
Linux Ubuntu 22.4.5 Manual Pages on command 'qemu-img.1'

$ man qemu-img.1

QEMU-IMG.1(1) QEMU-IMG.1(1)

NAME

 qemu-img - QEMU disk image utility

SYNOPSIS

 qemu-img [standard options] command [command options]

DESCRIPTION

 qemu-img allows you to create, convert and modify images offline. It can handle all

 image formats supported by QEMU.

 Warning: Never use qemu-img to modify images in use by a running virtual machine or

 any other process; this may destroy the image. Also, be aware that querying an

 image that is being modified by another process may encounter inconsistent state.

OPTIONS

 Standard options:

 -h, --help

 Display this help and exit

 -V, --version

 Display version information and exit

 -T, --trace [[enable=]pattern][,events=file][,file=file]

 Specify tracing options.

 [enable=]pattern

 Immediately enable events matching pattern (either event name or a globbing

 pattern). This option is only available if QEMU has been compiled with the
Page 1/18

 simple, log or ftrace tracing backend. To specify multiple events or

 patterns, specify the -trace option multiple times.

 Use "-trace help" to print a list of names of trace points.

 events=file

 Immediately enable events listed in file. The file must contain one event

 name (as listed in the trace-events-all file) per line; globbing patterns

 are accepted too. This option is only available if QEMU has been compiled

 with the simple, log or ftrace tracing backend.

 file=file

 Log output traces to file. This option is only available if QEMU has been

 compiled with the simple tracing backend.

 The following commands are supported:

 amend [--object objectdef] [--image-opts] [-p] [-q] [-f fmt] [-t cache] -o options

 filename

 bench [-c count] [-d depth] [-f fmt] [--flush-interval=flush_interval] [-n]

 [--no-drain] [-o offset] [--pattern=pattern] [-q] [-s buffer_size] [-S step_size]

 [-t cache] [-w] [-U] filename

 check [--object objectdef] [--image-opts] [-q] [-f fmt] [--output=ofmt] [-r [leaks

 | all]] [-T src_cache] [-U] filename

 commit [--object objectdef] [--image-opts] [-q] [-f fmt] [-t cache] [-b base] [-d]

 [-p] filename

 compare [--object objectdef] [--image-opts] [-f fmt] [-F fmt] [-T src_cache] [-p]

 [-q] [-s] [-U] filename1 filename2

 convert [--object objectdef] [--image-opts] [--target-image-opts] [-U] [-C] [-c]

 [-p] [-q] [-n] [-f fmt] [-t cache] [-T src_cache] [-O output_fmt] [-B backing_file]

 [-o options] [-l snapshot_param] [-S sparse_size] [-m num_coroutines] [-W]

 [--salvage] filename [filename2 [...]] output_filename

 create [--object objectdef] [-q] [-f fmt] [-b backing_file] [-F backing_fmt] [-u]

 [-o options] filename [size]

 dd [--image-opts] [-U] [-f fmt] [-O output_fmt] [bs=block_size] [count=blocks]

 [skip=blocks] if=input of=output

 info [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt] [--backing-chain]

 [-U] filename Page 2/18

 map [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt] [-U] filename

 measure [--output=ofmt] [-O output_fmt] [-o options] [--size N | [--object

 objectdef] [--image-opts] [-f fmt] [-l snapshot_param] filename]

 snapshot [--object objectdef] [--image-opts] [-U] [-q] [-l | -a snapshot | -c

 snapshot | -d snapshot] filename

 rebase [--object objectdef] [--image-opts] [-U] [-q] [-f fmt] [-t cache] [-T

 src_cache] [-p] [-u] -b backing_file [-F backing_fmt] filename

 resize [--object objectdef] [--image-opts] [-f fmt] [--preallocation=prealloc] [-q]

 [--shrink] filename [+ | -]size

 Command parameters:

 filename

 is a disk image filename

 fmt is the disk image format. It is guessed automatically in most cases. See below

 for a description of the supported disk formats.

 size

 is the disk image size in bytes. Optional suffixes "k" or "K" (kilobyte, 1024)

 "M" (megabyte, 1024k) and "G" (gigabyte, 1024M) and T (terabyte, 1024G) are

 supported. "b" is ignored.

 output_filename

 is the destination disk image filename

 output_fmt

 is the destination format

 options

 is a comma separated list of format specific options in a name=value format.

