
Linux Ubuntu 22.4.5 Manual Pages on command 'qemu-block-drivers.7'

$ man qemu-block-drivers.7

QEMU-BLOCK-DRIVERS.7(7) QEMU-BLOCK-DRIVERS.7(7)

NAME

 qemu-block-drivers - QEMU block drivers reference

SYNOPSIS

 QEMU block driver reference manual

DESCRIPTION

 Disk image file formats

 QEMU supports many image file formats that can be used with VMs as well as with any

 of the tools (like "qemu-img"). This includes the preferred formats raw and qcow2

 as well as formats that are supported for compatibility with older QEMU versions or

 other hypervisors.

 Depending on the image format, different options can be passed to "qemu-img create"

 and "qemu-img convert" using the "-o" option. This section describes each format

 and the options that are supported for it.

 raw Raw disk image format. This format has the advantage of being simple and easily

 exportable to all other emulators. If your file system supports holes (for

 example in ext2 or ext3 on Linux or NTFS on Windows), then only the written

 sectors will reserve space. Use "qemu-img info" to know the real size used by

 the image or "ls -ls" on Unix/Linux.

 Supported options:

 "preallocation"

 Preallocation mode (allowed values: "off", "falloc", "full"). "falloc"
Page 1/17

 mode preallocates space for image by calling posix_fallocate(). "full"

 mode preallocates space for image by writing data to underlying storage.

 This data may or may not be zero, depending on the storage location.

 qcow2

 QEMU image format, the most versatile format. Use it to have smaller images

 (useful if your filesystem does not supports holes, for example on Windows),

 zlib based compression and support of multiple VM snapshots.

 Supported options:

 "compat"

 Determines the qcow2 version to use. "compat=0.10" uses the traditional

 image format that can be read by any QEMU since 0.10. "compat=1.1" enables

 image format extensions that only QEMU 1.1 and newer understand (this is

 the default). Amongst others, this includes zero clusters, which allow

 efficient copy-on-read for sparse images.

 "backing_file"

 File name of a base image (see create subcommand)

 "backing_fmt"

 Image format of the base image

 "encryption"

 This option is deprecated and equivalent to "encrypt.format=aes"

 "encrypt.format"

 If this is set to "luks", it requests that the qcow2 payload (not qcow2

 header) be encrypted using the LUKS format. The passphrase to use to unlock

 the LUKS key slot is given by the "encrypt.key-secret" parameter. LUKS

 encryption parameters can be tuned with the other "encrypt.*" parameters.

 If this is set to "aes", the image is encrypted with 128-bit AES-CBC. The

 encryption key is given by the "encrypt.key-secret" parameter. This

 encryption format is considered to be flawed by modern cryptography

 standards, suffering from a number of design problems:

 -<The AES-CBC cipher is used with predictable initialization vectors based>

 on the sector number. This makes it vulnerable to chosen plaintext

 attacks which can reveal the existence of encrypted data.

 -<The user passphrase is directly used as the encryption key. A poorly> Page 2/17

 chosen or short passphrase will compromise the security of the

 encryption.

 -<In the event of the passphrase being compromised there is no way to>

 change the passphrase to protect data in any qcow images. The files

 must be cloned, using a different encryption passphrase in the new

 file. The original file must then be securely erased using a program

 like shred, though even this is ineffective with many modern storage

 technologies.

 The use of this is no longer supported in system emulators. Support only

 remains in the command line utilities, for the purposes of data liberation

 and interoperability with old versions of QEMU. The "luks" format should be

 used instead.

 "encrypt.key-secret"

 Provides the ID of a "secret" object that contains the passphrase

 ("encrypt.format=luks") or encryption key ("encrypt.format=aes").

 "encrypt.cipher-alg"

 Name of the cipher algorithm and key length. Currently defaults to

 "aes-256". Only used when "encrypt.format=luks".

 "encrypt.cipher-mode"

 Name of the encryption mode to use. Currently defaults to "xts". Only used

 when "encrypt.format=luks".

