FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'pow.3'

$ man pow.3

POW(3) Linux Programmer's Manual POW(3)
NAME
pow, powf, powl - power functions
SYNOPSIS
#include <math.h>
double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);
Link with -Im.
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
powf(), powl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >=200112L
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* Glibc versions <= 2.19: */ _.BSD_SOURCE || _SVID_SOURCE
DESCRIPTION
These functions return the value of x raised to the power of y.
RETURN VALUE
On success, these functions return the value of x to the power of y.
If x is a finite value less than 0, and y is a finite noninteger, a domain error occurs,
and a NaN is returned.
If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the mathematically correct sign.

If result underflows, and is not representable, a range error occurs, and 0.0 is returned. Page 1/4

Except as specified below, if x or y is a NaN, the result is a NaN.
If xis +1, the result is 1.0 (even if y is a NaN).
Ifyis O, the result is 1.0 (even if x is a NaN).
If x is +0 (-0), and y is an odd integer greater than 0, the result is +0 (-0).
If X is 0, and y greater than 0 and not an odd integer, the result is +0.
If x is -1, and y is positive infinity or negative infinity, the result is 1.0.
If the absolute value of x is less than 1, and y is negative infinity, the result is posi?
tive infinity.
If the absolute value of x is greater than 1, and y is negative infinity, the result is
+0.
If the absolute value of x is less than 1, and y is positive infinity, the result is +0.
If the absolute value of x is greater than 1, and y is positive infinity, the result is
positive infinity.
If x is negative infinity, and y is an odd integer less than 0, the result is -O.
If x is negative infinity, and y less than 0 and not an odd integer, the result is +0.
If x is negative infinity, and y is an odd integer greater than 0O, the result is negative
infinity.
If x is negative infinity, and y greater than 0 and not an odd integer, the result is pos?
itive infinity.
If x is positive infinity, and y less than 0, the result is +0.
If x is positive infinity, and y greater than 0, the result is positive infinity.
If x is +0 or -0, and y is an odd integer less than 0, a pole error occurs and HUGE_VAL,
HUGE_VALF, or HUGE_VALL, is returned, with the same sign as x.
If x is +0 or -0, and y is less than 0 and not an odd integer, a pole error occurs and
+HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, is returned.
ERRORS
See math_error(7) for information on how to determine whether an error has occurred when
calling these functions.
The following errors can occur:
Domain error: x is negative, and y is a finite noninteger
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is raised.
Pole error: x is zero, and y is negative

errno is setto ERANGE (but see BUGS). A divide-by-zero floating-point exception Page 2/4

(FE_DIVBYZERO) is raised.

Range error: the result overflows
errno is set to ERANGE. An overflow floating-point exception (FE_OVERFLOW) is
raised.

Range error: the result underflows
errno is set to ERANGE. An underflow floating-point exception (FE_UNDERFLOW) is
raised.

ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PP 7???7?72?????0777???7?7?77???7?7?77?7?7?7?7?77

?Interface ? Attribute ? Value ?

PP ???7777?2??7?7?77???7?7?77?7?77?7?77

?pow(), powf(), powl() ? Thread safety ? MT-Safe ?

PP 7???7?7?77?7?77?7?77

CONFORMING TO
C99, POSIX.1-2001, POSIX.1-2008.
The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS

Historical bugs (now fixed)

Before glibc 2.28, on some architectures (e.g., x86-64) pow() may be more than 10,000
times slower for some inputs than for other nearby inputs. This affects only pow(), and
not powf() nor powl(). This problem was fixed in glibc 2.28.
A number of bugs in the glibc implementation of pow() were fixed in glibc version 2.16.
In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the
POSIX-mandated ERANGE. Since version 2.10, glibc does the right thing.
In version 2.3.2 and earlier, when an overflow or underflow error occurs, glibc's pow()
generates a bogus invalid floating-point exception (FE_INVALID) in addition to the over?
flow or underflow exception.

SEE ALSO
cbrt(3), cpow(3), sqrt(3)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the

project, information about reporting bugs, and the latest version of this page, can be Page 3/4

found at https://www.kernel.org/doc/man-pages/.

2020-06-09 POW(3)

Page 4/4