 Use "-o ?" for an overview of the options supported by the used format or see

 the format descriptions below for details.

 snapshot_param

 is param used for internal snapshot, format is

 'snapshot.id=[ID],snapshot.name=[NAME]' or '[ID_OR_NAME]'

 --object objectdef

 is a QEMU user creatable object definition. See the qemu(1) manual page for a

 description of the object properties. The most common object type is a

 "secret", which is used to supply passwords and/or encryption keys. Page 3/18

 --image-opts

 Indicates that the source filename parameter is to be interpreted as a full

 option string, not a plain filename. This parameter is mutually exclusive with

 the -f parameter.

 --target-image-opts

 Indicates that the output_filename parameter(s) are to be interpreted as a full

 option string, not a plain filename. This parameter is mutually exclusive with

 the -O parameters. It is currently required to also use the -n parameter to

 skip image creation. This restriction may be relaxed in a future release.

 --force-share (-U)

 If specified, "qemu-img" will open the image in shared mode, allowing other

 QEMU processes to open it in write mode. For example, this can be used to get

 the image information (with 'info' subcommand) when the image is used by a

 running guest. Note that this could produce inconsistent results because of

 concurrent metadata changes, etc. This option is only allowed when opening

 images in read-only mode.

 --backing-chain

 will enumerate information about backing files in a disk image chain. Refer

 below for further description.

 -c indicates that target image must be compressed (qcow format only)

 -h with or without a command shows help and lists the supported formats

 -p display progress bar (compare, convert and rebase commands only). If the -p

 option is not used for a command that supports it, the progress is reported

 when the process receives a "SIGUSR1" or "SIGINFO" signal.

 -q Quiet mode - do not print any output (except errors). There's no progress bar

 in case both -q and -p options are used.

 -S size

 indicates the consecutive number of bytes that must contain only zeros for

 qemu-img to create a sparse image during conversion. This value is rounded down

 to the nearest 512 bytes. You may use the common size suffixes like "k" for

 kilobytes.

 -t cache

 specifies the cache mode that should be used with the (destination) file. See Page 4/18

 the documentation of the emulator's "-drive cache=..." option for allowed

 values.

 -T src_cache

 specifies the cache mode that should be used with the source file(s). See the

 documentation of the emulator's "-drive cache=..." option for allowed values.

 Parameters to snapshot subcommand:

 snapshot

 is the name of the snapshot to create, apply or delete

 -a applies a snapshot (revert disk to saved state)

 -c creates a snapshot

 -d deletes a snapshot

 -l lists all snapshots in the given image

 Parameters to compare subcommand:

 -f First image format

 -F Second image format

 -s Strict mode - fail on different image size or sector allocation

 Parameters to convert subcommand:

 -n Skip the creation of the target volume

 -m Number of parallel coroutines for the convert process

 -W Allow out-of-order writes to the destination. This option improves performance,

 but is only recommended for preallocated devices like host devices or other raw

 block devices.

 -C Try to use copy offloading to move data from source image to target. This may

 improve performance if the data is remote, such as with NFS or iSCSI backends,

 but will not automatically sparsify zero sectors, and may result in a fully

 allocated target image depending on the host support for getting allocation

 information.

 --salvage

 Try to ignore I/O errors when reading. Unless in quiet mode ("-q"), errors

 will still be printed. Areas that cannot be read from the source will be

 treated as containing only zeroes.

 Parameters to dd subcommand:

 bs=block_size Page 5/18

 defines the block size

 count=blocks

 sets the number of input blocks to copy

 if=input

 sets the input file

 of=output

 sets the output file

 skip=blocks

 sets the number of input blocks to skip

 Command description:

 amend [--object objectdef] [--image-opts] [-p] [-q] [-f fmt] [-t cache] -o options

 filename

 Amends the image format specific options for the image file filename. Not all

 file formats support this operation.

 bench [-c count] [-d depth] [-f fmt] [--flush-interval=flush_interval] [-n]

 [--no-drain] [-o offset] [--pattern=pattern] [-q] [-s buffer_size] [-S step_size]

 [-t cache] [-w] [-U] filename

 Run a simple sequential I/O benchmark on the specified image. If "-w" is

 specified, a write test is performed, otherwise a read test is performed.