 "encrypt.ivgen-alg"

 Name of the initialization vector generator algorithm. Currently defaults

 to "plain64". Only used when "encrypt.format=luks".

 "encrypt.ivgen-hash-alg"

 Name of the hash algorithm to use with the initialization vector generator

 (if required). Defaults to "sha256". Only used when "encrypt.format=luks".

 "encrypt.hash-alg"

 Name of the hash algorithm to use for PBKDF algorithm Defaults to "sha256".

 Only used when "encrypt.format=luks".

 "encrypt.iter-time"

 Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.

 Defaults to 2000. Only used when "encrypt.format=luks". Page 3/17

 "cluster_size"

 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller

 cluster sizes can improve the image file size whereas larger cluster sizes

 generally provide better performance.

 "preallocation"

 Preallocation mode (allowed values: "off", "metadata", "falloc", "full").

 An image with preallocated metadata is initially larger but can improve

 performance when the image needs to grow. "falloc" and "full"

 preallocations are like the same options of "raw" format, but sets up

 metadata also.

 "lazy_refcounts"

 If this option is set to "on", reference count updates are postponed with

 the goal of avoiding metadata I/O and improving performance. This is

 particularly interesting with cache=writethrough which doesn't batch

 metadata updates. The tradeoff is that after a host crash, the reference

 count tables must be rebuilt, i.e. on the next open an (automatic)

 "qemu-img check -r all" is required, which may take some time.

 This option can only be enabled if "compat=1.1" is specified.

 "nocow"

 If this option is set to "on", it will turn off COW of the file. It's only

 valid on btrfs, no effect on other file systems.

 Btrfs has low performance when hosting a VM image file, even more when the

 guest on the VM also using btrfs as file system. Turning off COW is a way

 to mitigate this bad performance. Generally there are two ways to turn off

 COW on btrfs: a) Disable it by mounting with nodatacow, then all newly

 created files will be NOCOW. b) For an empty file, add the NOCOW file

 attribute. That's what this option does.

 Note: this option is only valid to new or empty files. If there is an

 existing file which is COW and has data blocks already, it couldn't be

 changed to NOCOW by setting "nocow=on". One can issue "lsattr filename" to

 check if the NOCOW flag is set or not (Capital 'C' is NOCOW flag).

 qed Old QEMU image format with support for backing files and compact image files

 (when your filesystem or transport medium does not support holes). Page 4/17

 When converting QED images to qcow2, you might want to consider using the

 "lazy_refcounts=on" option to get a more QED-like behaviour.

 Supported options:

 "backing_file"

 File name of a base image (see create subcommand).

 "backing_fmt"

 Image file format of backing file (optional). Useful if the format cannot

 be autodetected because it has no header, like some vhd/vpc files.

 "cluster_size"

 Changes the cluster size (must be power-of-2 between 4K and 64K). Smaller

 cluster sizes can improve the image file size whereas larger cluster sizes

 generally provide better performance.

 "table_size"

 Changes the number of clusters per L1/L2 table (must be power-of-2 between

 1 and 16). There is normally no need to change this value but this option

 can be used for performance benchmarking.

 qcow

 Old QEMU image format with support for backing files, compact image files,

 encryption and compression.

 Supported options:

 "backing_file"

 File name of a base image (see create subcommand)

 "encryption"

 This option is deprecated and equivalent to "encrypt.format=aes"

 "encrypt.format"

 If this is set to "aes", the image is encrypted with 128-bit AES-CBC. The

 encryption key is given by the "encrypt.key-secret" parameter. This

 encryption format is considered to be flawed by modern cryptography

 standards, suffering from a number of design problems enumerated previously

 against the "qcow2" image format.

 The use of this is no longer supported in system emulators. Support only

 remains in the command line utilities, for the purposes of data liberation

 and interoperability with old versions of QEMU. Page 5/17

 Users requiring native encryption should use the "qcow2" format instead

 with "encrypt.format=luks".

