P cbLrivors:

University

FPDF Library

PDF generator

"‘ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command 'gemu-img.1'
$ man gemu-img.1
QEMU-IMG.1(1) QEMU-IMG.1(1)
NAME
gemu-img - QEMU disk image utility
SYNOPSIS
gemu-img [standard options] command [command options]
DESCRIPTION
gemu-img allows you to create, convert and modify images offline. It can handle all
image formats supported by QEMU.
Warning: Never use gemu-img to modify images in use by a running virtual machine or
any other process; this may destroy the image. Also, be aware that querying an
image that is being modified by another process may encounter inconsistent state.
OPTIONS
Standard options:
-h, --help
Display this help and exit
-V, --version
Display version information and exit
-T, --trace [[enable=]pattern][,events=file][,file=file]
Specify tracing options.
[enable=]pattern
Immediately enable events matching pattern (either event name or a globbing

. L Page 1/18
pattern). This option is only available if QEMU has been compiled with the

simple, log or ftrace tracing backend. To specify multiple events or
patterns, specify the -trace option multiple times.
Use "-trace help" to print a list of names of trace points.
events=file
Immediately enable events listed in file. The file must contain one event
name (as listed in the trace-events-all file) per line; globbing patterns
are accepted too. This option is only available if QEMU has been compiled
with the simple, log or ftrace tracing backend.
file=file
Log output traces to file. This option is only available if QEMU has been
compiled with the simple tracing backend.
The following commands are supported:
amend [--object objectdef] [--image-opts] [-p] [-q] [-f fmt] [-t cache] -0 options
filename
bench [-c count] [-d depth] [-f fmt] [--flush-interval=flush_interval] [-n]
[--no-drain] [-o offset] [--pattern=pattern] [-q] [-s buffer_size] [-S step_size]
[t cache] [-w] [-U] filename
check [--object objectdef] [--image-opts] [-q] [-f fmt] [--output=0ofmt] [-r [leaks
| all]] [-T src_cache] [-U] filename
commit [--object objectdef] [--image-opts] [-q] [-f fmt] [t cache] [-b base] [-d]
[-p] filename
compare [--object objectdef] [--image-opts] [-f fmt] [-F fmt] [-T src_cache] [-p]
[-a] [-s] [-U] filenamel filename?2
convert [--object objectdef] [--image-opts] [--target-image-opts] [-U] [-C] [-c]
[-p] [-a] [-n] [-f fmt] [t cache] [-T src_cache] [-O output_fmt] [-B backing_file]
[-0 options] [-| snapshot_param] [-S sparse_size] [-m num_coroutines] [-W]
[--salvage] filename [filename2 [...]] output_filename
create [--object objectdef] [-q] [-f fmt] [-b backing_file] [-F backing_fmt] [-u]
[-o options] filename [size]
dd [--image-opts] [-U] [-f fmt] [-O output_fmt] [bs=block_size] [count=blocks]
[skip=blocks] if=input of=output
info [--object objectdef] [--image-opts] [-f fmt] [--output=0fmt] [--backing-chain]

[-U] filename

Page 2/18

map [--object objectdef] [--image-opts] [-f fmt] [--output=0fmt] [-U] filename
measure [--output=ofmt] [-O output_fmt] [-0 options] [--size N | [--object
objectdef] [--image-opts] [-f fmt] [-] snapshot_param] filename]
shapshot [--object objectdef] [--image-opts] [-U] [-q] [-] | -a shapshot | -c
snhapshot | -d snapshot] filename
rebase [--object objectdef] [--image-opts] [-U] [-q] [-f fmt] [-t cache] [-T
src_cache] [-p] [-u] -b backing_file [-F backing_fmt] filename
resize [--object objectdef] [--image-opts] [-f fmt] [--preallocation=prealloc] [-q]
[--shrink] filename [+ | -]size
Command parameters:
filename
is a disk image filename
fmt is the disk image format. It is guessed automatically in most cases. See below
for a description of the supported disk formats.
size
is the disk image size in bytes. Optional suffixes "k" or "K" (kilobyte, 1024)
"M" (megabyte, 1024k) and "G" (gigabyte, 1024M) and T (terabyte, 1024G) are
supported. "b" is ignored.
output_filename
is the destination disk image filename
output_fmt
is the destination format
options
is a comma separated list of format specific options in a name=value format.
Use "-0 ?" for an overview of the options supported by the used format or see
the format descriptions below for details.
shapshot_param
is param used for internal snapshot, format is
'snapshot.id=[ID],snapshot.name=[NAME]' or [ID_OR_NAME]'
--object objectdef
is a QEMU user creatable object definition. See the gemu(1) manual page for a
description of the object properties. The most common object type is a

