
Rocky Enterprise Linux 9.2 Manual Pages on command 'pthread_attr_getguardsize.3'

$ man pthread_attr_getguardsize.3

PTHREAD_ATTR_SETGUARDSIZE(3) Linux Programmer's Manual PTHREAD_ATTR_SETGUARDSIZE(3)

NAME

 pthread_attr_setguardsize, pthread_attr_getguardsize - set/get guard size attribute in

 thread attributes object

SYNOPSIS

 #include <pthread.h>

 int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);

 int pthread_attr_getguardsize(const pthread_attr_t *attr,

 size_t *guardsize);

 Compile and link with -pthread.

DESCRIPTION

 The pthread_attr_setguardsize() function sets the guard size attribute of the thread at?

 tributes object referred to by attr to the value specified in guardsize.

 If guardsize is greater than 0, then for each new thread created using attr the system al?

 locates an additional region of at least guardsize bytes at the end of the thread's stack

 to act as the guard area for the stack (but see BUGS).

 If guardsize is 0, then new threads created with attr will not have a guard area.

 The default guard size is the same as the system page size.

 If the stack address attribute has been set in attr (using pthread_attr_setstack(3) or

 pthread_attr_setstackaddr(3)), meaning that the caller is allocating the thread's stack,

 then the guard size attribute is ignored (i.e., no guard area is created by the system):

 it is the application's responsibility to handle stack overflow (perhaps by using mpro?

 tect(2) to manually define a guard area at the end of the stack that it has allocated). Page 1/3

 The pthread_attr_getguardsize() function returns the guard size attribute of the thread

 attributes object referred to by attr in the buffer pointed to by guardsize.

RETURN VALUE

 On success, these functions return 0; on error, they return a nonzero error number.

ERRORS

 POSIX.1 documents an EINVAL error if attr or guardsize is invalid. On Linux these func?

 tions always succeed (but portable and future-proof applications should nevertheless han?

 dle a possible error return).

VERSIONS

 These functions are provided by glibc since version 2.1.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?pthread_attr_setguardsize(), ? Thread safety ? MT-Safe ?

 ?pthread_attr_getguardsize() ? ? ?

 ???

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 A guard area consists of virtual memory pages that are protected to prevent read and write

 access. If a thread overflows its stack into the guard area, then, on most hard architec?

 tures, it receives a SIGSEGV signal, thus notifying it of the overflow. Guard areas start

 on page boundaries, and the guard size is internally rounded up to the system page size

 when creating a thread. (Nevertheless, pthread_attr_getguardsize() returns the guard size

 that was set by pthread_attr_setguardsize().)

 Setting a guard size of 0 may be useful to save memory in an application that creates many

 threads and knows that stack overflow can never occur.

 Choosing a guard size larger than the default size may be necessary for detecting stack

 overflows if a thread allocates large data structures on the stack.

BUGS

 As at glibc 2.8, the NPTL threading implementation includes the guard area within the Page 2/3

 stack size allocation, rather than allocating extra space at the end of the stack, as

 POSIX.1 requires. (This can result in an EINVAL error from pthread_create(3) if the guard

 size value is too large, leaving no space for the actual stack.)

 The obsolete LinuxThreads implementation did the right thing, allocating extra space at

 the end of the stack for the guard area.

EXAMPLES

 See pthread_getattr_np(3).

SEE ALSO

 mmap(2), mprotect(2), pthread_attr_init(3), pthread_attr_setstack(3), pthread_attr_set?

 stacksize(3), pthread_create(3), pthreads(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 PTHREAD_ATTR_SETGUARDSIZE(3)

Page 3/3