 "encrypt.key-secret"

 Provides the ID of a "secret" object that contains the encryption key

 ("encrypt.format=aes").

 luks

 LUKS v1 encryption format, compatible with Linux dm-crypt/cryptsetup

 Supported options:

 "key-secret"

 Provides the ID of a "secret" object that contains the passphrase.

 "cipher-alg"

 Name of the cipher algorithm and key length. Currently defaults to

 "aes-256".

 "cipher-mode"

 Name of the encryption mode to use. Currently defaults to "xts".

 "ivgen-alg"

 Name of the initialization vector generator algorithm. Currently defaults

 to "plain64".

 "ivgen-hash-alg"

 Name of the hash algorithm to use with the initialization vector generator

 (if required). Defaults to "sha256".

 "hash-alg"

 Name of the hash algorithm to use for PBKDF algorithm Defaults to "sha256".

 "iter-time"

 Amount of time, in milliseconds, to use for PBKDF algorithm per key slot.

 Defaults to 2000.

 vdi VirtualBox 1.1 compatible image format. Supported options:

 "static"

 If this option is set to "on", the image is created with metadata

 preallocation.

 vmdk

 VMware 3 and 4 compatible image format.

 Supported options: Page 6/17

 "backing_file"

 File name of a base image (see create subcommand).

 "compat6"

 Create a VMDK version 6 image (instead of version 4)

 "hwversion"

 Specify vmdk virtual hardware version. Compat6 flag cannot be enabled if

 hwversion is specified.

 "subformat"

 Specifies which VMDK subformat to use. Valid options are "monolithicSparse"

 (default), "monolithicFlat", "twoGbMaxExtentSparse", "twoGbMaxExtentFlat"

 and "streamOptimized".

 vpc VirtualPC compatible image format (VHD). Supported options:

 "subformat"

 Specifies which VHD subformat to use. Valid options are "dynamic" (default)

 and "fixed".

 VHDX

 Hyper-V compatible image format (VHDX). Supported options:

 "subformat"

 Specifies which VHDX subformat to use. Valid options are "dynamic"

 (default) and "fixed".

 "block_state_zero"

 Force use of payload blocks of type 'ZERO'. Can be set to "on" (default)

 or "off". When set to "off", new blocks will be created as

 "PAYLOAD_BLOCK_NOT_PRESENT", which means parsers are free to return

 arbitrary data for those blocks. Do not set to "off" when using "qemu-img

 convert" with "subformat=dynamic".

 "block_size"

 Block size; min 1 MB, max 256 MB. 0 means auto-calculate based on image

 size.

 "log_size"

 Log size; min 1 MB.

 Read-only formats

 More disk image file formats are supported in a read-only mode. Page 7/17

 bochs

 Bochs images of "growing" type.

 cloop

 Linux Compressed Loop image, useful only to reuse directly compressed CD-ROM

 images present for example in the Knoppix CD-ROMs.

 dmg Apple disk image.

 parallels

 Parallels disk image format.

 Using host drives

 In addition to disk image files, QEMU can directly access host devices. We describe

 here the usage for QEMU version >= 0.8.3.

 Linux

 On Linux, you can directly use the host device filename instead of a disk image

 filename provided you have enough privileges to access it. For example, use

 /dev/cdrom to access to the CDROM.

 "CD"

 You can specify a CDROM device even if no CDROM is loaded. QEMU has specific

 code to detect CDROM insertion or removal. CDROM ejection by the guest OS is

 supported. Currently only data CDs are supported.

 "Floppy"

 You can specify a floppy device even if no floppy is loaded. Floppy removal is

 currently not detected accurately (if you change floppy without doing floppy

 access while the floppy is not loaded, the guest OS will think that the same

 floppy is loaded). Use of the host's floppy device is deprecated, and support

 for it will be removed in a future release.

 "Hard disks"

 Hard disks can be used. Normally you must specify the whole disk (/dev/hdb

 instead of /dev/hdb1) so that the guest OS can see it as a partitioned disk.