"secret", which is used to supply passwords and/or encryption keys.

Page 3/18

--image-opts
Indicates that the source filename parameter is to be interpreted as a full
option string, not a plain flename. This parameter is mutually exclusive with
the -f parameter.

--target-image-opts
Indicates that the output_filename parameter(s) are to be interpreted as a full
option string, not a plain flename. This parameter is mutually exclusive with
the -O parameters. It is currently required to also use the -n parameter to
skip image creation. This restriction may be relaxed in a future release.

--force-share (-U)
If specified, "gemu-img" will open the image in shared mode, allowing other
QEMU processes to open it in write mode. For example, this can be used to get
the image information (with 'info' subcommand) when the image is used by a
running guest. Note that this could produce inconsistent results because of
concurrent metadata changes, etc. This option is only allowed when opening
images in read-only mode.

--backing-chain
will enumerate information about backing files in a disk image chain. Refer
below for further description.

-c indicates that target image must be compressed (qcow format only)

-h with or without a command shows help and lists the supported formats

-p display progress bar (compare, convert and rebase commands only). If the -p
option is not used for a command that supports it, the progress is reported
when the process receives a "SIGUSR1" or "SIGINFO" signal.

-q Quiet mode - do not print any output (except errors). There's no progress bar
in case both -q and -p options are used.

-S size
indicates the consecutive number of bytes that must contain only zeros for
gemu-img to create a sparse image during conversion. This value is rounded down
to the nearest 512 bytes. You may use the common size suffixes like "k" for
kilobytes.

-t cache

specifies the cache mode that should be used with the (destination) file. See Page 4/18

the documentation of the emulator's "-drive cache=..." option for allowed
values.

-T src_cache
specifies the cache mode that should be used with the source file(s). See the
documentation of the emulator's "-drive cache=..." option for allowed values.

Parameters to snapshot subcommand:

shapshot
is the name of the snapshot to create, apply or delete

-a applies a snapshot (revert disk to saved state)

-Cc creates a snapshot

-d deletes a snapshot

- lists all snapshots in the given image

Parameters to compare subcommand:

-f First image format

-F Second image format

-s Strict mode - fail on different image size or sector allocation

Parameters to convert subcommand:

-n Skip the creation of the target volume

-m Number of parallel coroutines for the convert process

-W Allow out-of-order writes to the destination. This option improves performance,
but is only recommended for preallocated devices like host devices or other raw
block devices.

-C Try to use copy offloading to move data from source image to target. This may
improve performance if the data is remote, such as with NFS or iSCSI backends,
but will not automatically sparsify zero sectors, and may result in a fully
allocated target image depending on the host support for getting allocation
information.

--salvage
Try to ignore 1/O errors when reading. Unless in quiet mode ("-q"), errors
will still be printed. Areas that cannot be read from the source will be
treated as containing only zeroes.

Parameters to dd subcommand:

bs=block_size

Page 5/18

defines the block size
count=blocks

sets the number of input blocks to copy
if=input

sets the input file
of=output

sets the output file
skip=blocks

sets the number of input blocks to skip
Command description:
amend [--object objectdef] [--image-opts] [-p] [-q] [-f fmt] [-t cache] -0 options

filename

Amends the image format specific options for the image file filename. Not all

file formats support this operation.
bench [-c count] [-d depth] [-f fmt] [--flush-interval=flush_interval] [-n]
[--no-drain] [-o offset] [--pattern=pattern] [-q] [-s buffer_size] [-S step_size]
[t cache] [-w] [-U] filename
Run a simple sequential /0O benchmark on the specified image. If "-w" is
specified, a write test is performed, otherwise a read test is performed.
A total number of count I/O requests is performed, each buffer_size bytes in

size, and with depth requests in parallel. The first request starts at the

position given by offset, each following request increases the current position

by step_size. If step_size is not given, buffer_size is used for its value.

