removes NOTIFY_SOCKET from the environment for itself and child processes, for the case

 where some other process above Podman uses NOTIFY_SOCKET and Podman should not use it.

 --seccomp-policy=policy

 Specify the policy to select the seccomp profile. If set to image, Podman will look for a

 "io.containers.seccomp.profile" label in the container-image config and use its value as a

 seccomp profile. Otherwise, Podman will follow the default policy by applying the default

 profile unless specified otherwise via --security-opt seccomp as described below.

 Note that this feature is experimental and may change in the future.

 --secret=secret[,opt=opt ...]

 Give the container access to a secret. Can be specified multiple times.

 A secret is a blob of sensitive data which a container needs at runtime but should not be Page 19/33

 stored in the image or in source control, such as usernames and passwords, TLS certifi?

 cates and keys, SSH keys or other important generic strings or binary content (up to 500

 kb in size).

 When secrets are specified as type mount, the secrets are copied and mounted into the con?

 tainer when a container is created. When secrets are specified as type env, the secret

 will be set as an environment variable within the container. Secrets are written in the

 container at the time of container creation, and modifying the secret using podman secret

 commands after the container is created will not affect the secret inside the container.

 Secrets and its storage are managed using the podman secret command.

 Secret Options

 ? type=mount|env : How the secret will be exposed to the container. Default

 mount.

 ? target=target : Target of secret. Defaults to secret name.

 ? uid=0 : UID of secret. Defaults to 0. Mount secret type only.

 ? gid=0 : GID of secret. Defaults to 0. Mount secret type only.

 ? mode=0 : Mode of secret. Defaults to 0444. Mount secret type only.

 --security-opt=option

 Security Options

 ? apparmor=unconfined : Turn off apparmor confinement for the container

 ? apparmor=your-profile : Set the apparmor confinement profile for the container

 ? label=user:USER : Set the label user for the container processes

 ? label=role:ROLE : Set the label role for the container processes

 ? label=type:TYPE : Set the label process type for the container processes

 ? label=level:LEVEL : Set the label level for the container processes

 ? label=filetype:TYPE : Set the label file type for the container files

 ? label=disable : Turn off label separation for the container

 Note: Labeling can be disabled for all containers by setting label=false in the contain?

 ers.conf (/etc/containers/containers.conf or $HOME/.config/containers/containers.conf)

 file.

 ? mask=/path/1:/path/2 : The paths to mask separated by a colon. A masked path can?

 not be accessed inside the container.

 ? no-new-privileges : Disable container processes from gaining additional privi?

 leges Page 20/33

 ? seccomp=unconfined : Turn off seccomp confinement for the container

 ? seccomp=profile.json : White listed syscalls seccomp Json file to be used as a

 seccomp filter

 ? proc-opts=OPTIONS : Comma-separated list of options to use for the /proc mount.

 More details for the possible mount options are specified in the proc(5) man

 page.

 ? unmask=ALL or /path/1:/path/2, or shell expanded paths (/proc/*): Paths to unmask

 separated by a colon. If set to ALL, it will unmask all the paths that are masked

 or made read only by default. The default masked paths are /proc/acpi,

 /proc/kcore, /proc/keys, /proc/latency_stats, /proc/sched_debug, /proc/scsi,

 /proc/timer_list, /proc/timer_stats, /sys/firmware, and /sys/fs/selinux. The de?

 fault paths that are read only are /proc/asound, /proc/bus, /proc/fs, /proc/irq,

 /proc/sys, /proc/sysrq-trigger, /sys/fs/cgroup.

 Note: Labeling can be disabled for all containers by setting label=false in the contain?

 ers.conf (/etc/containers/containers.conf or $HOME/.config/containers/containers.conf)

 file.

 --shm-size=size

 Size of /dev/shm (format: <number>[<unit>], where unit = b (bytes), k (kilobytes), m

 (megabytes), or g (gigabytes)) If you omit the unit, the system uses bytes. If you omit

 the size entirely, the system uses 64m. When size is 0, there is no limit on the amount

 of memory used for IPC by the container.

