
Rocky Enterprise Linux 9.2 Manual Pages on command 'posix_spawn.3'

$ man posix_spawn.3

POSIX_SPAWN(3) Linux Programmer's Manual POSIX_SPAWN(3)

NAME

 posix_spawn, posix_spawnp - spawn a process

SYNOPSIS

 #include <spawn.h>

 int posix_spawn(pid_t *pid, const char *path,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *attrp,

 char *const argv[], char *const envp[]);

 int posix_spawnp(pid_t *pid, const char *file,

 const posix_spawn_file_actions_t *file_actions,

 const posix_spawnattr_t *attrp,

 char *const argv[], char *const envp[]);

DESCRIPTION

 The posix_spawn() and posix_spawnp() functions are used to create a new child process that

 executes a specified file. These functions were specified by POSIX to provide a standard?

 ized method of creating new processes on machines that lack the capability to support the

 fork(2) system call. These machines are generally small, embedded systems lacking MMU

 support.

 The posix_spawn() and posix_spawnp() functions provide the functionality of a combined

 fork(2) and exec(3), with some optional housekeeping steps in the child process before the

 exec(3). These functions are not meant to replace the fork(2) and execve(2) system calls.

 In fact, they provide only a subset of the functionality that can be achieved by using the Page 1/11

 system calls.

 The only difference between posix_spawn() and posix_spawnp() is the manner in which they

 specify the file to be executed by the child process. With posix_spawn(), the executable

 file is specified as a pathname (which can be absolute or relative). With posix_spawnp(),

 the executable file is specified as a simple filename; the system searches for this file

 in the list of directories specified by PATH (in the same way as for execvp(3)). For the

 remainder of this page, the discussion is phrased in terms of posix_spawn(), with the un?

 derstanding that posix_spawnp() differs only on the point just described.

 The remaining arguments to these two functions are as follows:

 * The pid argument points to a buffer that is used to return the process ID of the new

 child process.

 * The file_actions argument points to a spawn file actions object that specifies file-re?

 lated actions to be performed in the child between the fork(2) and exec(3) steps. This

 object is initialized and populated before the posix_spawn() call using

 posix_spawn_file_actions_init(3) and the posix_spawn_file_actions_*() functions.

 * The attrp argument points to an attributes objects that specifies various attributes of

 the created child process. This object is initialized and populated before the

 posix_spawn() call using posix_spawnattr_init(3) and the posix_spawnattr_*() functions.

 * The argv and envp arguments specify the argument list and environment for the program

 that is executed in the child process, as for execve(2).

 Below, the functions are described in terms of a three-step process: the fork() step, the

 pre-exec() step (executed in the child), and the exec() step (executed in the child).

 fork() step

 Since glibc 2.24, the posix_spawn() function commences by calling clone(2) with CLONE_VM

 and CLONE_VFORK flags. Older implementations use fork(2), or possibly vfork(2) (see be?

 low).

 The PID of the new child process is placed in *pid. The posix_spawn() function then re?

 turns control to the parent process.

 Subsequently, the parent can use one of the system calls described in wait(2) to check the

 status of the child process. If the child fails in any of the housekeeping steps de?

 scribed below, or fails to execute the desired file, it exits with a status of 127.

 Before glibc 2.24, the child process is created using vfork(2) instead of fork(2) when ei?

 ther of the following is true: Page 2/11

 * the spawn-flags element of the attributes object pointed to by attrp contains the GNU-

 specific flag POSIX_SPAWN_USEVFORK; or

 * file_actions is NULL and the spawn-flags element of the attributes object pointed to by

 attrp does not contain POSIX_SPAWN_SETSIGMASK, POSIX_SPAWN_SETSIGDEF,

 POSIX_SPAWN_SETSCHEDPARAM, POSIX_SPAWN_SETSCHEDULER, POSIX_SPAWN_SETPGROUP, or

 POSIX_SPAWN_RESETIDS.

 In other words, vfork(2) is used if the caller requests it, or if there is no cleanup ex?

 pected in the child before it exec(3)s the requested file.

 pre-exec() step: housekeeping

 In between the fork() and the exec() steps, a child process may need to perform a set of

 housekeeping actions. The posix_spawn() and posix_spawnp() functions support a small,

 well-defined set of system tasks that the child process can accomplish before it executes

 the executable file. These operations are controlled by the attributes object pointed to

 by attrp and the file actions object pointed to by file_actions. In the child, processing

 is done in the following sequence:

 1. Process attribute actions: signal mask, signal default handlers, scheduling algorithm

 and parameters, process group, and effective user and group IDs are changed as speci?

 fied by the attributes object pointed to by attrp.