 WARNING: unless you know what you do, it is better to only make READ-ONLY

 accesses to the hard disk otherwise you may corrupt your host data (use the

 -snapshot command line option or modify the device permissions accordingly).

 Windows

 "CD" Page 8/17

 The preferred syntax is the drive letter (e.g. d:). The alternate syntax \\.\d:

 is supported. /dev/cdrom is supported as an alias to the first CDROM drive.

 Currently there is no specific code to handle removable media, so it is better

 to use the "change" or "eject" monitor commands to change or eject media.

 "Hard disks"

 Hard disks can be used with the syntax: \\.\PhysicalDriveN where N is the drive

 number (0 is the first hard disk).

 WARNING: unless you know what you do, it is better to only make READ-ONLY

 accesses to the hard disk otherwise you may corrupt your host data (use the

 -snapshot command line so that the modifications are written in a temporary

 file).

 Mac OS X

 /dev/cdrom is an alias to the first CDROM.

 Currently there is no specific code to handle removable media, so it is better to

 use the "change" or "eject" monitor commands to change or eject media.

 Virtual FAT disk images

 QEMU can automatically create a virtual FAT disk image from a directory tree. In

 order to use it, just type:

 qemu-system-x86_64 linux.img -hdb fat:/my_directory

 Then you access access to all the files in the /my_directory directory without

 having to copy them in a disk image or to export them via SAMBA or NFS. The default

 access is read-only.

 Floppies can be emulated with the ":floppy:" option:

 qemu-system-x86_64 linux.img -fda fat:floppy:/my_directory

 A read/write support is available for testing (beta stage) with the ":rw:" option:

 qemu-system-x86_64 linux.img -fda fat:floppy:rw:/my_directory

 What you should never do:

 *<use non-ASCII filenames ;>

 *<use "-snapshot" together with ":rw:" ;>

 *<expect it to work when loadvm'ing ;>

 *<write to the FAT directory on the host system while accessing it with the guest

 system.>

 NBD access Page 9/17

 QEMU can access directly to block device exported using the Network Block Device

 protocol.

 qemu-system-x86_64 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/

 If the NBD server is located on the same host, you can use an unix socket instead

 of an inet socket:

 qemu-system-x86_64 linux.img -hdb nbd+unix://?socket=/tmp/my_socket

 In this case, the block device must be exported using qemu-nbd:

 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2

 The use of qemu-nbd allows sharing of a disk between several guests:

 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2

 and then you can use it with two guests:

 qemu-system-x86_64 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket

 qemu-system-x86_64 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket

 If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's

 own embedded NBD server), you must specify an export name in the URI:

 qemu-system-x86_64 -cdrom nbd://localhost/debian-500-ppc-netinst

 qemu-system-x86_64 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst

 The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is also

 available. Here are some example of the older syntax:

 qemu-system-x86_64 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024

 qemu-system-x86_64 linux2.img -hdb nbd:unix:/tmp/my_socket

 qemu-system-x86_64 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst

 Sheepdog disk images

 Sheepdog is a distributed storage system for QEMU. It provides highly available

 block level storage volumes that can be attached to QEMU-based virtual machines.

 You can create a Sheepdog disk image with the command:

 qemu-img create sheepdog:///<image> <size>

 where image is the Sheepdog image name and size is its size.

 To import the existing filename to Sheepdog, you can use a convert command.

 qemu-img convert <filename> sheepdog:///<image>

 You can boot from the Sheepdog disk image with the command:

 qemu-system-x86_64 sheepdog:///<image>

 You can also create a snapshot of the Sheepdog image like qcow2. Page 10/17

 qemu-img snapshot -c <tag> sheepdog:///<image>

 where tag is a tag name of the newly created snapshot.

 To boot from the Sheepdog snapshot, specify the tag name of the snapshot.

 qemu-system-x86_64 sheepdog:///<image>#<tag>

 You can create a cloned image from the existing snapshot.

 qemu-img create -b sheepdog:///<base>#<tag> sheepdog:///<image>

 where base is an image name of the source snapshot and tag is its tag name.