 --stop-signal=SIGTERM

 Signal to stop a container. Default is SIGTERM.

 --stop-timeout=seconds

 Timeout (in seconds) to stop a container. Default is 10. Remote connections use local

 containers.conf for defaults

 --subgidname=name

 Name for GID map from the /etc/subgid file. Using this flag will run the container with

 user namespace enabled. This flag conflicts with --userns and --gidmap.

 --subuidname=name

 Name for UID map from the /etc/subuid file. Using this flag will run the container with

 user namespace enabled. This flag conflicts with --userns and --uidmap.

 --sysctl=SYSCTL Page 21/33

 Configure namespaced kernel parameters at runtime

 IPC Namespace - current sysctls allowed:

 kernel.msgmax, kernel.msgmnb, kernel.msgmni, kernel.sem, kernel.shmall, kernel.shmmax,

 kernel.shmmni, kernel.shm_rmid_forced Sysctls beginning with fs.mqueue.*

 Note: if you use the --ipc=host option these sysctls will not be allowed.

 Network Namespace - current sysctls allowed:

 Sysctls beginning with net.*

 Note: if you use the --network=host option these sysctls will not be allowed.

 --systemd=true|false|always

 Run container in systemd mode. The default is true.

 The value always enforces the systemd mode is enforced without looking at the executable

 name. Otherwise, if set to true and the command you are running inside the container is

 systemd, /usr/sbin/init, /sbin/init or /usr/local/sbin/init.

 If the command you are running inside of the container is systemd, Podman will setup tmpfs

 mount points in the following directories:

 /run, /run/lock, /tmp, /sys/fs/cgroup/systemd, /var/lib/journal

 It will also set the default stop signal to SIGRTMIN+3.

 This allow systemd to run in a confined container without any modifications.

 Note: On SELinux systems, systemd attempts to write to the cgroup file system. Containers

 writing to the cgroup file system are denied by default. The container_manage_cgroup

 boolean must be enabled for this to be allowed on an SELinux separated system.

 setsebool -P container_manage_cgroup true

 --timeout=seconds

 Maximum time a container is allowed to run before conmon sends it the kill signal. By de?

 fault containers will run until they exit or are stopped by podman stop.

 --tls-verify=true|false

 Require HTTPS and verify certificates when contacting registries (default: true). If ex?

 plicitly set to true, then TLS verification will be used. If set to false, then TLS veri?

 fication will not be used. If not specified, TLS verification will be used unless the tar?

 get registry is listed as an insecure registry in registries.conf.

 --tmpfs=fs

 Create a tmpfs mount

 Mount a temporary filesystem (tmpfs) mount into a container, for example: Page 22/33

 $ podman create -d --tmpfs /tmp:rw,size=787448k,mode=1777 my_image

 This command mounts a tmpfs at /tmp within the container. The supported mount options are

 the same as the Linux default mount flags. If you do not specify any options, the systems

 uses the following options: rw,noexec,nosuid,nodev.

 --tty, -t=true|false

 Allocate a pseudo-TTY. The default is false.

 When set to true Podman will allocate a pseudo-tty and attach to the standard input of the

 container. This can be used, for example, to run a throwaway interactive shell. The de?

 fault is false.

 Note: The -t option is incompatible with a redirection of the Podman client standard in?

 put.

 --tz=timezone

 Set timezone in container. This flag takes area-based timezones, GMT time, as well as lo?

 cal, which sets the timezone in the container to match the host machine. See

 /usr/share/zoneinfo/ for valid timezones. Remote connections use local containers.conf

 for defaults

 --umask=umask

 Set the umask inside the container. Defaults to 0022. Remote connections use local con?

 tainers.conf for defaults

 --uidmap=container_uid:from_uid:amount

 Run the container in a new user namespace using the supplied mapping. This option con?

 flicts with the --userns and --subuidname options. This option provides a way to map host

 UIDs to container UIDs. It can be passed several times to map different ranges.