If flush_interval is specified for a write test, the request queue is drained
and a flush is issued before new writes are made whenever the number of
remaining requests is a multiple of flush_interval. If additionally

"--no-drain" is specified, a flush is issued without draining the request queue
first.

If "-n" is specified, the native AlO backend is used if possible. On Linux,

this option only works if "-t none" or "-t directsync" is specified as well.

For write tests, by default a buffer filled with zeros is written. This can be
overridden with a pattern byte specified by pattern.

check [--object objectdef] [--image-opts] [-q] [-f fmt] [--output=0fmt] [-r [leaks

Page 6/18

| all]] [-T src_cache] [-U] filename
Perform a consistency check on the disk image filename. The command can output
in the format ofmt which is either "human" or "json". The JSON output is an
object of QAPI type "ImageCheck".
If "-r" is specified, gemu-img tries to repair any inconsistencies found during
the check. "-r leaks" repairs only cluster leaks, whereas "-r all" fixes all
kinds of errors, with a higher risk of choosing the wrong fix or hiding
corruption that has already occurred.
Only the formats "gcow2", "ged" and "vdi" support consistency checks.
In case the image does not have any inconsistencies, check exits with 0. Other
exit codes indicate the kind of inconsistency found or if another error
occurred. The following table summarizes all exit codes of the check
subcommand:
0 Check completed, the image is (now) consistent
1 Check not completed because of internal errors
2 Check completed, image is corrupted
3 Check completed, image has leaked clusters, but is not corrupted
63 Checks are not supported by the image format
If "-r" is specified, exit codes representing the image state refer to the
state after (the attempt at) repairing it. That is, a successful "-r all" will
yield the exit code 0, independently of the image state before.

commit [--object objectdef] [--image-opts] [-q] [-f fmt] [-t cache] [-b base] [-d]

[-p] filename
Commit the changes recorded in filename in its base image or backing file. If
the backing file is smaller than the snapshot, then the backing file will be
resized to be the same size as the snapshot. If the snapshot is smaller than
the backing file, the backing file will not be truncated. If you want the
backing file to match the size of the smaller snapshot, you can safely truncate
it yourself once the commit operation successfully completes.
The image filename is emptied after the operation has succeeded. If you do not
need filename afterwards and intend to drop it, you may skip emptying filename
by specifying the "-d" flag.

If the backing chain of the given image file filename has more than one layer, Page 7/18

the backing file into which the changes will be committed may be specified as
base (which has to be part of filename's backing chain). If base is not
specified, the immediate backing file of the top image (which is filename) will
be used. Note that after a commit operation all images between base and the top
image will be invalid and may return garbage data when read. For this reason,
"-b" implies "-d" (so that the top image stays valid).

compare [--object objectdef] [--image-opts] [-f fmt] [-F fmt] [-T src_cache] [-p]

[-a] [-s] [-V] filenamel filename?2
Check if two images have the same content. You can compare images with
different format or settings.
The format is probed unless you specify it by -f (used for filenamel) and/or -F
(used for filename?2) option.
By default, images with different size are considered identical if the larger
image contains only unallocated and/or zeroed sectors in the area after the end
of the other image. In addition, if any sector is not allocated in one image
and contains only zero bytes in the second one, it is evaluated as equal. You
can use Strict mode by specifying the -s option. When compare runs in Strict
mode, it fails in case image size differs or a sector is allocated in one image
and is not allocated in the second one.
By default, compare prints out a result message. This message displays
information that both images are same or the position of the first different
byte. In addition, result message can report different image size in case
Strict mode is used.
Compare exits with O in case the images are equal and with 1 in case the images
differ. Other exit codes mean an error occurred during execution and standard
error output should contain an error message. The following table sumarizes
all exit codes of the compare subcommand:
0 Images are identical
1 Images differ
2 Error on opening an image
3 Error on checking a sector allocation
4 Error on reading data

convert [--object objectdef] [--image-opts] [--target-image-opts] [-U] [-C] [-c] Page 8/18