 A total number of count I/O requests is performed, each buffer_size bytes in

 size, and with depth requests in parallel. The first request starts at the

 position given by offset, each following request increases the current position

 by step_size. If step_size is not given, buffer_size is used for its value.

 If flush_interval is specified for a write test, the request queue is drained

 and a flush is issued before new writes are made whenever the number of

 remaining requests is a multiple of flush_interval. If additionally

 "--no-drain" is specified, a flush is issued without draining the request queue

 first.

 If "-n" is specified, the native AIO backend is used if possible. On Linux,

 this option only works if "-t none" or "-t directsync" is specified as well.

 For write tests, by default a buffer filled with zeros is written. This can be

 overridden with a pattern byte specified by pattern.

 check [--object objectdef] [--image-opts] [-q] [-f fmt] [--output=ofmt] [-r [leaks Page 6/18

 | all]] [-T src_cache] [-U] filename

 Perform a consistency check on the disk image filename. The command can output

 in the format ofmt which is either "human" or "json". The JSON output is an

 object of QAPI type "ImageCheck".

 If "-r" is specified, qemu-img tries to repair any inconsistencies found during

 the check. "-r leaks" repairs only cluster leaks, whereas "-r all" fixes all

 kinds of errors, with a higher risk of choosing the wrong fix or hiding

 corruption that has already occurred.

 Only the formats "qcow2", "qed" and "vdi" support consistency checks.

 In case the image does not have any inconsistencies, check exits with 0. Other

 exit codes indicate the kind of inconsistency found or if another error

 occurred. The following table summarizes all exit codes of the check

 subcommand:

 0 Check completed, the image is (now) consistent

 1 Check not completed because of internal errors

 2 Check completed, image is corrupted

 3 Check completed, image has leaked clusters, but is not corrupted

 63 Checks are not supported by the image format

 If "-r" is specified, exit codes representing the image state refer to the

 state after (the attempt at) repairing it. That is, a successful "-r all" will

 yield the exit code 0, independently of the image state before.

 commit [--object objectdef] [--image-opts] [-q] [-f fmt] [-t cache] [-b base] [-d]

 [-p] filename

 Commit the changes recorded in filename in its base image or backing file. If

 the backing file is smaller than the snapshot, then the backing file will be

 resized to be the same size as the snapshot. If the snapshot is smaller than

 the backing file, the backing file will not be truncated. If you want the

 backing file to match the size of the smaller snapshot, you can safely truncate

 it yourself once the commit operation successfully completes.

 The image filename is emptied after the operation has succeeded. If you do not

 need filename afterwards and intend to drop it, you may skip emptying filename

 by specifying the "-d" flag.

 If the backing chain of the given image file filename has more than one layer, Page 7/18

 the backing file into which the changes will be committed may be specified as

 base (which has to be part of filename's backing chain). If base is not

 specified, the immediate backing file of the top image (which is filename) will

 be used. Note that after a commit operation all images between base and the top

 image will be invalid and may return garbage data when read. For this reason,

 "-b" implies "-d" (so that the top image stays valid).

 compare [--object objectdef] [--image-opts] [-f fmt] [-F fmt] [-T src_cache] [-p]

 [-q] [-s] [-U] filename1 filename2

 Check if two images have the same content. You can compare images with

 different format or settings.

 The format is probed unless you specify it by -f (used for filename1) and/or -F

 (used for filename2) option.

 By default, images with different size are considered identical if the larger

 image contains only unallocated and/or zeroed sectors in the area after the end

 of the other image. In addition, if any sector is not allocated in one image

 and contains only zero bytes in the second one, it is evaluated as equal. You

 can use Strict mode by specifying the -s option. When compare runs in Strict

 mode, it fails in case image size differs or a sector is allocated in one image

 and is not allocated in the second one.

 By default, compare prints out a result message. This message displays

 information that both images are same or the position of the first different

 byte. In addition, result message can report different image size in case

 Strict mode is used.