 The _fromuid value is based upon the user running the command, either rootfull or rootless

 users. * rootfull user: container_uid:host_uid:amount * rootless user: container_uid:in?

 termediate_uid:amount

 When podman create is called by a privileged user, the option --uidmap works as a direct

 mapping between host UIDs and container UIDs.

 host UID -> container UID

 The amount specifies the number of consecutive UIDs that will be mapped. If for example

 amount is 4 the mapping would look like:

 | host UID | container UID | | - | - | | _fro?

 muid | _containeruid | | _fromuid + 1 | _containeruid + 1 | | _fromuid + 2 | _con? Page 23/33

 taineruid + 2 | | _fromuid + 3 | _containeruid + 3 |

 When podman create is called by an unprivileged user (i.e. running rootless), the value

 _fromuid is interpreted as an "intermediate UID". In the rootless case, host UIDs are not

 mapped directly to container UIDs. Instead the mapping happens over two mapping steps:

 host UID -> intermediate UID -> container UID

 The --uidmap option only influences the second mapping step.

 The first mapping step is derived by Podman from the contents of the file /etc/subuid and

 the UID of the user calling Podman.

 First mapping step:

 | host UID | intermediate UID | | -

 | - | | UID for the user starting Podman | 0

 | | 1st subordinate UID for the user starting Podman | 1 | | 2nd subordi?

 nate UID for the user starting Podman | 2 | | 3rd subordinate UID for the

 user starting Podman | 3 | | nth subordinate UID for the user starting Pod?

 man | n |

 To be able to use intermediate UIDs greater than zero, the user needs to have subordinate

 UIDs configured in /etc/subuid. See subuid(5).

 The second mapping step is configured with --uidmap.

 If for example amount is 5 the second mapping step would look like:

 | intermediate UID | container UID | | - | -

 | | _fromuid | _containeruid | | _fromuid + 1 | _containeruid + 1 | |

 _fromuid + 2 | _containeruid + 2 | | _fromuid + 3 | _containeruid + 3 | |

 _fromuid + 4 | _containeruid + 4 |

 Even if a user does not have any subordinate UIDs in /etc/subuid, --uidmap could still be

 used to map the normal UID of the user to a container UID by running podman create

 --uidmap $container_uid:0:1 --user $container_uid

 --ulimit=option

 Ulimit options

 You can pass host to copy the current configuration from the host.

 --user, -u=user

 Sets the username or UID used and optionally the groupname or GID for the specified com?

 mand.

 The following examples are all valid: --user [user | user:group | uid | uid:gid | user:gid Page 24/33

 | uid:group]

 Without this argument the command will be run as root in the container.

 --userns=mode

 Set the user namespace mode for the container. It defaults to the PODMAN_USERNS environ?

 ment variable. An empty value ("") means user namespaces are disabled unless an explicit

 mapping is set with the --uidmap and --gidmap options.

 Valid mode values are:

 auto[:OPTIONS,...]: automatically create a unique user namespace.

 The --userns=auto flag, requires that the user name containers and a range of subordinate

 user ids that the Podman container is allowed to use be specified in the /etc/subuid and

 /etc/subgid files.

 Example: containers:2147483647:2147483648.

 Podman allocates unique ranges of UIDs and GIDs from the containers subpordinate user ids.

 The size of the ranges is based on the number of UIDs required in the image. The number of

 UIDs and GIDs can be overridden with the size option. The auto options currently does not

 work in rootless mode

 Valid auto options:

 ? gidmapping=_CONTAINER_GID:HOSTGID:SIZE: to force a GID mapping to be present in

 the user namespace.

 ? size=SIZE: to specify an explicit size for the automatic user namespace. e.g.