[-p] [-9] [-n] [-f fmt] [-t cache] [-T src_cache] [-O output_fmt] [-B backing_file]

[-o options] [-| snapshot_param] [-S sparse_size] [-m num_coroutines] [-W] filename

[filename?2 [...]] output_filename
Convert the disk image filename or a snapshot snapshot_param to disk image
output_filename using format output_fmt. It can be optionally compressed ("-c"
option) or use any format specific options like encryption ("-0" option).
Only the formats "gcow" and "gcow2" support compression. The compression is
read-only. It means that if a compressed sector is rewritten, then it is
rewritten as uncompressed data.
Image conversion is also useful to get smaller image when using a growable
format such as "gcow": the empty sectors are detected and suppressed from the
destination image.
sparse_size indicates the consecutive number of bytes (defaults to 4k) that
must contain only zeros for gemu-img to create a sparse image during
conversion. If sparse_size is 0, the source will not be scanned for unallocated
or zero sectors, and the destination image will always be fully allocated.
You can use the backing_file option to force the output image to be created as
a copy on write image of the specified base image; the backing_file should have
the same content as the input's base image, however the path, image format, etc
may differ.
If a relative path name is given, the backing file is looked up relative to the
directory containing output_filename.
If the "-n" option is specified, the target volume creation will be skipped.
This is useful for formats such as "rbd" if the target volume has already been
created with site specific options that cannot be supplied through gemu-img.
Out of order writes can be enabled with "-W" to improve performance. This is
only recommended for preallocated devices like host devices or other raw block
devices. Out of order write does not work in combination with creating
compressed images.
num_coroutines specifies how many coroutines work in parallel during the
convert process (defaults to 8).

create [--object objectdef] [-q] [-f fmt] [-b backing_file] [-F backing_fmt] [-u]

[-o options] filename [size]

Page 9/18

Create the new disk image filename of size size and format fmt. Depending on
the file format, you can add one or more options that enable additional
features of this format.
If the option backing_file is specified, then the image will record only the
differences from backing_file. No size needs to be specified in this case.
backing_file will never be modified unless you use the "commit" monitor command
(or gemu-img commit).
If a relative path name is given, the backing file is looked up relative to the
directory containing filename.
Note that a given backing file will be opened to check that it is valid. Use
the "-u" option to enable unsafe backing file mode, which means that the image
will be created even if the associated backing file cannot be opened. A
matching backing file must be created or additional options be used to make the
backing file specification valid when you want to use an image created this
way.
The size can also be specified using the size option with "-0", it doesn't need
to be specified separately in this case.
dd [--image-opts] [-U] [-f fmt] [-O output_fmt] [bs=block_size] [count=blocks]
[skip=blocks] if=input of=output
Dd copies from input file to output file converting it from fmt format to
output_fmt format.
The data is by default read and written using blocks of 512 bytes but can be
modified by specifying block_size. If count=blocks is specified dd will stop
reading input after reading blocks input blocks.
The size syntax is similar to dd(1)'s size syntax.
info [--object objectdef] [--image-opts] [-f fmt] [--output=0fmt] [--backing-chain]
[-U] filename
Give information about the disk image filename. Use it in particular to know
the size reserved on disk which can be different from the displayed size. If VM
snapshots are stored in the disk image, they are displayed too.
If a disk image has a backing file chain, information about each disk image in
the chain can be recursively enumerated by using the option "--backing-chain".

