P cbLrivors:

University

FPDF Library

PDF generator

"‘ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command 'gemu-system-i386.1'

$ man gemu-system-i386.1
QEMU.1(1) QEMU.1(1)
NAME

gemu-doc - QEMU version 4.2.1 User Documentation
SYNOPSIS

gemu-system-x86_64 [options] [disk_image]
DESCRIPTION

The QEMU PC System emulator simulates the following peripherals:

- i440FX host PCI bridge and PII1X3 PCI to ISA bridge

- Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA extensions

(hardware level, including all non standard modes).

- PS/2 mouse and keyboard

- 2 PCI IDE interfaces with hard disk and CD-ROM support

- Floppy disk

- PCl and ISA network adapters

- Serial ports

- IPMI BMC, either and internal or external one

- Creative SoundBlaster 16 sound card

- ENSONIQ AudioPCI ES1370 sound card

- Intel 82801AA AC97 Audio compatible sound card

- Intel HD Audio Controller and HDA codec

- Adlib (OPL2) - Yamaha YM3812 compatible chip

Page 1/88
- Gravis Ultrasound GF1 sound card g

- CS4231A compatible sound card
- PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
SMP is supported with up to 255 CPUs.
QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL VGA BIOS.
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
QEMU uses GUS emulation (GUSEMUS32 <http://www.deinmeister.de/gusemu/>) by Tibor
"TS" Sch?tz.
Note that, by default, GUS shares IRQ(7) with parallel ports and so QEMU must be
told to not have parallel ports to have working GUS.
gemu-system-x86_64 dos.img -soundhw gus -parallel none
Alternatively:
gemu-system-x86_64 dos.img -device gus,irg=5
Or some other unclaimed IRQ.
CS4231A is the chip used in Windows Sound System and GUSMAX products
OPTIONS
disk_image is a raw hard disk image for IDE hard disk 0. Some targets do not need a
disk image.
Standard options
-h Display help and exit
-version
Display version information and exit
-machine [type=]name[,prop=value],...]]
Select the emulated machine by name. Use "-machine help" to list available
machines.
For architectures which aim to support live migration compatibility across
releases, each release will introduce a new versioned machine type. For
example, the 2.8.0 release introduced machine types "pc-i440fx-2.8" and
"pc-g35-2.8" for the x86_64/i686 architectures.
To allow live migration of guests from QEMU version 2.8.0, to QEMU version
2.9.0, the 2.9.0 version must support the "pc-i440fx-2.8" and "pc-q35-2.8"
machines too. To allow users live migrating VMs to skip multiple intermediate
releases when upgrading, new releases of QEMU will support machine types from

many previous versions. Page 2/88

Supported machine properties are:
accel=accelsl[:accels2[....]]
This is used to enable an accelerator. Depending on the target
architecture, kvm, xen, hax, hvf, whpx or tcg can be available. By default,
tcg is used. If there is more than one accelerator specified, the next one
is used if the previous one fails to initialize.
kernel_irqgchip=on|off
Controls in-kernel irqchip support for the chosen accelerator when
available.
gfx_passthru=on|off
Enables IGD GFX passthrough support for the chosen machine when available.
vmport=on|offlauto
Enables emulation of VMWare IO port, for vmmouse etc. auto says to select
the value based on accel. For accel=xen the default is off otherwise the
default is on.
kvm_shadow_mem=size
Defines the size of the KVM shadow MMU.
dump-guest-core=on|off
Include guest memory in a core dump. The default is on.
mem-merge=on|off
Enables or disables memory merge support. This feature, when supported by
the host, de-duplicates identical memory pages among VMs instances (enabled
by default).
aes-key-wrap=on|off
Enables or disables AES key wrapping support on s390-ccw hosts. This
feature controls whether AES wrapping keys will be created to allow
execution of AES cryptographic functions. The default is on.
dea-key-wrap=on|off
Enables or disables DEA key wrapping support on s390-ccw hosts. This
feature controls whether DEA wrapping keys will be created to allow
execution of DEA cryptographic functions. The default is on.
nvdimm=on|off

Enables or disables NVDIMM support. The default is off.

Page 3/88

enforce-config-section=on|off
If enforce-config-section is set to on, force migration code to send
configuration section even if the machine-type sets the
migration.send-configuration property to off. NOTE: this parameter is
deprecated. Please use -global migration.send-configuration=on|off instead.
memory-encryption=
Memory encryption object to use. The default is none.
-cpu model
Select CPU model ("-cpu help" for list and additional feature selection)
-accel name[,prop=valuel,...]]
This is used to enable an accelerator. Depending on the target architecture,
kvm, xen, hax, hvf, whpx or tcg can be available. By default, tcg is used. If
there is more than one accelerator specified, the next one is used if the
previous one fails to initialize.
thread=single|muilti
Controls number of TCG threads. When the TCG is multi-threaded there will
be one thread per vCPU therefor taking advantage of additional host cores.
The default is to enable multi-threading where both the back-end and front-
ends support it and no incompatible TCG features have been enabled (e.g.
icount/replay).
-smp
[cpus=]n[,cores=cores][,threads=threads][,dies=dies][,sockets=sockets][,maxcpus=maxcpus]
Simulate an SMP system with n CPUs. On the PC target, up to 255 CPUs are
supported. On Sparc32 target, Linux limits the number of usable CPUs to 4. For
the PC target, the number of cores per die, the number of threads per cores,
the number of dies per packages and the total number of sockets can be
specified. Missing values will be computed. If any on the three values is
given, the total number of CPUs n can be omitted. maxcpus specifies the
maximum number of hotpluggable CPUs.
-numa node[,mem=size][,cpus=firstcpu[-lastcpu]][,nodeid=node]
-numa node[,memdev=id][,cpus=firstcpul[-lastcpu]][,nodeid=node]
-numa dist,src=source,dst=destination,val=distance

-numa cpu,node-id=node[,socket-id=x][,core-id=y][,thread-id=z] Page 4/88

Define a NUMA node and assign RAM and VCPUs to it. Set the NUMA distance from
a source node to a destination node.
Legacy VCPU assignment uses cpus option where firstcpu and lastcpu are CPU
indexes. Each cpus option represent a contiguous range of CPU indexes (or a
single VCPU if lastcpu is omitted). A non-contiguous set of VCPUs can be
represented by providing multiple cpus options. If cpus is omitted on all
nodes, VCPUs are automatically split between them.
For example, the following option assigns VCPUs 0, 1, 2 and 5 to a NUMA node:

-numa node,cpus=0-2,cpus=5
cpu option is a new alternative to cpus option which uses
socket-id|core-id|thread-id properties to assign CPU objects to a node using
topology layout properties of CPU. The set of properties is machine specific,
and depends on used machine type/smp options. It could be queried with
hotpluggable-cpus monitor command. node-id property specifies node to which
CPU object will be assigned, it's required for node to be declared with node
option before it's used with cpu option.
For example:

-M pc\

-smp 1,sockets=2,maxcpus=2 \

-numa node,nodeid=0 -numa node,nodeid=1\

-numa cpu,node-id=0,socket-id=0 -numa cpu,node-id=1,socket-id=1
mem assigns a given RAM amount to a node. memdev assigns RAM from a given
memory backend device to a node. If mem and memdev are omitted in all nodes,
RAM is split equally between them.
mem and memdev are mutually exclusive. Furthermore, if one node uses memdev,
all of them have to use it.
source and destination are NUMA node IDs. distance is the NUMA distance from
source to destination. The distance from a node to itself is always 10. If any
pair of nodes is given a distance, then all pairs must be given distances.
Although, when distances are only given in one direction for each pair of
nodes, then the distances in the opposite directions are assumed to be the
same. If, however, an asymmetrical pair of distances is given for even one node

pair, then all node pairs must be provided distance values for both directions, Page 5/88

even when they are symmetrical. When a node is unreachable from another node,
set the pair's distance to 255.
Note that the -numa option doesn't allocate any of the specified resources, it
just assigns existing resources to NUMA nodes. This means that one still has to
use the -m, -smp options to allocate RAM and VCPUSs respectively.
-add-fd fd=fd,set=set[,opaque=opaque]
Add a file descriptor to an fd set. Valid options are:
fd=fd
This option defines the file descriptor of which a duplicate is added to fd
set. The file descriptor cannot be stdin, stdout, or stderr.
set=set
This option defines the ID of the fd set to add the file descriptor to.
opaque=opaque
This option defines a free-form string that can be used to describe fd.
You can open an image using pre-opened file descriptors from an fd set:
gemu-system-x86_64 \
-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
-drive file=/dev/fdset/2,index=0,media=disk
-set group.id.arg=value
Set parameter arg for item id of type group
-global driver.prop=value
-global driver=driver,property=property,value=value
Set default value of driver's property prop to value, e.g.:
gemu-system-x86_64 -global ide-hd.physical_block_size=4096 disk-image.img
In particular, you can use this to set driver properties for devices which are
created automatically by the machine model. To create a device which is not
created automatically and set properties on it, use -device.
-global driver.prop=value is shorthand for -global
driver=driver,property=prop,value=value. The longhand syntax works even when
driver contains a dot.

-boot

Page 6/88

[order=drives][,once=drives][,menu=on|off][,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_timeout][,strict=on|
off]
Specify boot order drives as a string of drive letters. Valid drive letters
depend on the target architecture. The x86 PC uses: a, b (floppy 1 and 2), ¢
(first hard disk), d (first CD-ROM), n-p (Etherboot from network adapter 1-4),
hard disk boot is the default. To apply a particular boot order only on the
first startup, specify it via once. Note that the order or once parameter
should not be used together with the bootindex property of devices, since the
firmware implementations normally do not support both at the same time.
Interactive boot menus/prompts can be enabled via menu=on as far as
firmware/BIOS supports them. The default is non-interactive boot.
A splash picture could be passed to bios, enabling user to show it as logo,
when option splash=sp_name is given and menu=on, If firmware/BIOS supports
them. Currently Seabios for X86 system support it. limitation: The splash file
could be a jpeg file or a BMP file in 24 BPP format(true color). The resolution
should be supported by the SVGA mode, so the recommended is 320x240, 640x480,
800x640.
A timeout could be passed to bios, guest will pause for rb_timeout ms when boot
failed, then reboot. If rb_timeout is '-1', guest will not reboot, gemu passes
'-1' to bios by default. Currently Seabios for X86 system support it.
Do strict boot via strict=on as far as firmware/BIOS supports it. This only
effects when boot priority is changed by bootindex options. The default is non-
strict boot.
try to boot from network first, then from hard disk
gemu-system-x86_64 -boot order=nc
boot from CD-ROM first, switch back to default order after reboot
gemu-system-x86_64 -boot once=d
boot with a splash picture for 5 seconds.
gemu-system-x86_64 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
Note: The legacy format '-boot drives' is still supported but its use is
discouraged as it may be removed from future versions.
-m [size=]megs[,slots=n,maxmem=size]

Sets guest startup RAM size to megs megabytes. Default is 128 MiB. Optionally, Page 7/88

a suffix of "M" or "G" can be used to signify a value in megabytes or gigabytes

respectively. Optional pair slots, maxmem could be used to set amount of

hotpluggable memory slots and maximum amount of memory. Note that maxmem must

be aligned to the page size.
For example, the following command-line sets the guest startup RAM size to 1GB,
creates 3 slots to hotplug additional memory and sets the maximum memory the
guest can reach to 4GB:
gemu-system-x86_64 -m 1G,slots=3,maxmem=4G
If slots and maxmem are not specified, memory hotplug won't be enabled and the
guest startup RAM will never increase.
-mem-path path
Allocate guest RAM from a temporarily created file in path.
-mem-prealloc
Preallocate memory when using -mem-path.
-k language
Use keyboard layout language (for example "fr" for French). This option is only
needed where it is not easy to get raw PC keycodes (e.g. on Macs, with some X11
servers or with a VNC or curses display). You don't normally need to use it on
PC/Linux or PC/Windows hosts.
The available layouts are:
ar de-ch es fo fr-ca hu ja mk no pt-br sv
da en-gb et fr frchis It nl pl ru th
de en-us fi fr-be hr it Iv nl-be pt sl tr
The default is "en-us".
-audio-help
Will show the -audiodev equivalent of the currently specified (deprecated)
environment variables.
-audiodev [driver=]driver,id=id[,prop[=value][,...]]
Adds a new audio backend driver identified by id. There are global and driver
specific properties. Some values can be set differently for input and output,
they're marked with "in|jout.". You can set the input's property with "in.prop"
and the output's property with "out.prop". For example:

-audiodev alsa,id=example,in.frequency=44110,out.frequency=8000

Page 8/88

-audiodev alsa,id=example,out.channels=1 # leaves in.channels unspecified
NOTE: parameter validation is known to be incomplete, in many cases specifying
an invalid option causes QEMU to print an error message and continue emulation
without sound.