 --userns=auto:size=8192. If size is not specified, auto will estimate a size for

 the user namespace.

 ? uidmapping=_CONTAINER_UID:HOSTUID:SIZE: to force a UID mapping to be present in

 the user namespace.

 container:id: join the user namespace of the specified container.

 host: run in the user namespace of the caller. The processes running in the container will

 have the same privileges on the host as any other process launched by the calling user

 (default).

 keep-id: creates a user namespace where the current rootless user's UID:GID are mapped to

 the same values in the container. This option is ignored for containers created by the

 root user.

 ns:namespace: run the container in the given existing user namespace.

 private: create a new namespace for the container. Page 25/33

 This option is incompatible with --gidmap, --uidmap, --subuidname and --subgidname.

 --uts=mode

 Set the UTS namespace mode for the container. The following values are supported:

 ? host: use the host's UTS namespace inside the container.

 ? private: create a new namespace for the container (default).

 ? ns:[path]: run the container in the given existing UTS namespace.

 ? container:[container]: join the UTS namespace of the specified container.

 --variant=VARIANT

 Use VARIANT instead of the default architecture variant of the container image. Some im?

 ages can use multiple variants of the arm architectures, such as arm/v5 and arm/v7.

 --volume, -v[=[[SOURCE-VOLUME|HOST-DIR:]CONTAINER-DIR[:OPTIONS]]]

 Create a bind mount. If you specify, -v /HOST-DIR:/CONTAINER-DIR, Podman bind mounts

 /HOST-DIR in the host to /CONTAINER-DIR in the Podman container. Similarly, -v SOURCE-VOL?

 UME:/CONTAINER-DIR will mount the volume in the host to the container. If no such named

 volume exists, Podman will create one. The OPTIONS are a comma-separated list and can be:

 [1] ?#Footnote1? (Note when using the remote client, the volumes will be mounted from the

 remote server, not necessarily the client machine.)

 The options is a comma-separated list and can be:

 ? rw|ro

 ? z|Z

 ? [r]shared|[r]slave|[r]private[r]unbindable

 ? [r]bind

 ? [no]exec

 ? [no]dev

 ? [no]suid

 ? [O]

 ? [U]

 The CONTAINER-DIR must be an absolute path such as /src/docs. The volume will be mounted

 into the container at this directory.

 Volumes may specify a source as well, as either a directory on the host or the name of a

 named volume. If no source is given, the volume will be created as an anonymously named

 volume with a randomly generated name, and will be removed when the container is removed

 via the --rm flag or podman rm --volumes. Page 26/33

 If a volume source is specified, it must be a path on the host or the name of a named vol?

 ume. Host paths are allowed to be absolute or relative; relative paths are resolved rela?

 tive to the directory Podman is run in. If the source does not exist, Podman will return

 an error. Users must pre-create the source files or directories.

 Any source that does not begin with a . or / will be treated as the name of a named vol?

 ume. If a volume with that name does not exist, it will be created. Volumes created with

 names are not anonymous, and they are not removed by the --rm option and the podman rm

 --volumes command.

 You can specify multiple -v options to mount one or more volumes into a container.

 Write Protected Volume Mounts

 You can add :ro or :rw suffix to a volume to mount it read-only or read-write mode, re?

 spectively. By default, the volumes are mounted read-write. See examples.

 Chowning Volume Mounts

 By default, Podman does not change the owner and group of source volume directories

 mounted into containers. If a container is created in a new user namespace, the UID and

 GID in the container may correspond to another UID and GID on the host.

 The :U suffix tells Podman to use the correct host UID and GID based on the UID and GID

 within the container, to change recursively the owner and group of the source volume.

 Warning use with caution since this will modify the host filesystem.

 Labeling Volume Mounts

 Labeling systems like SELinux require that proper labels are placed on volume content

 mounted into a container. Without a label, the security system might prevent the processes

 running inside the container from using the content. By default, Podman does not change

 the labels set by the OS.