 Compare exits with 0 in case the images are equal and with 1 in case the images

 differ. Other exit codes mean an error occurred during execution and standard

 error output should contain an error message. The following table sumarizes

 all exit codes of the compare subcommand:

 0 Images are identical

 1 Images differ

 2 Error on opening an image

 3 Error on checking a sector allocation

 4 Error on reading data

 convert [--object objectdef] [--image-opts] [--target-image-opts] [-U] [-C] [-c] Page 8/18

 [-p] [-q] [-n] [-f fmt] [-t cache] [-T src_cache] [-O output_fmt] [-B backing_file]

 [-o options] [-l snapshot_param] [-S sparse_size] [-m num_coroutines] [-W] filename

 [filename2 [...]] output_filename

 Convert the disk image filename or a snapshot snapshot_param to disk image

 output_filename using format output_fmt. It can be optionally compressed ("-c"

 option) or use any format specific options like encryption ("-o" option).

 Only the formats "qcow" and "qcow2" support compression. The compression is

 read-only. It means that if a compressed sector is rewritten, then it is

 rewritten as uncompressed data.

 Image conversion is also useful to get smaller image when using a growable

 format such as "qcow": the empty sectors are detected and suppressed from the

 destination image.

 sparse_size indicates the consecutive number of bytes (defaults to 4k) that

 must contain only zeros for qemu-img to create a sparse image during

 conversion. If sparse_size is 0, the source will not be scanned for unallocated

 or zero sectors, and the destination image will always be fully allocated.

 You can use the backing_file option to force the output image to be created as

 a copy on write image of the specified base image; the backing_file should have

 the same content as the input's base image, however the path, image format, etc

 may differ.

 If a relative path name is given, the backing file is looked up relative to the

 directory containing output_filename.

 If the "-n" option is specified, the target volume creation will be skipped.

 This is useful for formats such as "rbd" if the target volume has already been

 created with site specific options that cannot be supplied through qemu-img.

 Out of order writes can be enabled with "-W" to improve performance. This is

 only recommended for preallocated devices like host devices or other raw block

 devices. Out of order write does not work in combination with creating

 compressed images.

 num_coroutines specifies how many coroutines work in parallel during the

 convert process (defaults to 8).

 create [--object objectdef] [-q] [-f fmt] [-b backing_file] [-F backing_fmt] [-u]

 [-o options] filename [size] Page 9/18

 Create the new disk image filename of size size and format fmt. Depending on

 the file format, you can add one or more options that enable additional

 features of this format.

 If the option backing_file is specified, then the image will record only the

 differences from backing_file. No size needs to be specified in this case.

 backing_file will never be modified unless you use the "commit" monitor command

 (or qemu-img commit).

 If a relative path name is given, the backing file is looked up relative to the

 directory containing filename.

 Note that a given backing file will be opened to check that it is valid. Use

 the "-u" option to enable unsafe backing file mode, which means that the image

 will be created even if the associated backing file cannot be opened. A

 matching backing file must be created or additional options be used to make the

 backing file specification valid when you want to use an image created this

 way.

 The size can also be specified using the size option with "-o", it doesn't need

 to be specified separately in this case.

 dd [--image-opts] [-U] [-f fmt] [-O output_fmt] [bs=block_size] [count=blocks]

 [skip=blocks] if=input of=output

 Dd copies from input file to output file converting it from fmt format to

 output_fmt format.

 The data is by default read and written using blocks of 512 bytes but can be

 modified by specifying block_size. If count=blocks is specified dd will stop

 reading input after reading blocks input blocks.

 The size syntax is similar to dd(1)'s size syntax.

 info [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt] [--backing-chain]

 [-U] filename

 Give information about the disk image filename. Use it in particular to know

 the size reserved on disk which can be different from the displayed size. If VM

 snapshots are stored in the disk image, they are displayed too.

 If a disk image has a backing file chain, information about each disk image in

 the chain can be recursively enumerated by using the option "--backing-chain".

 For instance, if you have an image chain like: Page 10/18

 base.qcow2 <- snap1.qcow2 <- snap2.qcow2

 To enumerate information about each disk image in the above chain, starting

 from top to base, do:

 qemu-img info --backing-chain snap2.qcow2

 The command can output in the format ofmt which is either "human" or "json".