Valid global options are:

id=identifier
Identifies the audio backend.

timer-period=period
Sets the timer period used by the audio subsystem in microseconds. Default
is 10000 (10 ms).

injJout.mixing-engine=on|off
Use QEMU's mixing engine to mix all streams inside QEMU and convert audio
formats when not supported by the backend. When off, fixed-settings must
be off too. Note that disabling this option means that the selected
backend must support multiple streams and the audio formats used by the
virtual cards, otherwise you'll get no sound. It's not recommended to
disable this option unless you want to use 5.1 or 7.1 audio, as mixing
engine only supports mono and stereo audio. Default is on.

injout.fixed-settings=on|off
Use fixed settings for host audio. When off, it will change based on how
the guest opens the sound card. In this case you must not specify
frequency, channels or format. Default is on.

injout.frequency=frequency
Specify the frequency to use when using fixed-settings. Default is
44100Hz.

injout.channels=channels
Specify the number of channels to use when using fixed-settings. Default is
2 (stereo).

injout.format=format
Specify the sample format to use when using fixed-settings. Valid values
are: "s8", "s16", "s32", "u8", "ul6", "u32". Default is "s16".

injout.voices=voices

Specify the number of voices to use. Defaultis 1.

Page 9/88

in|out.buffer-length=usecs
Sets the size of the buffer in microseconds.
-audiodev none,id=id[,prop[=value][,...]]
Creates a dummy backend that discards all outputs. This backend has no backend
specific properties.
-audiodev alsa,id=id[,prop[=value][,...]]
Creates backend using the ALSA. This backend is only available on Linux.
ALSA specific options are:
injJout.dev=device
Specify the ALSA device to use for input and/or output. Default is
"default”.
injout.period-length=usecs
Sets the period length in microseconds.
injout.try-poll=on|off
Attempt to use poll mode with the device. Default is on.
threshold=threshold
Threshold (in microseconds) when playback starts. Default is 0.
-audiodev coreaudio,id=id[,prop[=value][,...]]
Creates a backend using Apple's Core Audio. This backend is only available on
Mac OS and only supports playback.
Core Audio specific options are:
injout.buffer-count=count
Sets the count of the buffers.
-audiodev dsound,id=id[,prop[=value][,...]]
Creates a backend using Microsoft's DirectSound. This backend is only
available on Windows and only supports playback.
DirectSound specific options are:
latency=usecs
Add extra usecs microseconds latency to playback. Default is 10000 (10
ms).
-audiodev oss,id=id[,prop[=value][,...]]
Creates a backend using OSS. This backend is available on most Unix-like

systems.

Page 10/88

OSS specific options are:
injJout.dev=device
Specify the file name of the OSS device to use. Default is "/dev/dsp".
injout.buffer-count=count
Sets the count of the buffers.
injout.try-poll=on|of
Attempt to use poll mode with the device. Default is on.
try-mmap=on|off
Try using memory mapped device access. Default is off.
exclusive=on|off
Open the device in exclusive mode (vmix won't work in this case). Default
is off.
dsp-policy=policy
Sets the timing policy (between 0 and 10, where smaller number means
smaller latency but higher CPU usage). Use -1 to use buffer sizes
specified by "buffer" and "buffer-count”. This option is ignored if you do
not have OSS 4. Default is 5.
-audiodev pa,id=id[,prop[=value]],...]]
Creates a backend using PulseAudio. This backend is available on most systems.
PulseAudio specific options are:
server=server
Sets the PulseAudio server to connect to.
inJout.name=sink
Use the specified source/sink for recording/playback.
injout.latency=usecs
Desired latency in microseconds. The PulseAudio server will try to honor
this value but actual latencies may be lower or higher.
-audiodev sdl,id=id[,prop[=value][,...]]
Creates a backend using SDL. This backend is available on most systems, but
you should use your platform's native backend if possible. This backend has no
backend specific properties.
-audiodev spice,id=id[,prop[=value]],...]]

Creates a backend that sends audio through SPICE. This backend requires Page 11/88

"-spice" and automatically selected in that case, so usually you can ignore
this option. This backend has no backend specific properties.
-audiodev wav,id=id[,prop[=value]l,...]]
Creates a backend that writes audio to a WAV file.
Backend specific options are:
path=path
Write recorded audio into the specified file. Default is "gemu.wav".
-soundhw cardl[,card2,...] or -soundhw all
Enable audio and selected sound hardware. Use 'help' to print all available
sound hardware. For example:
gemu-system-x86_64 -soundhw sbh16,adlib disk.img
gemu-system-x86_64 -soundhw es1370 disk.img
gemu-system-x86_64 -soundhw ac97 disk.img
gemu-system-x86_64 -soundhw hda disk.img
gemu-system-x86_64 -soundhw all disk.img
gemu-system-x86_64 -soundhw help
Note that Linux's i810_audio OSS kernel (for AC97) module might require
manually specifying clocking.
modprobe i810 audio clocking=48000
-device driver[,prop[=value]],...]]
Add device driver. prop=value sets driver properties. Valid properties depend
on the driver. To get help on possible drivers and properties, use "-device
help" and "-device driver,help".
Some drivers are:
-device
ipmi-bmc-sim,id=id[,slave_addr=val][,sdrfile=file][,furareasize=val][,furdatafile=file][,guid=uuid]
Add an IPMI BMC. This is a simulation of a hardware management interface
processor that normally sits on a system. It provides a watchdog and the
ability to reset and power control the system. You need to connect this to an
IPMI interface to make it useful
The IPMI slave address to use for the BMC. The default is 0x20. This address
is the BMC's address on the 12C network of management controllers. If you

don't know what this means, it is safe to ignore it. Page 12/88

id=id
The BMC id for interfaces to use this device.
slave_addr=val
Define slave address to use for the BMC. The default is 0x20.
sdrfile=file
file containing raw Sensor Data Records (SDR) data. The default is none.
fruareasize=val
size of a Field Replaceable Unit (FRU) area. The default is 1024.
frudatafile=file
file containing raw Field Replaceable Unit (FRU) inventory data. The
default is none.
guid=uuid
value for the GUID for the BMC, in standard UUID format. If this is set,
get "Get GUID" command to the BMC will return it. Otherwise "Get GUID"

will return an error.