 You can use an unix socket instead of an inet socket:

 qemu-system-x86_64 sheepdog+unix:///<image>?socket=<path>

 If the Sheepdog daemon doesn't run on the local host, you need to specify one of

 the Sheepdog servers to connect to.

 qemu-img create sheepdog://<hostname>:<port>/<image> <size>

 qemu-system-x86_64 sheepdog://<hostname>:<port>/<image>

 iSCSI LUNs

 iSCSI is a popular protocol used to access SCSI devices across a computer network.

 There are two different ways iSCSI devices can be used by QEMU.

 The first method is to mount the iSCSI LUN on the host, and make it appear as any

 other ordinary SCSI device on the host and then to access this device as a /dev/sd

 device from QEMU. How to do this differs between host OSes.

 The second method involves using the iSCSI initiator that is built into QEMU. This

 provides a mechanism that works the same way regardless of which host OS you are

 running QEMU on. This section will describe this second method of using iSCSI

 together with QEMU.

 In QEMU, iSCSI devices are described using special iSCSI URLs

 URL syntax:

 iscsi://[<username>[%<password>]@]<host>[:<port>]/<target-iqn-name>/<lun>

 Username and password are optional and only used if your target is set up using

 CHAP authentication for access control. Alternatively the username and password

 can also be set via environment variables to have these not show up in the process

 list

 export LIBISCSI_CHAP_USERNAME=<username>

 export LIBISCSI_CHAP_PASSWORD=<password>

 iscsi://<host>/<target-iqn-name>/<lun> Page 11/17

 Various session related parameters can be set via special options, either in a

 configuration file provided via '-readconfig' or directly on the command line.

 If the initiator-name is not specified qemu will use a default name of

 'iqn.2008-11.org.linux-kvm[:<uuid>'] where <uuid> is the UUID of the virtual

 machine. If the UUID is not specified qemu will use

 'iqn.2008-11.org.linux-kvm[:<name>'] where <name> is the name of the virtual

 machine.

 Setting a specific initiator name to use when logging in to the target

 -iscsi initiator-name=iqn.qemu.test:my-initiator

 Controlling which type of header digest to negotiate with the target

 -iscsi header-digest=CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

 These can also be set via a configuration file

 [iscsi]

 user = "CHAP username"

 password = "CHAP password"

 initiator-name = "iqn.qemu.test:my-initiator"

 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

 header-digest = "CRC32C"

 Setting the target name allows different options for different targets

 [iscsi "iqn.target.name"]

 user = "CHAP username"

 password = "CHAP password"

 initiator-name = "iqn.qemu.test:my-initiator"

 # header digest is one of CRC32C|CRC32C-NONE|NONE-CRC32C|NONE

 header-digest = "CRC32C"

 Howto use a configuration file to set iSCSI configuration options:

 cat >iscsi.conf <<EOF

 [iscsi]

 user = "me"

 password = "my password"

 initiator-name = "iqn.qemu.test:my-initiator"

 header-digest = "CRC32C"

 EOF Page 12/17

 qemu-system-x86_64 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \

 -readconfig iscsi.conf

 How to set up a simple iSCSI target on loopback and access it via QEMU:

 This example shows how to set up an iSCSI target with one CDROM and one DISK

 using the Linux STGT software target. This target is available on Red Hat based

 systems as the package 'scsi-target-utils'.

 tgtd --iscsi portal=127.0.0.1:3260

 tgtadm --lld iscsi --op new --mode target --tid 1 -T iqn.qemu.test

 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 1 \

 -b /IMAGES/disk.img --device-type=disk

 tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \

 -b /IMAGES/cd.iso --device-type=cd

 tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL

 qemu-system-x86_64 -iscsi initiator-name=iqn.qemu.test:my-initiator \

 -boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \

 -cdrom iscsi://127.0.0.1/iqn.qemu.test/2

 GlusterFS disk images

 GlusterFS is a user space distributed file system.

