
Rocky Enterprise Linux 9.2 Manual Pages on command 'podman-generate-systemd.1'

$ man podman-generate-systemd.1

podman-generate-systemd(1)() podman-generate-systemd(1)()

NAME

 podman-generate-systemd - Generate systemd unit file(s) for a container or pod

SYNOPSIS

 podman generate systemd [options] container|pod

DESCRIPTION

 podman generate systemd will create a systemd unit file that can be used to control a con?

 tainer or pod. By default, the command will print the content of the unit files to std?

 out.

 _Note: If you use this command with the remote client, you would still have to place the

 generated units on the remote system. Moreover, please make sure that the XDG_RUNTIMEDIR

 environment variable is set. If unset, you may set it via export XDG_RUN?

 TIME_DIR=/run/user/$(id -u).

OPTIONS

 --files, -f

 Generate files instead of printing to stdout. The generated files are named {con?

 tainer,pod}-{ID,name}.service and will be placed in the current working directory.

 Note: On a system with SELinux enabled, the generated files will inherit contexts from the

 current working directory. Depending on the SELinux setup, changes to the generated files

 using restorecon, chcon, or semanage may be required to allow systemd to access these

 files. Alternatively, use the -Z option when running mv or cp.

 --format=format

 Print the created units in specified format (json). If --files is specified the paths to Page 1/7

 the created files will be printed instead of the unit content.

 --name, -n

 Use the name of the container for the start, stop, and description in the unit file

 --new

 Using this flag will yield unit files that do not expect containers and pods to exist.

 Instead, new containers and pods are created based on their configuration files. The unit

 files are created best effort and may need to be further edited; please review the gener?

 ated files carefully before using them in production.

 Note that --new only works on containers and pods created directly via Podman (i.e., pod?

 man [container] {create,run} or podman pod create). It does not work on containers or

 pods created via the REST API or via podman play kube.

 --no-header

 Do not generate the header including meta data such as the Podman version and the time?

 stamp.

 --time, -t=value

 Override the default stop timeout for the container with the given value.

 --restart-policy=policy

 Set the systemd restart policy. The restart-policy must be one of: "no", "on-success",

 "on-failure", "on-abnormal", "on-watchdog", "on-abort", or "always". The default policy

 is on-failure.

 --container-prefix=prefix

 Set the systemd unit name prefix for containers. The default is container.

 --pod-prefix=prefix

 Set the systemd unit name prefix for pods. The default is pod.

 --separator=separator

 Set the systemd unit name separator between the name/id of a container/pod and the prefix.

 The default is -.

EXAMPLES

 Generate and print a systemd unit file for a container

 Generate a systemd unit file for a container running nginx with an always restart policy

 and 1-second timeout to stdout. Note that the RequiresMountsFor option in the Unit section

 ensures that the container storage for both the GraphRoot and the RunRoot are mounted

 prior to starting the service. For systems with container storage on disks like iSCSI or Page 2/7

 other remote block protocols, this ensures that Podman is not executed prior to any neces?

 sary storage operations coming online.

 $ podman create --name nginx nginx:latest

 $ podman generate systemd --restart-policy=always -t 1 nginx

 # container-de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6.service

 # autogenerated by Podman 1.8.0

 # Wed Mar 09 09:46:45 CEST 2020

 [Unit]

 Description=Podman

container-de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6.service

 Documentation=man:podman-generate-systemd(1)

 Wants=network-online.target

 After=network-online.target

 RequiresMountsFor=/var/run/container/storage

 [Service]

 Restart=always

 ExecStart=/usr/bin/podman start de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6

 ExecStop=/usr/bin/podman stop -t 1 de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6

 KillMode=none

 Type=forking

PIDFile=/run/user/1000/overlay-containers/de1e3223b1b888bc02d0962dd6cb5855eb00734061013ffdd3479d225abacdc6/u

serdata/conmon.pid

 [Install]

 WantedBy=default.target

 Generate systemd unit file for a container with --new flag

 The --new flag generates systemd unit files that create and remove containers at service

 start and stop commands (see ExecStartPre and ExecStopPost service actions). Such unit

 files are not tied to a single machine and can easily be shared and used on other ma?

 chines.

 $ sudo podman generate systemd --new --files --name bb310a0780ae

 # container-busy_moser.service

 # autogenerated by Podman 1.8.3 Page 3/7

 # Fri Apr 3 09:40:47 EDT 2020

 [Unit]

 Description=Podman container-busy_moser.service

 Documentation=man:podman-generate-systemd(1)

 Wants=network-online.target

 After=network-online.target

 RequiresMountsFor=/var/run/container/storage

 [Service]

 Environment=PODMAN_SYSTEMD_UNIT=%n

 Restart=on-failure

 ExecStartPre=/bin/rm -f %t/%n-pid %t/%n-cid

 ExecStart=/usr/local/bin/podman run --conmon-pidfile %t/%n-pid --cidfile %t/%n-cid --cgroups=no-conmon -d -dit

alpine

 ExecStop=/usr/local/bin/podman stop --ignore --cidfile %t/%n-cid -t 10

 ExecStopPost=/usr/local/bin/podman rm --ignore -f --cidfile %t/%n-cid

 PIDFile=%t/%n-pid

 KillMode=none

 Type=forking

 [Install]

 WantedBy=default.target

 Generate systemd unit files for a pod with two simple alpine containers

 Note systemctl should only be used on the pod unit and one should not start or stop con?

 tainers individually via systemctl, as they are managed by the pod service along with the

 internal infra-container.