 To change a label in the container context, you can add either of two suffixes :z or :Z to

 the volume mount. These suffixes tell Podman to relabel file objects on the shared vol?

 umes. The z option tells Podman that two containers share the volume content. As a result,

 Podman labels the content with a shared content label. Shared volume labels allow all con?

 tainers to read/write content. The Z option tells Podman to label the content with a pri?

 vate unshared label. Only the current container can use a private volume.

 Note: Do not relabel system files and directories. Relabeling system content might cause

 other confined services on your machine to fail. For these types of containers we recom?

 mend that disable SELinux separation. The option --security-opt label=disable disables Page 27/33

 SELinux separation for containers used in the build. For example if a user wanted to vol?

 ume mount their entire home directory into a container, they need to disable SELinux sepa?

 ration.

 $ podman create --security-opt label=disable -v $HOME:/home/user fedora touch /home/user/file

 Overlay Volume Mounts

 The :O flag tells Podman to mount the directory from the host as a temporary storage using

 the overlay file system. The container processes can modify content within the mountpoint

 which is stored in the container storage in a separate directory. In overlay terms, the

 source directory will be the lower, and the container storage directory will be the upper.

 Modifications to the mount point are destroyed when the container finishes executing, sim?

 ilar to a tmpfs mount point being unmounted.

 Subsequent executions of the container will see the original source directory content, any

 changes from previous container executions no longer exist.

 One use case of the overlay mount is sharing the package cache from the host into the con?

 tainer to allow speeding up builds.

 Note:

 - The `O` flag conflicts with other options listed above.

 Content mounted into the container is labeled with the private label.

 On SELinux systems, labels in the source directory must be readable by the con?

 tainer label. Usually containers can read/execute container_share_t and can read/write

 container_file_t. If you cannot change the labels on a source volume, SELinux container

 separation must be disabled for the container to work.

 - The source directory mounted into the container with an overlay mount should not be

 modified, it can cause unexpected failures. It is recommended that you do not modify the

 directory until the container finishes running.

 Mounts propagation

 By default bind mounted volumes are private. That means any mounts done inside container

 will not be visible on host and vice versa. One can change this behavior by specifying a

 volume mount propagation property. Making a volume shared mounts done under that volume

 inside container will be visible on host and vice versa. Making a volume slave enables

 only one way mount propagation and that is mounts done on host under that volume will be

 visible inside container but not the other way around. [1] ?#Footnote1?

 To control mount propagation property of a volume one can use the [r]shared, [r]slave, Page 28/33

 [r]private or the [r]unbindable propagation flag. Propagation property can be specified

 only for bind mounted volumes and not for internal volumes or named volumes. For mount

 propagation to work the source mount point (the mount point where source dir is mounted

 on) has to have the right propagation properties. For shared volumes, the source mount

 point has to be shared. And for slave volumes, the source mount point has to be either

 shared or slave. [1] ?#Footnote1?

 If you want to recursively mount a volume and all of its submounts into a container, then

 you can use the rbind option. By default the bind option is used, and submounts of the

 source directory will not be mounted into the container.

 Mounting the volume with the nosuid options means that SUID applications on the volume

 will not be able to change their privilege. By default volumes are mounted with nosuid.

 Mounting the volume with the noexec option means that no executables on the volume will be

 able to executed within the container.

 Mounting the volume with the nodev option means that no devices on the volume will be able

 to be used by processes within the container. By default volumes are mounted with nodev.

 If the <source-dir> is a mount point, then "dev", "suid", and "exec" options are ignored

 by the kernel.

 Use df <source-dir> to figure out the source mount and then use findmnt -o TARGET,PROPAGA?

 TION <source-mount-dir> to figure out propagation properties of source mount. If findmnt

 utility is not available, then one can look at mount entry for source mount point in

 /proc/self/mountinfo. Look at optional fields and see if any propagation properties are

 specified. shared:X means mount is shared, master:X means mount is slave and if nothing

 is there that means mount is private. [1] ?#Footnote1?