 You can boot from the GlusterFS disk image with the command:

 URI:

 qemu-system-x86_64 -drive file=gluster[+<type>]://[<host>[:<port>]]/<volume>/<path>

 [?socket=...][,file.debug=9][,file.logfile=...]

 JSON:

 qemu-system-x86_64 'json:{"driver":"qcow2",

 "file":{"driver":"gluster",

 "volume":"testvol","path":"a.img","debug":9,"logfile":"...",

 "server":[{"type":"tcp","host":"...","port":"..."},

 {"type":"unix","socket":"..."}]}}'

 gluster is the protocol.

 type specifies the transport type used to connect to gluster management daemon

 (glusterd). Valid transport types are tcp and unix. In the URI form, if a transport

 type isn't specified, then tcp type is assumed.

 host specifies the server where the volume file specification for the given volume Page 13/17

 resides. This can be either a hostname or an ipv4 address. If transport type is

 unix, then host field should not be specified. Instead socket field needs to be

 populated with the path to unix domain socket.

 port is the port number on which glusterd is listening. This is optional and if not

 specified, it defaults to port 24007. If the transport type is unix, then port

 should not be specified.

 volume is the name of the gluster volume which contains the disk image.

 path is the path to the actual disk image that resides on gluster volume.

 debug is the logging level of the gluster protocol driver. Debug levels are 0-9,

 with 9 being the most verbose, and 0 representing no debugging output. The default

 level is 4. The current logging levels defined in the gluster source are 0 - None,

 1 - Emergency, 2 - Alert, 3 - Critical, 4 - Error, 5 - Warning, 6 - Notice, 7 -

 Info, 8 - Debug, 9 - Trace

 logfile is a commandline option to mention log file path which helps in logging to

 the specified file and also help in persisting the gfapi logs. The default is

 stderr.

 You can create a GlusterFS disk image with the command:

 qemu-img create gluster://<host>/<volume>/<path> <size>

 Examples

 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img

 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img

 qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img

 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img

 qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img

 qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img

 qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket

 qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img

 qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log

 qemu-system-x86_64 'json:{"driver":"qcow2",

 "file":{"driver":"gluster",

 "volume":"testvol","path":"a.img",

 "debug":9,"logfile":"/var/log/qemu-gluster.log",

 "server":[{"type":"tcp","host":"1.2.3.4","port":24007}, Page 14/17

 {"type":"unix","socket":"/var/run/glusterd.socket"}]}}'

 qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,

 file.debug=9,file.logfile=/var/log/qemu-gluster.log,

 file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,

 file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket

 Secure Shell (ssh) disk images

 You can access disk images located on a remote ssh server by using the ssh

 protocol:

 qemu-system-x86_64 -drive file=ssh://[<user>@]<server>[:<port>]/<path>[?host_key_check=<host_key_check>]

 Alternative syntax using properties:

 qemu-system-x86_64 -drive

file.driver=ssh[,file.user=<user>],file.host=<server>[,file.port=<port>],file.path=<path>[,file.host_key_check=<host_key_chec

k>]

 ssh is the protocol.

 user is the remote user. If not specified, then the local username is tried.

 server specifies the remote ssh server. Any ssh server can be used, but it must

 implement the sftp-server protocol. Most Unix/Linux systems should work without

 requiring any extra configuration.

 port is the port number on which sshd is listening. By default the standard ssh

 port (22) is used.

 path is the path to the disk image.

 The optional host_key_check parameter controls how the remote host's key is

 checked. The default is "yes" which means to use the local .ssh/known_hosts file.

 Setting this to "no" turns off known-hosts checking. Or you can check that the

 host key matches a specific fingerprint:

 "host_key_check=md5:78:45:8e:14:57:4f:d5:45:83:0a:0e:f3:49:82:c9:c8" ("sha1:" can

 also be used as a prefix, but note that OpenSSH tools only use MD5 to print

 fingerprints).