-device ipmi-bmc-extern,id=id,chardev=id[,slave_addr=val]

Add a connection to an external IPMI BMC simulator. Instead of locally
emulating the BMC like the above item, instead connect to an external entity
that provides the IPMI services.

A connection is made to an external BMC simulator. If you do this, it is

strongly recommended that you use the "reconnect=" chardev option to reconnect

to the simulator if the connection is lost. Note that if this is not used

carefully, it can be a security issue, as the interface has the ability to send

resets, NMls, and power off the VM. It's best if QEMU makes a connection to an

external simulator running on a secure port on localhost, so neither the
simulator nor QEMU is exposed to any outside network.
See the "lanserv/README.vm" file in the OpenIPMI library for more details on

the external interface.

-device isa-ipmi-kcs,bmc=id[,ioport=val][,irg=val]

Add a KCS IPMI interafce on the ISA bus. This also adds a corresponding ACPI

and SMBIOS entries, if appropriate.
bmc=id

The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.

Page 13/88

ioport=val
Define the 1/0 address of the interface. The default is OxcaO for KCS.
irg=val
Define the interrupt to use. The defaultis 5. To disable interrupts, set
this to 0.
-device isa-ipmi-bt,bmc=id[,ioport=val][,irg=val]
Like the KCS interface, but defines a BT interface. The default port is Oxe4
and the default interrupt is 5.
-name name
Sets the name of the guest. This name will be displayed in the SDL window
caption. The name will also be used for the VNC server. Also optionally set
the top visible process name in Linux. Naming of individual threads can also
be enabled on Linux to aid debugging.
-uuid uuid
Set system UUID.
Block device options
-fda file
-fdb file
Use file as floppy disk 0/1 image.
-hda file
-hdb file
-hdc file
-hdd file
Use file as hard disk 0, 1, 2 or 3 image.
-cdrom file
Use file as CD-ROM image (you cannot use -hdc and -cdrom at the same time). You
can use the host CD-ROM by using /dev/cdrom as filename.
-blockdev option[,option[,option],...]]]
Define a new block driver node. Some of the options apply to all block drivers,
other options are only accepted for a specific block driver. See below for a
list of generic options and options for the most common block drivers.
Options that expect a reference to another node (e.g. "file") can be given in

two ways. Either you specify the node name of an already existing node

Page 14/88

(file=node-name), or you define a new node inline, adding options for the
referenced node after a dot (file.flename=path,file.aio=native).
A block driver node created with -blockdev can be used for a guest device by
specifying its node name for the "drive" property in a -device argument that
defines a block device.
Valid options for any block driver node:
"driver"
Specifies the block driver to use for the given node.
"node-name”
This defines the name of the block driver node by which it will be
referenced later. The name must be unique, i.e. it must not match the
name of a different block driver node, or (if you use -drive as well)
the ID of a drive.
If no node name is specified, it is automatically generated. The
generated node name is not intended to be predictable and changes
between QEMU invocations. For the top level, an explicit node name
must be specified.
"read-only"
Open the node read-only. Guest write attempts will fail.
Note that some block drivers support only read-only access, either
generally or in certain configurations. In this case, the default value
read-only=off does not work and the option must be specified
explicitly.
"auto-read-only"
If auto-read-only=on is set, QEMU may fall back to read-only usage even
when read-only=0ff is requested, or even switch between modes as
needed, e.g. depending on whether the image file is writable or whether
a writing user is attached to the node.
"force-share"
Override the image locking system of QEMU by forcing the node to
utilize weaker shared access for permissions where it would normally
request exclusive access. When there is the potential for multiple

instances to have the same file open (whether this invocation of QEMU

Page 15/88

is the first or the second instance), both instances must permit shared
access for the second instance to succeed at opening the file.
Enabling force-share=on requires read-only=on.

"cache.direct"
The host page cache can be avoided with cache.direct=on. This will
attempt to do disk 10 directly to the guest's memory. QEMU may still
perform an internal copy of the data.

"cache.no-flush"
In case you don't care about data integrity over host failures, you can
use cache.no-flush=on. This option tells QEMU that it never needs to
write any data to the disk but can instead keep things in cache. If
anything goes wrong, like your host losing power, the disk storage
getting disconnected accidentally, etc. your image will most probably
be rendered unusable.

"discard=discard"
discard is one of "ignore" (or "off") or "unmap" (or "on") and controls
whether "discard” (also known as "trim" or "unmap") requests are
ignored or passed to the filesystem. Some machine types may not support
discard requests.

"detect-zeroes=detect-zeroes"
detect-zeroes is "off", "on" or "unmap" and enables the automatic
conversion of plain zero writes by the OS to driver specific optimized
zero write commands. You may even choose "unmap" if discard is set to
"unmap" to allow a zero write to be converted to an "unmap" operation.

Driver-specific options for "file"

This is the protocol-level block driver for accessing regular files.

"filename"
The path to the image file in the local filesystem

"aio"
Specifies the AlO backend (threads/native, default: threads)

"locking"