 You can still use systemctl status or journalctl to examine container or pod unit files.

 $ podman pod create --name systemd-pod

 $ podman create --pod systemd-pod alpine top

 $ podman create --pod systemd-pod alpine top

 $ podman generate systemd --files --name systemd-pod

 /home/user/pod-systemd-pod.service

 /home/user/container-amazing_chandrasekhar.service

 /home/user/container-jolly_shtern.service

 $ cat pod-systemd-pod.service Page 4/7

 # pod-systemd-pod.service

 # autogenerated by Podman 1.8.0

 # Wed Mar 09 09:52:37 CEST 2020

 [Unit]

 Description=Podman pod-systemd-pod.service

 Documentation=man:podman-generate-systemd(1)

 Requires=container-amazing_chandrasekhar.service container-jolly_shtern.service

 Before=container-amazing_chandrasekhar.service container-jolly_shtern.service

 Wants=network-online.target

 After=network-online.target

 RequiresMountsFor=/var/run/container/storage

 [Service]

 Restart=on-failure

 ExecStart=/usr/bin/podman start 77a818221650-infra

 ExecStop=/usr/bin/podman stop -t 10 77a818221650-infra

 KillMode=none

 Type=forking

PIDFile=/run/user/1000/overlay-containers/ccfd5c71a088768774ca7bd05888d55cc287698dde06f475c8b02f696a25adcd/us

erdata/conmon.pid

 [Install]

 WantedBy=default.target

 Installation of generated systemd unit files.

 Podman-generated unit files include an [Install] section, which carries installation in?

 formation for the unit. It is used by the enable and disable commands of systemctl(1) dur?

 ing installation.

 Once you have generated the systemd unit file, you can copy the generated systemd file to

 /etc/systemd/system for installing as a root user and to $HOME/.config/systemd/user for

 installing it as a non-root user. Enable the copied unit file or files using systemctl en?

 able.

 Note: Copying unit files to /etc/systemd/system and enabling it marks the unit file to be

 automatically started at boot. And similarly, copying a unit file to $HOME/.config/sys?

 temd/user and enabling it marks the unit file to be automatically started on user login. Page 5/7

 # Generated systemd files.

 $ podman pod create --name systemd-pod

 $ podman create --pod systemd-pod alpine top

 $ podman generate systemd --files --name systemd-pod

 # Copy all the generated files.

 $ sudo cp pod-systemd-pod.service container-great_payne.service /etc/systemd/system

 $ systemctl enable pod-systemd-pod.service

 Created symlink /etc/systemd/system/default.target.wants/pod-systemd-pod.service ?

/etc/systemd/system/pod-systemd-pod.service.

 $ systemctl is-enabled pod-systemd-pod.service

 enabled

 To run the user services placed in $HOME/.config/systemd/user on first login of that user,

 enable the service with --user flag.

 $ systemctl --user enable <.service>

 The systemd user instance is killed after the last session for the user is closed. The

 systemd user instance can be kept running ever after the user logs out by enabling linger?

 ing using

 $ loginctl enable-linger <username>

 Use systemctl to perform operations on generated installed unit files.

 Create and enable systemd unit files for a pod using the above examples as reference and

 use systemctl to perform operations.

 Since systemctl defaults to using the root user, all the changes using the systemctl can

 be seen by appending sudo to the podman cli commands. To perform systemctl actions as a

 non-root user use the --user flag when interacting with systemctl.

 Note: If the previously created containers or pods are using shared resources, such as

 ports, make sure to remove them before starting the generated systemd units.

 $ systemctl --user start pod-systemd-pod.service

 $ podman pod ps

 POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID

 0815c7b8e7f5 systemd-pod Running 29 minutes ago 2 6c5d116f4bbe

 $ sudo podman ps # 0 Number of pods on root.

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 $ systemctl stop pod-systemd-pod.service Page 6/7

 $ podman pod ps

 POD ID NAME STATUS CREATED # OF CONTAINERS INFRA ID

 272d2813c798 systemd-pod Exited 29 minutes ago 2 6c5d116f4bbe

 Create a simple alpine container and generate the systemd unit file with --new flag. En?

 able the service and control operations using the systemctl commands.

 Note: When starting the container using systemctl start rather than altering the already

 running container it spins up a "new" container with similar configuration.

 # Enable the service.

 $ sudo podman ps -a

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 bb310a0780ae docker.io/library/alpine:latest /bin/sh 2 minutes ago Created busy_moser

 $ sudo systemctl start container-busy_moser.service

 $ sudo podman ps -a

 CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

 772df2f8cf3b docker.io/library/alpine:latest /bin/sh 1 second ago Up 1 second ago distracted_albattani

 bb310a0780ae docker.io/library/alpine:latest /bin/sh 3 minutes ago Created busy_moser

SEE ALSO

 [podman(1)], [podman-container(1)], systemctl(1), systemd.unit(5), systemd.service(5),

 conmon(8).

HISTORY

 April 2020, Updated details and added use case to use generated .service files as root and

 non-root, by Sujil Shah (sushah at redhat dot com)

 August 2019, Updated with pod support by Valentin Rothberg (rothberg at redhat dot com)

 April 2019, Originally compiled by Brent Baude (bbaude at redhat dot com)

 podman-generate-systemd(1)()

Page 7/7