 To change propagation properties of a mount point use mount command. For example, if one

 wants to bind mount source directory /foo one can do mount --bind /foo /foo and mount

 --make-private --make-shared /foo. This will convert /foo into a shared mount point. Al?

 ternatively one can directly change propagation properties of source mount. Say / is

 source mount for /foo, then use mount --make-shared / to convert / into a shared mount.

 Note: if the user only has access rights via a group, accessing the volume from inside a

 rootless container will fail. Use the --group-add keep-groups flag to pass the user's sup?

 plementary group access into the container.

 --volumes-from[=CONTAINER[:OPTIONS]]

 Mount volumes from the specified container(s). Used to share volumes between containers. Page 29/33

 The options is a comma-separated list with the following available elements:

 ? rw|ro

 ? z

 Mounts already mounted volumes from a source container onto another container. You must

 supply the source's container-id or container-name. To share a volume, use the --volumes-

 from option when running the target container. You can share volumes even if the source

 container is not running.

 By default, Podman mounts the volumes in the same mode (read-write or read-only) as it is

 mounted in the source container. You can change this by adding a ro or rw option.

 Labeling systems like SELinux require that proper labels are placed on volume content

 mounted into a container. Without a label, the security system might prevent the processes

 running inside the container from using the content. By default, Podman does not change

 the labels set by the OS.

 To change a label in the container context, you can add z to the volume mount. This suf?

 fix tells Podman to relabel file objects on the shared volumes. The z option tells Podman

 that two containers share the volume content. As a result, Podman labels the content with

 a shared content label. Shared volume labels allow all containers to read/write content.

 If the location of the volume from the source container overlaps with data residing on a

 target container, then the volume hides that data on the target.

 --workdir, -w=dir

 Working directory inside the container

 The default working directory for running binaries within a container is the root direc?

 tory (/). The image developer can set a different default with the WORKDIR instruction.

 The operator can override the working directory by using the -w option.

 --pidfile=path

 When the pidfile location is specified, the container process' PID will be written to the

 pidfile. (This option is not available with the remote Podman client) If the pidfile op?

 tion is not specified, the container process' PID will be written to /run/containers/stor?

 age/${storage-driver}-containers/$CID/userdata/pidfile.

 After the container is started, the location for the pidfile can be discovered with the

 following podman inspect command:

 $ podman inspect --format '{{ .PidFile }}' $CID

 /run/containers/storage/${storage-driver}-containers/$CID/userdata/pidfile Page 30/33

EXAMPLES

 Create a container using a local image

 $ podman create alpine ls

 Create a container using a local image and annotate it

 $ podman create --annotation HELLO=WORLD alpine ls

 Create a container using a local image, allocating a pseudo-TTY, keeping stdin open and name

 it myctr

 podman create -t -i --name myctr alpine ls

 Set UID/GID mapping in a new user namespace

 Running a container in a new user namespace requires a mapping of the uids and gids from

 the host.

 $ podman create --uidmap 0:30000:7000 --gidmap 0:30000:7000 fedora echo hello

 Setting automatic user namespace separated containers

 # podman create --userns=auto:size=65536 ubi8-init

 Configure timezone in a container

 $ podman create --tz=local alpine date

 $ podman create --tz=Asia/Shanghai alpine date

 $ podman create --tz=US/Eastern alpine date

 Adding dependency containers

 Podman will make sure the first container, container1, is running before the second con?

 tainer (container2) is started.

 $ podman create --name container1 -t -i fedora bash

 $ podman create --name container2 --requires container1 -t -i fedora bash

 $ podman start --attach container2

 Multiple containers can be required.