 2. File actions, as specified in the file_actions argument, are performed in the order

 that they were specified using calls to the posix_spawn_file_actions_add*() functions.

 3. File descriptors with the FD_CLOEXEC flag set are closed.

 All process attributes in the child, other than those affected by attributes specified in

 the object pointed to by attrp and the file actions in the object pointed to by file_ac?

 tions, will be affected as though the child was created with fork(2) and it executed the

 program with execve(2).

 The process attributes actions are defined by the attributes object pointed to by attrp.

 The spawn-flags attribute (set using posix_spawnattr_setflags(3)) controls the general ac?

 tions that occur, and other attributes in the object specify values to be used during

 those actions.

 The effects of the flags that may be specified in spawn-flags are as follows:

 POSIX_SPAWN_SETSIGMASK

 Set the signal mask to the signal set specified in the spawn-sigmask attribute of

 the object pointed to by attrp. If the POSIX_SPAWN_SETSIGMASK flag is not set, Page 3/11

 then the child inherits the parent's signal mask.

 POSIX_SPAWN_SETSIGDEF

 Reset the disposition of all signals in the set specified in the spawn-sigdefault

 attribute of the object pointed to by attrp to the default. For the treatment of

 the dispositions of signals not specified in the spawn-sigdefault attribute, or the

 treatment when POSIX_SPAWN_SETSIGDEF is not specified, see execve(2).

 POSIX_SPAWN_SETSCHEDPARAM

 If this flag is set, and the POSIX_SPAWN_SETSCHEDULER flag is not set, then set the

 scheduling parameters to the parameters specified in the spawn-schedparam attribute

 of the object pointed to by attrp.

 POSIX_SPAWN_SETSCHEDULER

 Set the scheduling policy algorithm and parameters of the child, as follows:

 * The scheduling policy is set to the value specified in the spawn-schedpolicy at?

 tribute of the object pointed to by attrp.

 * The scheduling parameters are set to the value specified in the spawn-schedparam

 attribute of the object pointed to by attrp (but see BUGS).

 If the POSIX_SPAWN_SETSCHEDPARAM and POSIX_SPAWN_SETSCHEDPOLICY flags are not spec?

 ified, the child inherits the corresponding scheduling attributes from the parent.

 POSIX_SPAWN_RESETIDS

 If this flag is set, reset the effective UID and GID to the real UID and GID of the

 parent process. If this flag is not set, then the child retains the effective UID

 and GID of the parent. In either case, if the set-user-ID and set-group-ID permis?

 sion bits are enabled on the executable file, their effect will override the set?

 ting of the effective UID and GID (se execve(2)).

 POSIX_SPAWN_SETPGROUP

 Set the process group to the value specified in the spawn-pgroup attribute of the

 object pointed to by attrp. If the spawn-pgroup attribute has the value 0, the

 child's process group ID is made the same as its process ID. If the

 POSIX_SPAWN_SETPGROUP flag is not set, the child inherits the parent's process

 group ID.

 POSIX_SPAWN_USEVFORK

 Since glibc 2.24, this flag has no effect. On older implementations, setting this

 flag forces the fork() step to use vfork(2) instead of fork(2). The _GNU_SOURCE Page 4/11

 feature test macro must be defined to obtain the definition of this constant.

 POSIX_SPAWN_SETSID (since glibc 2.26)

 If this flag is set, the child process shall create a new session and become the

 session leader. The child process shall also become the process group leader of

 the new process group in the session (see setsid(2)). The _GNU_SOURCE feature test

 macro must be defined to obtain the definition of this constant.

 If attrp is NULL, then the default behaviors described above for each flag apply.

 The file_actions argument specifies a sequence of file operations that are performed in

 the child process after the general processing described above, and before it performs the

 exec(3). If file_actions is NULL, then no special action is taken, and standard exec(3)

 semantics apply?file descriptors open before the exec remain open in the new process, ex?

 cept those for which the FD_CLOEXEC flag has been set. File locks remain in place.

 If file_actions is not NULL, then it contains an ordered set of requests to open(2),

 close(2), and dup2(2) files. These requests are added to the file_actions by

 posix_spawn_file_actions_addopen(3), posix_spawn_file_actions_addclose(3), and

 posix_spawn_file_actions_adddup2(3). The requested operations are performed in the order

 they were added to file_actions.

 If any of the housekeeping actions fails (due to bogus values being passed or other rea?

 sons why signal handling, process scheduling, process group ID functions, and file de?

 scriptor operations might fail), the child process exits with exit value 127.

 exec() step

 Once the child has successfully forked and performed all requested pre-exec steps, the

 child runs the requested executable.