 The JSON output is an object of QAPI type "ImageInfo"; with "--backing-chain",

 it is an array of "ImageInfo" objects.

 "--output=human" reports the following information (for every image in the

 chain):

 image

 The image file name

 file format

 The image format

 virtual size

 The size of the guest disk

 disk size

 How much space the image file occupies on the host file system (may be

 shown as 0 if this information is unavailable, e.g. because there is no

 file system)

 cluster_size

 Cluster size of the image format, if applicable

 encrypted

 Whether the image is encrypted (only present if so)

 cleanly shut down

 This is shown as "no" if the image is dirty and will have to be auto-

 repaired the next time it is opened in qemu.

 backing file

 The backing file name, if present

 backing file format

 The format of the backing file, if the image enforces it

 Snapshot list

 A list of all internal snapshots

 Format specific information Page 11/18

 Further information whose structure depends on the image format. This

 section is a textual representation of the respective "ImageInfoSpecific*"

 QAPI object (e.g. "ImageInfoSpecificQCow2" for qcow2 images).

 map [--object objectdef] [--image-opts] [-f fmt] [--output=ofmt] [-U] filename

 Dump the metadata of image filename and its backing file chain. In particular,

 this commands dumps the allocation state of every sector of filename, together

 with the topmost file that allocates it in the backing file chain.

 Two option formats are possible. The default format ("human") only dumps

 known-nonzero areas of the file. Known-zero parts of the file are omitted

 altogether, and likewise for parts that are not allocated throughout the chain.

 qemu-img output will identify a file from where the data can be read, and the

 offset in the file. Each line will include four fields, the first three of

 which are hexadecimal numbers. For example the first line of:

 Offset Length Mapped to File

 0 0x20000 0x50000 /tmp/overlay.qcow2

 0x100000 0x10000 0x95380000 /tmp/backing.qcow2

 means that 0x20000 (131072) bytes starting at offset 0 in the image are

 available in /tmp/overlay.qcow2 (opened in "raw" format) starting at offset

 0x50000 (327680). Data that is compressed, encrypted, or otherwise not

 available in raw format will cause an error if "human" format is in use. Note

 that file names can include newlines, thus it is not safe to parse this output

 format in scripts.

 The alternative format "json" will return an array of dictionaries in JSON

 format. It will include similar information in the "start", "length", "offset"

 fields; it will also include other more specific information:

 - whether the sectors contain actual data or not (boolean field "data"; if

 false, the sectors are either unallocated or stored as optimized all-zero

 clusters);

 - whether the data is known to read as zero (boolean field "zero");

 - in order to make the output shorter, the target file is expressed as a

 "depth"; for example, a depth of 2 refers to the backing file of the

 backing file of filename.

 In JSON format, the "offset" field is optional; it is absent in cases where Page 12/18

 "human" format would omit the entry or exit with an error. If "data" is false

 and the "offset" field is present, the corresponding sectors in the file are

 not yet in use, but they are preallocated.

 For more information, consult include/block/block.h in QEMU's source code.

 measure [--output=ofmt] [-O output_fmt] [-o options] [--size N | [--object

 objectdef] [--image-opts] [-f fmt] [-l snapshot_param] filename]

 Calculate the file size required for a new image. This information can be used

 to size logical volumes or SAN LUNs appropriately for the image that will be

 placed in them. The values reported are guaranteed to be large enough to fit

 the image. The command can output in the format ofmt which is either "human"

 or "json". The JSON output is an object of QAPI type "BlockMeasureInfo".

 If the size N is given then act as if creating a new empty image file using

 qemu-img create. If filename is given then act as if converting an existing

 image file using qemu-img convert. The format of the new file is given by

 output_fmt while the format of an existing file is given by fmt.

 A snapshot in an existing image can be specified using snapshot_param.

 The following fields are reported:

 required size: 524288

 fully allocated size: 1074069504

 The "required size" is the file size of the new image. It may be smaller than

 the virtual disk size if the image format supports compact representation.