 $ podman create --name container1 -t -i fedora bash

 $ podman create --name container2 -t -i fedora bash

 $ podman create --name container3 --requires container1,container2 -t -i fedora bash

 $ podman start --attach container3

 Configure keep supplemental groups for access to volume

 $ podman create -v /var/lib/design:/var/lib/design --group-add keep-groups ubi8

 Configure execution domain for containers using personality flag

 $ podman create --name container1 --personaity=LINUX32 fedora bash Page 31/33

 Rootless Containers

 Podman runs as a non root user on most systems. This feature requires that a new enough

 version of shadow-utils be installed. The shadow-utils package must include the newuidmap

 and newgidmap executables.

 Note: RHEL7 and Centos 7 will not have this feature until RHEL7.7 is released.

 In order for users to run rootless, there must be an entry for their username in /etc/sub?

 uid and /etc/subgid which lists the UIDs for their user namespace.

 Rootless Podman works better if the fuse-overlayfs and slirp4netns packages are installed.

 The fuse-overlayfs package provides a userspace overlay storage driver, otherwise users

 need to use the vfs storage driver, which is diskspace expensive and does not perform

 well. slirp4netns is required for VPN, without it containers need to be run with the

 --network=host flag.

ENVIRONMENT

 Environment variables within containers can be set using multiple different options: This

 section describes the precedence.

 Precedence order (later entries override earlier entries):

 ? --env-host : Host environment of the process executing Podman is added.

 ? --http-proxy: By default, several environment variables will be passed in from

 the host, such as http_proxy and no_proxy. See --http-proxy for details.

 ? Container image : Any environment variables specified in the container image.

 ? --env-file : Any environment variables specified via env-files. If multiple files

 specified, then they override each other in order of entry.

 ? --env : Any environment variables specified will override previous settings.

 Create containers and set the environment ending with a * and a *****

 $ export ENV1=a

 $ podman create --name ctr --env ENV* alpine printenv ENV1

 $ podman start --attach ctr

 a

 $ podman create --name ctr --env ENV*****=b alpine printenv ENV*****

 $ podman start --attach ctr

 b

CONMON

 When Podman starts a container it actually executes the conmon program, which then exe? Page 32/33

 cutes the OCI Runtime. Conmon is the container monitor. It is a small program whose job

 is to watch the primary process of the container, and if the container dies, save the exit

 code. It also holds open the tty of the container, so that it can be attached to later.

 This is what allows Podman to run in detached mode (backgrounded), so Podman can exit but

 conmon continues to run. Each container has their own instance of conmon. Conmon waits

 for the container to exit, gathers and saves the exit code, and then launches a Podman

 process to complete the container cleanup, by shutting down the network and storage. For

 more information on conmon, please reference the conmon(8) man page.

FILES

 /etc/subuid /etc/subgid

 NOTE: Use the environment variable TMPDIR to change the temporary storage location of

 downloaded container images. Podman defaults to use /var/tmp.

SEE ALSO

 podman(1), podman-secret(1), podman-save(1), podman-ps(1), podman-attach(1), podman-pod-

 create(1), podman-port(1), *podman-start(1), podman-kill(1), podman-stop(1), podman-gener?

 ate-systemd(1) podman-rm(1), subgid(5), subuid(5), containers.conf(5), systemd.unit(5),

 setsebool(8), slirp4netns(1), fuse-overlayfs(1), proc(5), conmon(8), personality(2).

HISTORY

 October 2017, converted from Docker documentation to Podman by Dan Walsh for Podman

 <dwalsh@redhat.com>

 November 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>

 September 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>

 August 2014, updated by Sven Dowideit <SvenDowideit@home.org.au>

FOOTNOTES

 1: The Podman project is committed to inclusivity, a core value of open source. The master

 and slave mount propagation terminology used here is problematic and divisive, and should

 be changed. However, these terms are currently used within the Linux kernel and must be

 used as-is at this time. When the kernel maintainers rectify this usage, Podman will fol?

 low suit immediately.

 podman-create(1)()

Page 33/33