 Currently authentication must be done using ssh-agent. Other authentication

 methods may be supported in future.

 Note: Many ssh servers do not support an "fsync"-style operation. The ssh driver

 cannot guarantee that disk flush requests are obeyed, and this causes a risk of

 disk corruption if the remote server or network goes down during writes. The Page 15/17

 driver will print a warning when "fsync" is not supported:

 warning: ssh server "ssh.example.com:22" does not support fsync

 With sufficiently new versions of libssh and OpenSSH, "fsync" is supported.

 NVMe disk images

 NVM Express (NVMe) storage controllers can be accessed directly by a userspace

 driver in QEMU. This bypasses the host kernel file system and block layers while

 retaining QEMU block layer functionalities, such as block jobs, I/O throttling,

 image formats, etc. Disk I/O performance is typically higher than with "-drive

 file=/dev/sda" using either thread pool or linux-aio.

 The controller will be exclusively used by the QEMU process once started. To be

 able to share storage between multiple VMs and other applications on the host,

 please use the file based protocols.

 Before starting QEMU, bind the host NVMe controller to the host vfio-pci driver.

 For example:

 # modprobe vfio-pci

 # lspci -n -s 0000:06:0d.0

 06:0d.0 0401: 1102:0002 (rev 08)

 # echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind

 # echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id

 # qemu-system-x86_64 -drive file=nvme://<host>:<bus>:<slot>.<func>/<namespace>

 Alternative syntax using properties:

 qemu-system-x86_64 -drive

file.driver=nvme,file.device=<host>:<bus>:<slot>.<func>,file.namespace=<namespace>

 host:bus:slot.func is the NVMe controller's PCI device address on the host.

 namespace is the NVMe namespace number, starting from 1.

 Disk image file locking

 By default, QEMU tries to protect image files from unexpected concurrent access, as

 long as it's supported by the block protocol driver and host operating system. If

 multiple QEMU processes (including QEMU emulators and utilities) try to open the

 same image with conflicting accessing modes, all but the first one will get an

 error.

 This feature is currently supported by the file protocol on Linux with the Open

 File Descriptor (OFD) locking API, and can be configured to fall back to POSIX Page 16/17

 locking if the POSIX host doesn't support Linux OFD locking.

 To explicitly enable image locking, specify "locking=on" in the file protocol

 driver options. If OFD locking is not possible, a warning will be printed and the

 POSIX locking API will be used. In this case there is a risk that the lock will get

 silently lost when doing hot plugging and block jobs, due to the shortcomings of

 the POSIX locking API.

 QEMU transparently handles lock handover during shared storage migration. For

 shared virtual disk images between multiple VMs, the "share-rw" device option

 should be used.

 By default, the guest has exclusive write access to its disk image. If the guest

 can safely share the disk image with other writers the "-device ...,share-rw=on"

 parameter can be used. This is only safe if the guest is running software, such as

 a cluster file system, that coordinates disk accesses to avoid corruption.

 Note that share-rw=on only declares the guest's ability to share the disk. Some

 QEMU features, such as image file formats, require exclusive write access to the

 disk image and this is unaffected by the share-rw=on option.

 Alternatively, locking can be fully disabled by "locking=off" block device option.

 In the command line, the option is usually in the form of "file.locking=off" as the

 protocol driver is normally placed as a "file" child under a format driver. For

 example:

 "-blockdev

 driver=qcow2,file.filename=/path/to/image,file.locking=off,file.driver=file"

 To check if image locking is active, check the output of the "lslocks" command on

 host and see if there are locks held by the QEMU process on the image file. More

 than one byte could be locked by the QEMU instance, each byte of which reflects a

 particular permission that is acquired or protected by the running block driver.

SEE ALSO

 The HTML documentation of QEMU for more precise information and Linux user mode

 emulator invocation.

AUTHOR

 Fabrice Bellard and the QEMU Project developers

 2022-12-08 QEMU-BLOCK-DRIVERS.7(7)

Page 17/17