 The "fully allocated size" is the file size of the new image once data has been

 written to all sectors. This is the maximum size that the image file can

 occupy with the exception of internal snapshots, dirty bitmaps, vmstate data,

 and other advanced image format features.

 snapshot [--object objectdef] [--image-opts] [-U] [-q] [-l | -a snapshot | -c

 snapshot | -d snapshot] filename

 List, apply, create or delete snapshots in image filename.

 rebase [--object objectdef] [--image-opts] [-U] [-q] [-f fmt] [-t cache] [-T

 src_cache] [-p] [-u] -b backing_file [-F backing_fmt] filename

 Changes the backing file of an image. Only the formats "qcow2" and "qed"

 support changing the backing file.

 The backing file is changed to backing_file and (if the image format of Page 13/18

 filename supports this) the backing file format is changed to backing_fmt. If

 backing_file is specified as "" (the empty string), then the image is rebased

 onto no backing file (i.e. it will exist independently of any backing file).

 If a relative path name is given, the backing file is looked up relative to the

 directory containing filename.

 cache specifies the cache mode to be used for filename, whereas src_cache

 specifies the cache mode for reading backing files.

 There are two different modes in which "rebase" can operate:

 Safe mode

 This is the default mode and performs a real rebase operation. The new

 backing file may differ from the old one and qemu-img rebase will take care

 of keeping the guest-visible content of filename unchanged.

 In order to achieve this, any clusters that differ between backing_file and

 the old backing file of filename are merged into filename before actually

 changing the backing file.

 Note that the safe mode is an expensive operation, comparable to converting

 an image. It only works if the old backing file still exists.

 Unsafe mode

 qemu-img uses the unsafe mode if "-u" is specified. In this mode, only the

 backing file name and format of filename is changed without any checks on

 the file contents. The user must take care of specifying the correct new

 backing file, or the guest-visible content of the image will be corrupted.

 This mode is useful for renaming or moving the backing file to somewhere

 else. It can be used without an accessible old backing file, i.e. you can

 use it to fix an image whose backing file has already been moved/renamed.

 You can use "rebase" to perform a "diff" operation on two disk images. This

 can be useful when you have copied or cloned a guest, and you want to get back

 to a thin image on top of a template or base image.

 Say that "base.img" has been cloned as "modified.img" by copying it, and that

 the "modified.img" guest has run so there are now some changes compared to

 "base.img". To construct a thin image called "diff.qcow2" that contains just

 the differences, do:

 qemu-img create -f qcow2 -b modified.img diff.qcow2 Page 14/18

 qemu-img rebase -b base.img diff.qcow2

 At this point, "modified.img" can be discarded, since "base.img + diff.qcow2"

 contains the same information.

 resize [--object objectdef] [--image-opts] [-f fmt] [--preallocation=prealloc] [-q]

 [--shrink] filename [+ | -]size

 Change the disk image as if it had been created with size.

 Before using this command to shrink a disk image, you MUST use file system and

 partitioning tools inside the VM to reduce allocated file systems and partition

 sizes accordingly. Failure to do so will result in data loss!

 When shrinking images, the "--shrink" option must be given. This informs qemu-

 img that the user acknowledges all loss of data beyond the truncated image's

 end.

 After using this command to grow a disk image, you must use file system and

 partitioning tools inside the VM to actually begin using the new space on the

 device.

 When growing an image, the "--preallocation" option may be used to specify how

 the additional image area should be allocated on the host. See the format

 description in the "NOTES" section which values are allowed. Using this option

 may result in slightly more data being allocated than necessary.

NOTES

 Supported image file formats:

 raw Raw disk image format (default). This format has the advantage of being simple

 and easily exportable to all other emulators. If your file system supports

 holes (for example in ext2 or ext3 on Linux or NTFS on Windows), then only the

 written sectors will reserve space. Use "qemu-img info" to know the real size

 used by the image or "ls -ls" on Unix/Linux.

 Supported options:

 "preallocation"

 Preallocation mode (allowed values: "off", "falloc", "full"). "falloc"

 mode preallocates space for image by calling posix_fallocate(). "full"

 mode preallocates space for image by writing data to underlying storage.

 This data may or may not be zero, depending on the storage location.

 qcow2 Page 15/18

 QEMU image format, the most versatile format. Use it to have smaller images

 (useful if your filesystem does not supports holes, for example on Windows),

 optional AES encryption, zlib based compression and support of multiple VM

 snapshots.