 The child process takes its environment from the envp argument, which is interpreted as if

 it had been passed to execve(2). The arguments to the created process come from the argv

 argument, which is processed as for execve(2).

RETURN VALUE

 Upon successful completion, posix_spawn() and posix_spawnp() place the PID of the child

 process in pid, and return 0. If there is an error during the fork() step, then no child

 is created, the contents of *pid are unspecified, and these functions return an error num?

 ber as described below.

 Even when these functions return a success status, the child process may still fail for a

 plethora of reasons related to its pre-exec() initialization. In addition, the exec(3) Page 5/11

 may fail. In all of these cases, the child process will exit with the exit value of 127.

ERRORS

 The posix_spawn() and posix_spawnp() functions fail only in the case where the underlying

 fork(2), vfork(2) or clone(2) call fails; in these cases, these functions return an error

 number, which will be one of the errors described for fork(2), vfork(2) or clone(2).

 In addition, these functions fail if:

 ENOSYS Function not supported on this system.

VERSIONS

 The posix_spawn() and posix_spawnp() functions are available since glibc 2.2.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 The housekeeping activities in the child are controlled by the objects pointed to by attrp

 (for non-file actions) and file_actions In POSIX parlance, the posix_spawnattr_t and

 posix_spawn_file_actions_t data types are referred to as objects, and their elements are

 not specified by name. Portable programs should initialize these objects using only the

 POSIX-specified functions. (In other words, although these objects may be implemented as

 structures containing fields, portable programs must avoid dependence on such implementa?

 tion details.)

 According to POSIX, it is unspecified whether fork handlers established with pthread_at?

 fork(3) are called when posix_spawn() is invoked. Since glibc 2.24, the fork handlers are

 not executed in any case. On older implementations, fork handlers are called only if the

 child is created using fork(2).

 There is no "posix_fspawn" function (i.e., a function that is to posix_spawn() as fex?

 ecve(3) is to execve(2)). However, this functionality can be obtained by specifying the

 path argument as one of the files in the caller's /proc/self/fd directory.

BUGS

 POSIX.1 says that when POSIX_SPAWN_SETSCHEDULER is specified in spawn-flags, then the

 POSIX_SPAWN_SETSCHEDPARAM (if present) is ignored. However, before glibc 2.14, calls to

 posix_spawn() failed with an error if POSIX_SPAWN_SETSCHEDULER was specified without also

 specifying POSIX_SPAWN_SETSCHEDPARAM.

EXAMPLES

 The program below demonstrates the use of various functions in the POSIX spawn API. The Page 6/11

 program accepts command-line attributes that can be used to create file actions and at?

 tributes objects. The remaining command-line arguments are used as the executable name

 and command-line arguments of the program that is executed in the child.

 In the first run, the date(1) command is executed in the child, and the posix_spawn() call

 employs no file actions or attributes objects.

 $./a.out date

 PID of child: 7634

 Tue Feb 1 19:47:50 CEST 2011

 Child status: exited, status=0

 In the next run, the -c command-line option is used to create a file actions object that

 closes standard output in the child. Consequently, date(1) fails when trying to perform

 output and exits with a status of 1.

 $./a.out -c date

 PID of child: 7636

 date: write error: Bad file descriptor

 Child status: exited, status=1

 In the next run, the -s command-line option is used to create an attributes object that

 specifies that all (blockable) signals in the child should be blocked. Consequently, try?

 ing to kill child with the default signal sent by kill(1) (i.e., SIGTERM) fails, because

 that signal is blocked. Therefore, to kill the child, SIGKILL is necessary (SIGKILL can't

 be blocked).

 $./a.out -s sleep 60 &

 [1] 7637

 $ PID of child: 7638

 $ kill 7638

 $ kill -KILL 7638

 $ Child status: killed by signal 9

 [1]+ Done ./a.out -s sleep 60

 When we try to execute a nonexistent command in the child, the exec(3) fails and the child

 exits with a status of 127.