Specifies whether the image file is protected with Linux OFD / POSIX

locks. The default is to use the Linux Open File Descriptor API if

Page 16/88

available, otherwise no lock is applied. (auto/on/off, default: auto)
Example:
-blockdev driver=file,node-name=disk,filename=disk.img
Driver-specific options for "raw"
This is the image format block driver for raw images. It is usually stacked
on top of a protocol level block driver such as "file".
"file"
Reference to or definition of the data source block driver node (e.g. a
"file" driver node)
Example 1:
-blockdev driver=file,node-name=disk_file,filename=disk.img
-blockdev driver=raw,node-name=disk,file=disk_file
Example 2:
-blockdev driver=raw,node-name=disk,file.driver=filefile.filename=disk.img
Driver-specific options for "qcow?2"
This is the image format block driver for gcow?2 images. It is usually
stacked on top of a protocol level block driver such as "file".
"file"
Reference to or definition of the data source block driver node (e.g. a
“file" driver node)
"backing"
Reference to or definition of the backing file block device (default is
taken from the image file). It is allowed to pass "null" here in order
to disable the default backing file.
"lazy-refcounts"
Whether to enable the lazy refcounts feature (on/off; default is taken
from the image file)
"cache-size"
The maximum total size of the L2 table and refcount block caches in
bytes (default: the sum of 12-cache-size and refcount-cache-size)
"I2-cache-size"
The maximum size of the L2 table cache in bytes (default: if cache-size

is not specified - 32M on Linux platforms, and 8M on non-Linux

Page 17/88

platforms; otherwise, as large as possible within the cache-size, while
permitting the requested or the minimal refcount cache size)
"refcount-cache-size"
The maximum size of the refcount block cache in bytes (default: 4 times
the cluster size; or if cache-size is specified, the part of it which
is not used for the L2 cache)
"cache-clean-interval"
Clean unused entries in the L2 and refcount caches. The interval is in
seconds. The default value is 600 on supporting platforms, and 0 on
other platforms. Setting it to O disables this feature.
"pass-discard-request"”
Whether discard requests to the gcow2 device should be forwarded to the
data source (on/off; default: on if discard=unmap is specified, off
otherwise)
"pass-discard-snapshot"
Whether discard requests for the data source should be issued when a
snapshot operation (e.g. deleting a snapshot) frees clusters in the
gcow? file (on/off; default: on)
"pass-discard-other"
Whether discard requests for the data source should be issued on other
occasions where a cluster gets freed (on/off; default; off)
"overlap-check"
Which overlap checks to perform for writes to the image
(none/constant/cached/all; default: cached). For details or finer
granularity control refer to the QAPI documentation of "blockdev-add".
Example 1:
-blockdev driver=file,node-name=my _file,filename=/tmp/disk.qcow?2
-blockdev driver=qcow?2,node-name=hda,file=my_file,overlap-check=none,cache-size=16777216
Example 2:
-blockdev driver=qcow?2,node-name=disk,file.driver=http,file.filename=http://example.com/image.qcow?2
Driver-specific options for other drivers
Please refer to the QAPI documentation of the "blockdev-add" QMP command.

-drive option[,option[,option[,...]]] Page 18/88

Define a new drive. This includes creating a block driver node (the backend) as

well as a guest device, and is mostly a shortcut for defining the corresponding

-blockdev and -device options.
-drive accepts all options that are accepted by -blockdev. In addition, it
knows the following options:
file=file
This option defines which disk image to use with this drive. If the
filename contains comma, you must double it (for instance, "file=my,file"
to use file "my,file").
Special files such as iSCSI devices can be specified using protocol
specific URLs. See the section for "Device URL Syntax" for more
information.
if=interface
This option defines on which type on interface the drive is connected.
Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio, none.
bus=bus,unit=unit
These options define where is connected the drive by defining the bus
number and the unit id.
index=index
This option defines where is connected the drive by using an index in the
list of available connectors of a given interface type.
media=media
This option defines the type of the media: disk or cdrom.
snapshot=snapshot
snapshot is "on" or "off" and controls snapshot mode for the given drive
(see -snapshot).
cache=cache
cache is "none", "writeback", "unsafe”, "directsync" or "writethrough" and
controls how the host cache is used to access block data. This is a
shortcut that sets the cache.direct and cache.no-flush options (as in
-blockdev), and additionally cache.writeback, which provides a default for
the write-cache option of block guest devices (as in -device). The modes

correspond to the following settings:

Page 19/88

? cache.writeback cache.direct cache.no-flush

P07 ?77?77?72?7?7?77?7??7?27?7??7?7?7?77?7?77

writeback ? on off off
none ?on on off
writethrough ? off off off
directsync ? off on off
unsafe ?on off on

The default mode is cache=writeback.

aio=aio
aio is "threads", or "native" and selects between pthread based disk 1/0
and native Linux AlO.

format=format
Specify which disk format will be used rather than detecting the format.
Can be used to specify format=raw to avoid interpreting an untrusted format
header.

werror=action,rerror=action
Specify which action to take on write and read errors. Valid actions are:
"ignore” (ignore the error and try to continue), "stop" (pause QEMU),
"report" (report the error to the guest), "enospc” (pause QEMU only if the
host disk is full; report the error to the guest otherwise). The default
setting is werror=enospc and rerror=report.

copy-on-read=copy-on-read
copy-on-read is "on" or "off" and enables whether to copy read backing file
sectors into the image file.

bps=b,bps_rd=r,bps_wr=w
Specify bandwidth throttling limits in bytes per second, either for all
request types or for reads or writes only. Small values can lead to
timeouts or hangs inside the guest. A safe minimum for disks is 2 MB/s.

bps_max=bm,bps_rd_max=rm,bps_wr_max=wm
Specify bursts in bytes per second, either for all request types or for
reads or writes only. Bursts allow the guest 1/O to spike above the limit
temporarily.

iops=i,iops_rd=r,iops_wr=w

Page 20/88

Specify request rate limits in requests per second, either for all request
types or for reads or writes only.
iops_max=bm,iops_rd_max=rm,iops_wr_max=wm
Specify bursts in requests per second, either for all request types or for
reads or writes only. Bursts allow the guest I/O to spike above the limit
temporarily.
iops_size=is
Let every is bytes of a request count as a new request for iops throttling
purposes. Use this option to prevent guests from circumventing iops limits
by sending fewer but larger requests.
group=g
Join a throttling quota group with given name g. All drives that are
members of the same group are accounted for together. Use this option to
prevent guests from circumventing throttling limits by using many small
disks instead of a single larger disk.
By default, the cache.writeback=on mode is used. It will report data writes as
completed as soon as the data is present in the host page cache. This is safe
as long as your guest OS makes sure to correctly flush disk caches where
needed. If your guest OS does not handle volatile disk write caches correctly
and your host crashes or loses power, then the guest may experience data
corruption.
For such guests, you should consider using cache.writeback=off. This means that
the host page cache will be used to read and write data, but write notification
will be sent to the guest only after QEMU has made sure to flush each write to
the disk. Be aware that this has a major impact on performance.
When using the -snapshot option, unsafe caching is always used.
Copy-on-read avoids accessing the same backing file sectors repeatedly and is
useful when the backing file is over a slow network. By default copy-on-read
is off.
Instead of -cdrom you can use:
gemu-system-x86_64 -drive file=file,index=2,media=cdrom
Instead of -hda, -hdb, -hdc, -hdd, you can use:

gemu-system-x86_64 -drive file=file,index=0,media=disk Page 21/88

gemu-system-x86_64 -drive file=file,index=1,media=disk
gemu-system-x86_64 -drive file=file,index=2,media=disk
gemu-system-x86_64 -drive file=file,index=3,media=disk
You can open an image using pre-opened file descriptors from an fd set:
gemu-system-x86_64 \
-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
-add-fd fd=4,set=2,opaque="rdonly:/path/to/file” \
-drive file=/dev/fdset/2,index=0,media=disk
You can connect a CDROM to the slave of ide0:
gemu-system-x86_64 -drive file=file,if=ide,index=1,media=cdrom
If you don't specify the "file=" argument, you define an empty drive:
gemu-system-x86_64 -drive if=ide,index=1,media=cdrom
Instead of -fda, -fdb, you can use:
gemu-system-x86_64 -drive file=file,index=0,if=floppy
gemu-system-x86_64 -drive file=file,index=1,if=floppy
By default, interface is "ide" and index is automatically incremented:
gemu-system-x86_64 -drive file=a -drive file=b"
is interpreted like:
gemu-system-x86_64 -hda a -hdb b
-mtdblock file
Use file as on-board Flash memory image.
-sd file
Use file as SecureDigital card image.
-pflash file
Use file as a parallel flash image.
-snapshot
Write to temporary files instead of disk image files. In this case, the raw
disk image you use is not written back. You can however force the write back by
pressing C-a s.
-fsdev local,id=id,path=path,security_model=security _model
[,writeout=writeout][,readonly][,fmode=fmode][,dmode=dmode]
[,throttling.option=value][,throttling.option=valuel,...]]]

-fsdev proxy,id=id,socket=socket[,writeout=writeout][,readonly]

Page 22/88

-fsdev proxy,id=id,sock_fd=sock_fd[,writeout=writeout][,readonly]
-fsdev synth,id=id[,readonly]

Define a new file system device. Valid options are:

local
Accesses to the filesystem are done by QEMU.

proxy
Accesses to the filesystem are done by virtfs-proxy-helper(1).

synth
Synthetic filesystem, only used by QTests.

id=id
Specifies identifier for this device.

path=path
Specifies the export path for the file system device. Files under this path
will be available to the 9p client on the guest.

security_model=security_model
Specifies the security model to be used for this export path. Supported
security models are "passthrough”, "mapped-xattr", "mapped-file" and
"none". In "passthrough” security model, files are stored using the same
credentials as they are created on the guest. This requires QEMU to run as
root. In "mapped-xattr" security model, some of the file attributes like
uid, gid, mode bits and link target are stored as file attributes. For
"mapped-file" these attributes are stored in the hidden .virtfs_metadata
directory. Directories exported by this security model cannot interact with
other unix tools. "none" security model is same as passthrough except the
sever won't report failures if it fails to set file attributes like
ownership. Security model is mandatory only for local fsdriver. Other
fsdrivers (like proxy) don't take security model as a parameter.

writeout=writeout
This is an optional argument. The only supported value is "immediate".
This means that host page cache will be used to read and write data but
write notification will be sent to the guest only when the data has been

reported as written by the storage subsystem.

readonly Page 23/88

Enables exporting 9p share as a readonly mount for guests. By default read-
write access is given.
socket=socket
Enables proxy filesystem driver to use passed socket file for communicating
with virtfs-proxy-helper(1).
sock_fd=sock_fd
Enables proxy filesystem driver to use passed socket descriptor for
communicating with virtfs-proxy-helper(1). Usually a helper like libvirt
will create socketpair and pass one of the fds as sock_fd.
fmode=fmode
Specifies the default mode for newly created files on the host. Works only
with security models "mapped-xattr" and "mapped-file".
dmode=dmode
Specifies the default mode for newly created directories on the host. Works
only with security models "mapped-xattr" and "mapped-file".
throttling.bps-total=b,throttling.bps-read=r,throttling.bps-write=w
Specify bandwidth throttling limits in bytes per second, either for all
request types or for reads or writes only.
throttling.bps-total-max=bm,bps-read-max=rm,bps-write-max=wm
Specify bursts in bytes per second, either for all request types or for
reads or writes only. Bursts allow the guest I/O to spike above the limit
temporarily.
throttling.iops-total=i,throttling.iops-read=r, throttling.iops-write=w
Specify request rate limits in requests per second, either for all request
types or for reads or writes only.
throttling.iops-total-max=im,throttling.iops-read-max=irm,
throttling.iops-write-max=iwm
Specify bursts in requests per second, either for all request types or for
reads or writes only. Bursts allow the guest I/O to spike above the limit
temporarily.
throttling.iops-size=is
Let every is bytes of a request count as a new request for iops throttling

purposes.

Page 24/88

-fsdev option is used along with -device driver "virtio-9p-...".
-device virtio-9p-type,fsdev=id,mount_tag=mount_tag
Options for virtio-9p-... driver are:
type
Specifies the variant to be used. Supported values are "pci”, "ccw" or
"device", depending on the machine type.
fsdev=id
Specifies the id value specified along with -fsdev option.
mount_tag=mount_tag
Specifies the tag name to be used by the guest to mount this export point.
-virtfs local,path=path,mount_tag=mount_tag
,security_model=security _model[,writeout=writeout][,readonly]
[,fmode=fmode][,dmode=dmode][,multidevs=multidevs]
-virtfs proxy,socket=socket,mount_tag=mount_tag [,writeout=writeout][,readonly]
-virtfs proxy,sock_fd=sock_fd,mount_tag=mount_tag [,writeout=writeout][,readonly]
-virtfs synth,mount_tag=mount_tag
Define a new filesystem device and expose it to the guest using a
virtio-9p-device. The general form of a Virtual File system pass-through
options are:
local
Accesses to the filesystem are done by QEMU.
proxy
Accesses to the filesystem are done by virtfs-proxy-helper(1).
synth
Synthetic filesystem, only used by QTests.
id=id
Specifies identifier for the filesystem device
path=path
Specifies the export path for the file system device. Files under this path
will be available to the 9p client on the guest.
security_model=security_model
Specifies the security model to be used for this export path. Supported

security models are "passthrough”, "mapped-xattr", "mapped-file" and Page 25/88

"none". In "passthrough” security model, files are stored using the same
credentials as they are created on the guest. This requires QEMU to run as
root. In "mapped-xattr" security model, some of the file attributes like
uid, gid, mode bits and link target are stored as file attributes. For
"mapped-file" these attributes are stored in the hidden .virtfs_metadata
directory. Directories exported by this security model cannot interact with
other unix tools. "none" security model is same as passthrough except the
sever won't report failures if it fails to set file attributes like
ownership. Security model is mandatory only for local fsdriver. Other
fsdrivers (like proxy) don't take security model as a parameter.