For instance, if you have an image chain like: Page 10/18

base.qcow2 <- snapl.qcow?2 <- snap2.qcow?2
To enumerate information about each disk image in the above chain, starting
from top to base, do:
gemu-img info --backing-chain snap2.qcow2
The command can output in the format ofmt which is either "human" or "json".
The JSON output is an object of QAPI type "Imagelnfo"; with "--backing-chain",
it is an array of "Imagelnfo” objects.
"--output=human" reports the following information (for every image in the
chain):
image
The image file name
file format
The image format
virtual size
The size of the guest disk
disk size
How much space the image file occupies on the host file system (may be
shown as 0 if this information is unavailable, e.g. because there is no
file system)
cluster_size
Cluster size of the image format, if applicable
encrypted
Whether the image is encrypted (only present if so)
cleanly shut down
This is shown as "no" if the image is dirty and will have to be auto-
repaired the next time it is opened in gemu.
backing file
The backing file name, if present
backing file format
The format of the backing file, if the image enforces it
Snapshot list
A list of all internal snapshots

Format specific information

Page 11/18

Further information whose structure depends on the image format. This
section is a textual representation of the respective "ImagelnfoSpecific*"
QAPI object (e.g. "ImagelnfoSpecificQCow2" for gcow?2 images).
map [--object objectdef] [--image-opts] [-f fmt] [--output=0fmt] [-U] filename
Dump the metadata of image filename and its backing file chain. In particular,
this commands dumps the allocation state of every sector of flename, together
with the topmost file that allocates it in the backing file chain.
Two option formats are possible. The default format ("human") only dumps
known-nonzero areas of the file. Known-zero parts of the file are omitted
altogether, and likewise for parts that are not allocated throughout the chain.
gemu-img output will identify a file from where the data can be read, and the
offset in the file. Each line will include four fields, the first three of
which are hexadecimal numbers. For example the first line of:
Offset Length Mapped to File
0 0x20000 0x50000 /tmp/overlay.qcow?2
0x100000 0x10000 0x95380000 /tmp/backing.qcow?2
means that 0x20000 (131072) bytes starting at offset 0 in the image are
available in /tmp/overlay.qcow?2 (opened in "raw" format) starting at offset
0x50000 (327680). Data that is compressed, encrypted, or otherwise not
available in raw format will cause an error if "human" format is in use. Note
that file names can include newlines, thus it is not safe to parse this output
format in scripts.
The alternative format “json" will return an array of dictionaries in JSON

format. It will include similar information in the "start",

length", "offset"

fields; it will also include other more specific information:

- whether the sectors contain actual data or not (boolean field "data"; if
false, the sectors are either unallocated or stored as optimized all-zero
clusters);

- whether the data is known to read as zero (boolean field "zero");

- in order to make the output shorter, the target file is expressed as a
"depth"; for example, a depth of 2 refers to the backing file of the
backing file of filename.

In JSON format, the "offset" field is optional; it is absent in cases where Page 12/18

"human" format would omit the entry or exit with an error. If "data" is false

and the "offset" field is present, the corresponding sectors in the file are

not yet in use, but they are preallocated.

For more information, consult include/block/block.h in QEMU's source code.
measure [--output=ofmt] [-O output_fmt] [-0 options] [--size N | [--object
objectdef] [--image-opts] [-f fmt] [-] snapshot_param] filename]

Calculate the file size required for a new image. This information can be used

to size logical volumes or SAN LUNSs appropriately for the image that will be

placed in them. The values reported are guaranteed to be large enough to fit
the image. The command can output in the format ofmt which is either "human"
or "json". The JSON output is an object of QAPI type "BlockMeasurelnfo".

If the size N is given then act as if creating a new empty image file using

gemu-img create. If filename is given then act as if converting an existing

image file using gemu-img convert. The format of the new file is given by
output_fmt while the format of an existing file is given by fmt.

A snapshot in an existing image can be specified using snapshot_param.

The following fields are reported:

required size: 524288
fully allocated size: 1074069504

The "required size" is the file size of the new image. It may be smaller than

the virtual disk size if the image format supports compact representation.