 Supported options:

 "compat"

 Determines the qcow2 version to use. "compat=0.10" uses the traditional

 image format that can be read by any QEMU since 0.10. "compat=1.1" enables

 image format extensions that only QEMU 1.1 and newer understand (this is

 the default). Amongst others, this includes zero clusters, which allow

 efficient copy-on-read for sparse images.

 "backing_file"

 File name of a base image (see create subcommand)

 "backing_fmt"

 Image format of the base image

 "encryption"

 If this option is set to "on", the image is encrypted with 128-bit AES-CBC.

 The use of encryption in qcow and qcow2 images is considered to be flawed

 by modern cryptography standards, suffering from a number of design

 problems:

 - The AES-CBC cipher is used with predictable initialization vectors

 based on the sector number. This makes it vulnerable to chosen

 plaintext attacks which can reveal the existence of encrypted data.

 - The user passphrase is directly used as the encryption key. A poorly

 chosen or short passphrase will compromise the security of the

 encryption.

 - In the event of the passphrase being compromised there is no way to

 change the passphrase to protect data in any qcow images. The files

 must be cloned, using a different encryption passphrase in the new

 file. The original file must then be securely erased using a program

 like shred, though even this is ineffective with many modern storage

 technologies.

 - Initialization vectors used to encrypt sectors are based on the guest Page 16/18

 virtual sector number, instead of the host physical sector. When a disk

 image has multiple internal snapshots this means that data in multiple

 physical sectors is encrypted with the same initialization vector. With

 the CBC mode, this opens the possibility of watermarking attacks if the

 attack can collect multiple sectors encrypted with the same IV and some

 predictable data. Having multiple qcow2 images with the same passphrase

 also exposes this weakness since the passphrase is directly used as the

 key.

 Use of qcow / qcow2 encryption is thus strongly discouraged. Users are

 recommended to use an alternative encryption technology such as the Linux

 dm-crypt / LUKS system.

 "cluster_size"

 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller

 cluster sizes can improve the image file size whereas larger cluster sizes

 generally provide better performance.

 "preallocation"

 Preallocation mode (allowed values: "off", "metadata", "falloc", "full").

 An image with preallocated metadata is initially larger but can improve

 performance when the image needs to grow. "falloc" and "full"

 preallocations are like the same options of "raw" format, but sets up

 metadata also.

 "lazy_refcounts"

 If this option is set to "on", reference count updates are postponed with

 the goal of avoiding metadata I/O and improving performance. This is

 particularly interesting with cache=writethrough which doesn't batch

 metadata updates. The tradeoff is that after a host crash, the reference

 count tables must be rebuilt, i.e. on the next open an (automatic)

 "qemu-img check -r all" is required, which may take some time.

 This option can only be enabled if "compat=1.1" is specified.

 "nocow"

 If this option is set to "on", it will turn off COW of the file. It's only

 valid on btrfs, no effect on other file systems.

 Btrfs has low performance when hosting a VM image file, even more when the Page 17/18

 guest on the VM also using btrfs as file system. Turning off COW is a way

 to mitigate this bad performance. Generally there are two ways to turn off

 COW on btrfs: a) Disable it by mounting with nodatacow, then all newly

 created files will be NOCOW. b) For an empty file, add the NOCOW file

 attribute. That's what this option does.

 Note: this option is only valid to new or empty files. If there is an

 existing file which is COW and has data blocks already, it couldn't be

 changed to NOCOW by setting "nocow=on". One can issue "lsattr filename" to

 check if the NOCOW flag is set or not (Capital 'C' is NOCOW flag).

 Other

 QEMU also supports various other image file formats for compatibility with

 older QEMU versions or other hypervisors, including VMDK, VDI, VHD (vpc), VHDX,

 qcow1 and QED. For a full list of supported formats see "qemu-img --help". For

 a more detailed description of these formats, see the QEMU Emulation User

 Documentation.

 The main purpose of the block drivers for these formats is image conversion.

 For running VMs, it is recommended to convert the disk images to either raw or

 qcow2 in order to achieve good performance.

SEE ALSO

 The HTML documentation of QEMU for more precise information and Linux user mode

 emulator invocation.

AUTHOR

 Fabrice Bellard

 2022-12-08 QEMU-IMG.1(1)

Page 18/18