writeout=writeout
This is an optional argument. The only supported value is "immediate".
This means that host page cache will be used to read and write data but
write notification will be sent to the guest only when the data has been
reported as written by the storage subsystem.

readonly
Enables exporting 9p share as a readonly mount for guests. By default read-
write access is given.

socket=socket
Enables proxy filesystem driver to use passed socket file for communicating
with virtfs-proxy-helper(1). Usually a helper like libvirt will create
socketpair and pass one of the fds as sock_fd.

sock fd
Enables proxy filesystem driver to use passed 'sock_fd' as the socket
descriptor for interfacing with virtfs-proxy-helper(1).

fmode=fmode
Specifies the default mode for newly created files on the host. Works only
with security models "mapped-xattr" and "mapped-file".

dmode=dmode
Specifies the default mode for newly created directories on the host. Works
only with security models "mapped-xattr" and "mapped-file".

mount_tag=mount_tag

Specifies the tag name to be used by the guest to mount this export point. Page 26/88

multidevs=multidevs
Specifies how to deal with multiple devices being shared with a 9p export.
Supported behaviours are either "remap”, "forbid" or "warn". The latter is
the default behaviour on which virtfs 9p expects only one device to be
shared with the same export, and if more than one device is shared and
accessed via the same 9p export then only a warning message is logged
(once) by gemu on host side. In order to avoid file ID collisions on guest
you should either create a separate virtfs export for each device to be
shared with guests (recommended way) or you might use "remap" instead which
allows you to share multiple devices with only one export instead, which is
achieved by remapping the original inode numbers from host to guest in a
way that would prevent such collisions. Remapping inodes in such use cases
is required because the original device IDs from host are never passed and
exposed on guest. Instead all files of an export shared with virtfs always
share the same device id on guest. So two files with identical inode
numbers but from actually different devices on host would otherwise cause a
file ID collision and hence potential misbehaviours on guest. "forbid" on
the other hand assumes like "warn" that only one device is shared by the
same export, however it will not only log a warning message but also deny
access to additional devices on guest. Note though that "forbid" does
currently not block all possible file access operations (e.g. readdir()
would still return entries from other devices).
-virtfs_synth
Create synthetic file system image. Note that this option is now deprecated.
Please use "-fsdev synth" and "-device virtio-9p-..." instead.
-iscsi
Configure iSCSI session parameters.
USB options
-usb
Enable USB emulation on machine types with an on-board USB host controller (if
not enabled by default). Note that on-board USB host controllers may not
support USB 3.0. In this case -device gemu-xhci can be used instead on

machines with PCI.

Page 27/88

-usbdevice devname
Add the USB device devnhame. Note that this option is deprecated, please use
"-device usb-..." instead.
mouse
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
tablet
Pointer device that uses absolute coordinates (like a touchscreen). This
means QEMU is able to report the mouse position without having to grab the
mouse. Also overrides the PS/2 mouse emulation when activated.
braille
Braille device. This will use BrlAPI to display the braille output on a
real or fake device.
Display options
-display type
Select type of display to use. This option is a replacement for the old style
-sdl/-curses/... options. Valid values for type are
sdl Display video output via SDL (usually in a separate graphics window; see
the SDL documentation for other possibilities).
curses
Display video output via curses. For graphics device models which support a
text mode, QEMU can display this output using a curses/ncurses interface.
Nothing is displayed when the graphics device is in graphical mode or if
the graphics device does not support a text mode. Generally only the VGA
device models support text mode. The font charset used by the guest can be
specified with the "charset" option, for example "charset=CP850" for IBM
CP850 encoding. The default is "CP437".
none
Do not display video output. The guest will still see an emulated graphics
card, but its output will not be displayed to the QEMU user. This option
differs from the -nographic option in that it only affects what is done
with video output; -nographic also changes the destination of the serial
and parallel port data.

gtk Display video output in a GTK window. This interface provides drop-down Page 28/88

menus and other Ul elements to configure and control the VM during runtime.
vnc Start a VNC server on display <arg>
egl-headless
Offload all OpenGL operations to a local DRI device. For any graphical
display, this display needs to be paired with either VNC or SPICE displays.
spice-app
Start QEMU as a Spice server and launch the default Spice client
application. The Spice server will redirect the serial consoles and QEMU
monitors. (Since 4.0)
-nographic
Normally, if QEMU is compiled with graphical window support, it displays output
such as guest graphics, guest console, and the QEMU monitor in a window. With
this option, you can totally disable graphical output so that QEMU is a simple
command line application. The emulated serial port is redirected on the console
and muxed with the monitor (unless redirected elsewhere explicitly). Therefore,
you can still use QEMU to debug a Linux kernel with a serial console. Use C-a h
for help on switching between the console and monitor.
-curses
Normally, if QEMU is compiled with graphical window support, it displays output
such as guest graphics, guest console, and the QEMU monitor in a window. With
this option, QEMU can display the VGA output when in text mode using a
curses/ncurses interface. Nothing is displayed in graphical mode.
-alt-grab
Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
affects the special keys (for fullscreen, monitor-mode switching, etc).
-ctrl-grab
Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also affects
the special keys (for fullscreen, monitor-mode switching, etc).
-no-quit
Disable SDL window close capability.
-sdl
Enable SDL.

-spice option[,option],...]]