The "fully allocated size" is the file size of the new image once data has been

written to all sectors. This is the maximum size that the image file can

occupy with the exception of internal snapshots, dirty bitmaps, vmstate data,
and other advanced image format features.
shapshot [--object objectdef] [--image-opts] [-U] [-q] [-] | -a snapshot | -c
shapshot | -d snapshot] filename

List, apply, create or delete snapshots in image filename.
rebase [--object objectdef] [--image-opts] [-U] [-q] [-f fmt] [-t cache] [-T
src_cache] [-p] [-u] -b backing_file [-F backing_fmt] filename

Changes the backing file of an image. Only the formats "gcow2" and "ged"

support changing the backing file.

The backing file is changed to backing_file and (if the image format of Page 13/18

filename supports this) the backing file format is changed to backing_fmt. If

backing_file is specified as " (the empty string), then the image is rebased
onto no backing file (i.e. it will exist independently of any backing file).
If a relative path name is given, the backing file is looked up relative to the
directory containing filename.
cache specifies the cache mode to be used for filename, whereas src_cache
specifies the cache mode for reading backing files.
There are two different modes in which "rebase" can operate:
Safe mode
This is the default mode and performs a real rebase operation. The new
backing file may differ from the old one and gemu-img rebase will take care
of keeping the guest-visible content of filename unchanged.
In order to achieve this, any clusters that differ between backing_file and
the old backing file of filename are merged into filename before actually
changing the backing file.
Note that the safe mode is an expensive operation, comparable to converting
an image. It only works if the old backing file still exists.
Unsafe mode
gemu-img uses the unsafe mode if "-u" is specified. In this mode, only the
backing file name and format of filename is changed without any checks on
the file contents. The user must take care of specifying the correct new
backing file, or the guest-visible content of the image will be corrupted.
This mode is useful for renaming or moving the backing file to somewhere
else. It can be used without an accessible old backing file, i.e. you can
use it to fix an image whose backing file has already been moved/renamed.
You can use "rebase" to perform a "diff* operation on two disk images. This
can be useful when you have copied or cloned a guest, and you want to get back
to a thin image on top of a template or base image.
Say that "base.img" has been cloned as "modified.img" by copying it, and that
the "modified.img" guest has run so there are now some changes compared to
"base.img". To construct a thin image called "diff.qcow2" that contains just
the differences, do:

gemu-img create -f gcow?2 -b modified.img diff.qcow2

Page 14/18

gemu-img rebase -b base.img diff.qcow?2
At this point, "modified.img" can be discarded, since "base.img + diff.qcow2"
contains the same information.
resize [--object objectdef] [--image-opts] [-f fmt] [--preallocation=prealloc] [-q]
[--shrink] filename [+ | -]size
Change the disk image as if it had been created with size.
Before using this command to shrink a disk image, you MUST use file system and
partitioning tools inside the VM to reduce allocated file systems and partition
sizes accordingly. Failure to do so will result in data loss!
When shrinking images, the "--shrink" option must be given. This informs gemu-
img that the user acknowledges all loss of data beyond the truncated image's
end.
After using this command to grow a disk image, you must use file system and
partitioning tools inside the VM to actually begin using the new space on the
device.
When growing an image, the "--preallocation" option may be used to specify how
the additional image area should be allocated on the host. See the format
description in the "NOTES" section which values are allowed. Using this option
may result in slightly more data being allocated than necessary.
NOTES
Supported image file formats:
raw Raw disk image format (default). This format has the advantage of being simple
and easily exportable to all other emulators. If your file system supports
holes (for example in ext2 or ext3 on Linux or NTFS on Windows), then only the
written sectors will reserve space. Use "gemu-img info" to know the real size
used by the image or "Is -Is" on Unix/Linux.
Supported options:
"preallocation”
Preallocation mode (allowed values: "off", "falloc", "full"). "falloc"
mode preallocates space for image by calling posix_fallocate(). "full”
mode preallocates space for image by writing data to underlying storage.

This data may or may not be zero, depending on the storage location.

gcow?2 Page 15/18

QEMU image format, the most versatile format. Use it to have smaller images
(useful if your filesystem does not supports holes, for example on Windows),

optional AES encryption, zlib based compression and support of multiple VM

snapshots.