 $./a.out xxxxx

 PID of child: 10190

 Child status: exited, status=127 Page 7/11

 Program source

 #include <spawn.h>

 #include <stdint.h>

 #include <stdio.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <string.h>

 #include <wait.h>

 #include <errno.h>

 #define errExit(msg) do { perror(msg); \

 exit(EXIT_FAILURE); } while (0)

 #define errExitEN(en, msg) \

 do { errno = en; perror(msg); \

 exit(EXIT_FAILURE); } while (0)

 char **environ;

 int

 main(int argc, char *argv[])

 {

 pid_t child_pid;

 int s, opt, status;

 sigset_t mask;

 posix_spawnattr_t attr;

 posix_spawnattr_t *attrp;

 posix_spawn_file_actions_t file_actions;

 posix_spawn_file_actions_t *file_actionsp;

 /* Parse command-line options, which can be used to specify an

 attributes object and file actions object for the child. */

 attrp = NULL;

 file_actionsp = NULL;

 while ((opt = getopt(argc, argv, "sc")) != -1) {

 switch (opt) {

 case 'c': /* -c: close standard output in child */

 /* Create a file actions object and add a "close" Page 8/11

 action to it */

 s = posix_spawn_file_actions_init(&file_actions);

 if (s != 0)

 errExitEN(s, "posix_spawn_file_actions_init");

 s = posix_spawn_file_actions_addclose(&file_actions,

 STDOUT_FILENO);

 if (s != 0)

 errExitEN(s, "posix_spawn_file_actions_addclose");

 file_actionsp = &file_actions;

 break;

 case 's': /* -s: block all signals in child */

 /* Create an attributes object and add a "set signal mask"

 action to it */

 s = posix_spawnattr_init(&attr);

 if (s != 0)

 errExitEN(s, "posix_spawnattr_init");

 s = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETSIGMASK);

 if (s != 0)

 errExitEN(s, "posix_spawnattr_setflags");

 sigfillset(&mask);

 s = posix_spawnattr_setsigmask(&attr, &mask);

 if (s != 0)

 errExitEN(s, "posix_spawnattr_setsigmask");

 attrp = &attr;

 break;

 }

 }

 /* Spawn the child. The name of the program to execute and the

 command-line arguments are taken from the command-line arguments

 of this program. The environment of the program execed in the

 child is made the same as the parent's environment. */

 s = posix_spawnp(&child_pid, argv[optind], file_actionsp, attrp,

 &argv[optind], environ); Page 9/11

 if (s != 0)

 errExitEN(s, "posix_spawn");

 /* Destroy any objects that we created earlier */

 if (attrp != NULL) {

 s = posix_spawnattr_destroy(attrp);

 if (s != 0)

 errExitEN(s, "posix_spawnattr_destroy");

 }

 if (file_actionsp != NULL) {

 s = posix_spawn_file_actions_destroy(file_actionsp);

 if (s != 0)

 errExitEN(s, "posix_spawn_file_actions_destroy");

 }

 printf("PID of child: %jd\n", (intmax_t) child_pid);

 /* Monitor status of the child until it terminates */

 do {

 s = waitpid(child_pid, &status, WUNTRACED | WCONTINUED);

 if (s == -1)

 errExit("waitpid");

 printf("Child status: ");

 if (WIFEXITED(status)) {

 printf("exited, status=%d\n", WEXITSTATUS(status));

 } else if (WIFSIGNALED(status)) {

 printf("killed by signal %d\n", WTERMSIG(status));

 } else if (WIFSTOPPED(status)) {

 printf("stopped by signal %d\n", WSTOPSIG(status));

 } else if (WIFCONTINUED(status)) {

 printf("continued\n");

 }

 } while (!WIFEXITED(status) && !WIFSIGNALED(status));

 exit(EXIT_SUCCESS);

 }

SEE ALSO Page 10/11

 close(2), dup2(2), execl(2), execlp(2), fork(2), open(2), sched_setparam(2),

 sched_setscheduler(2), setpgid(2), setuid(2), sigaction(2), sigprocmask(2),

 posix_spawn_file_actions_addclose(3), posix_spawn_file_actions_adddup2(3),

 posix_spawn_file_actions_addopen(3), posix_spawn_file_actions_destroy(3),

 posix_spawn_file_actions_init(3), posix_spawnattr_destroy(3), posix_spawnattr_getflags(3),

 posix_spawnattr_getpgroup(3), posix_spawnattr_getschedparam(3),

 posix_spawnattr_getschedpolicy(3), posix_spawnattr_getsigdefault(3),

 posix_spawnattr_getsigmask(3), posix_spawnattr_init(3), posix_spawnattr_setflags(3),

 posix_spawnattr_setpgroup(3), posix_spawnattr_setschedparam(3),

 posix_spawnattr_setschedpolicy(3), posix_spawnattr_setsigdefault(3),

 posix_spawnattr_setsigmask(3), pthread_atfork(3), <spawn.h>, Base Definitions volume of

 POSIX.1-2001, http://www.opengroup.org/unix/online.html

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-11-01 POSIX_SPAWN(3)

Page 11/11