Supported options:

"compat"

Determines the gcow?2 version to use. "compat=0.10" uses the traditional
image format that can be read by any QEMU since 0.10. "compat=1.1" enables

image format extensions that only QEMU 1.1 and newer understand (this is

the default). Amongst others, this includes zero clusters, which allow

efficient copy-on-read for sparse images.

"backing_file"

File name of a base image (see create subcommand)

"backing_fmt"

Image format of the base image

"encryption”

If this option is set to "on", the image is encrypted with 128-bit AES-CBC.

The use of encryption in gcow and gcow?2 images is considered to be flawed

by modern cryptography standards, suffering from a number of design

problems:

The AES-CBC cipher is used with predictable initialization vectors
based on the sector number. This makes it vulnerable to chosen
plaintext attacks which can reveal the existence of encrypted data.
The user passphrase is directly used as the encryption key. A poorly
chosen or short passphrase will compromise the security of the
encryption.

In the event of the passphrase being compromised there is no way to
change the passphrase to protect data in any gcow images. The files
must be cloned, using a different encryption passphrase in the new
file. The original file must then be securely erased using a program
like shred, though even this is ineffective with many modern storage
technologies.

Initialization vectors used to encrypt sectors are based on the guest

Page 16/18

virtual sector number, instead of the host physical sector. When a disk
image has multiple internal snapshots this means that data in multiple
physical sectors is encrypted with the same initialization vector. With
the CBC mode, this opens the possibility of watermarking attacks if the
attack can collect multiple sectors encrypted with the same IV and some
predictable data. Having multiple gcow?2 images with the same passphrase
also exposes this weakness since the passphrase is directly used as the
key.
Use of qcow / gcow?2 encryption is thus strongly discouraged. Users are
recommended to use an alternative encryption technology such as the Linux
dm-crypt / LUKS system.
"cluster_size"
Changes the qcow?2 cluster size (must be between 512 and 2M). Smaller
cluster sizes can improve the image file size whereas larger cluster sizes
generally provide better performance.
"preallocation”
Preallocation mode (allowed values: "off", "metadata”, "falloc”, "full").
An image with preallocated metadata is initially larger but can improve
performance when the image needs to grow. "falloc" and "full”
preallocations are like the same options of "raw" format, but sets up
metadata also.
"lazy_refcounts"
If this option is set to "on", reference count updates are postponed with
the goal of avoiding metadata 1/0 and improving performance. This is
particularly interesting with cache=writethrough which doesn't batch
metadata updates. The tradeoff is that after a host crash, the reference
count tables must be rebuilt, i.e. on the next open an (automatic)
"gemu-img check -r all" is required, which may take some time.
This option can only be enabled if "compat=1.1" is specified.
"nocow"
If this option is set to "on", it will turn off COW of the file. It's only
valid on btrfs, no effect on other file systems.

Btrfs has low performance when hosting a VM image file, even more when the Page 17/18

guest on the VM also using btrfs as file system. Turning off COW is a way
to mitigate this bad performance. Generally there are two ways to turn off
COW on btrfs: a) Disable it by mounting with nodatacow, then all newly
created files will be NOCOW. b) For an empty file, add the NOCOW file
attribute. That's what this option does.
Note: this option is only valid to new or empty files. If there is an
existing file which is COW and has data blocks already, it couldn't be
changed to NOCOW by setting "nocow=on". One can issue "Isattr filename" to
check if the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
Other
QEMU also supports various other image file formats for compatibility with
older QEMU versions or other hypervisors, including VMDK, VDI, VHD (vpc), VHDX,
gcowl and QED. For a full list of supported formats see "gemu-img --help". For
a more detailed description of these formats, see the QEMU Emulation User
Documentation.
The main purpose of the block drivers for these formats is image conversion.
For running VMs, it is recommended to convert the disk images to either raw or
gcow? in order to achieve good performance.
SEE ALSO
The HTML documentation of QEMU for more precise information and Linux user mode
emulator invocation.
AUTHOR
Fabrice Bellard

2022-12-08 QEMU-IMG.1(1)

Page 18/18