Page 29/88

Enable the spice remote desktop protocol. Valid options are
port=<nr>
Set the TCP port spice is listening on for plaintext channels.
addr=<addr>
Set the IP address spice is listening on. Default is any address.
ipv4
ipv6
unix
Force using the specified IP version.
password=<secret>
Set the password you need to authenticate.
sasl
Require that the client use SASL to authenticate with the spice. The exact
choice of authentication method used is controlled from the system / user's
SASL configuration file for the 'gemu’ service. This is typically found in
/etc/sasl2/gemu.conf. If running QEMU as an unprivileged user, an
environment variable SASL_CONF_PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods can also
provide data encryption (eg GSSAPI), it is recommended that SASL always be
combined with the 'tls' and 'x509' settings to enable use of SSL and server
certificates. This ensures a data encryption preventing compromise of
authentication credentials.
disable-ticketing
Allow client connects without authentication.
disable-copy-paste
Disable copy paste between the client and the guest.
disable-agent-file-xfer
Disable spice-vdagent based file-xfer between the client and the guest.
tls-port=<nr>
Set the TCP port spice is listening on for encrypted channels.
x509-dir=<dir>
Set the x5009 file directory. Expects same filenames as -vnc

$display,x509=%$dir

Page 30/88

x509-key-file=<file>
x509-key-password=<file>
x509-cert-file=<file>
x509-cacert-file=<file>
x509-dh-key-file=<file>

The x509 file names can also be configured individually.
tls-ciphers=<list>

Specify which ciphers to use.
tls-channel=[main|display|cursor|inputs|record|playback]
plaintext-channel=[main|display|cursor|inputs|record|playback]

Force specific channel to be used with or without TLS encryption. The

options can be specified multiple times to configure multiple channels.

The special name "default" can be used to set the default mode. For

channels which are not explicitly forced into one mode the spice client is

allowed to pick tls/plaintext as he pleases.
image-compression=[auto_glz|auto_lz|quic|glz|lz|off]

Configure image compression (lossless). Default is auto_glz.
jpeg-wan-compression=[auto|never|always]
zlib-glz-wan-compression=[auto|never|always]

Configure wan image compression (lossy for slow links). Default is auto.
streaming-video=[off|all|filter]

Configure video stream detection. Default is off.
agent-mouse=[on|off]

Enable/disable passing mouse events via vdagent. Default is on.
playback-compression=[on|off]

Enable/disable audio stream compression (using celt 0.5.1). Default is on.
seamless-migration=[on|off]

Enable/disable spice seamless migration. Default is off.
gl=[on|off]

Enable/disable OpenGL context. Default is off.
rendernode=<file>

DRM render node for OpenGL rendering. If not specified, it will pick the

first available. (Since 2.9) Page 31/88

-portrait
Rotate graphical output 90 deg left (only PXA LCD).
-rotate deg
Rotate graphical output some deg left (only PXA LCD).
-vga type
Select type of VGA card to emulate. Valid values for type are
cirrus
Cirrus Logic GD5446 Video card. All Windows versions starting from Windows
95 should recognize and use this graphic card. For optimal performances,
use 16 bit color depth in the guest and the host OS. (This card was the
default before QEMU 2.2)
std Standard VGA card with Bochs VBE extensions. If your guest OS supports the
VESA 2.0 VBE extensions (e.g. Windows XP) and if you want to use high
resolution modes (>= 1280x1024x16) then you should use this option. (This
card is the default since QEMU 2.2)
vmware
VMWare SVGA-II compatible adapter. Use it if you have sufficiently recent
XFree86/X0rg server or Windows guest with a driver for this card.
gxl QXL paravirtual graphic card. Itis VGA compatible (including VESA 2.0 VBE
support). Works best with gxl guest drivers installed though. Recommended
choice when using the spice protocol.
tcx (sundm only) Sun TCX framebuffer. This is the default framebuffer for sun4m
machines and offers both 8-bit and 24-bit colour depths at a fixed
resolution of 1024x768.
cg3 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
for sundm machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
resolutions aimed at people wishing to run older Solaris versions.
virtio
Virtio VGA card.
none
Disable VGA card.
-full-screen

Start in full screen. Page 32/88

-g widthxheight[xdepth]
Set the initial graphical resolution and depth (PPC, SPARC only).
-vnc display[,option[,option[,...]]]
Normally, if QEMU is compiled with graphical window support, it displays output
such as guest graphics, guest console, and the QEMU monitor in a window. With
this option, you can have QEMU listen on VNC display display and redirect the
VGA display over the VNC session. It is very useful to enable the usb tablet
device when using this option (option -device usb-tablet). When using the VNC
display, you must use the -k parameter to set the keyboard layout if you are
not using en-us. Valid syntax for the display is
to=L
With this option, QEMU will try next available VNC displays, until the
number L, if the origianlly defined "-vnc display" is not available, e.g.
port 5900+display is already used by another application. By default, to=0.
host:d
TCP connections will only be allowed from host on display d. By convention
the TCP port is 5900+d. Optionally, host can be omitted in which case the
server will accept connections from any host.
unix:path
Connections will be allowed over UNIX domain sockets where path is the
location of a unix socket to listen for connections on.
none
VNC is initialized but not started. The monitor "change" command can be
used to later start the VNC server.
Following the display value there may be one or more option flags separated by
commas. Valid options are
reverse
Connect to a listening VNC client via a "reverse" connection. The client is
specified by the display. For reverse network connections
(host:d,"reverse"), the d argument is a TCP port number, not a display
number.
websocket

Opens an additional TCP listening port dedicated to VNC Websocket Page 33/88

connections. If a bare websocket option is given, the Websocket port is
5700+display. An alternative port can be specified with the syntax
"websocket"=port.
If host is specified connections will only be allowed from this host. It
is possible to control the websocket listen address independently, using
the syntax "websocket"=host:port.
If no TLS credentials are provided, the websocket connection runs in
unencrypted mode. If TLS credentials are provided, the websocket connection
requires encrypted client connections.
password
Require that password based authentication is used for client connections.
The password must be set separately using the "set_password" command in the
pcsys_monitor. The syntax to change your password is: "set_password
<protocol> <password>" where <protocol> could be either "vnc" or "spice".
If you would like to change <protocol> password expiration, you should use
"expire_password <protocol> <expiration-time>" where expiration time could
be one of the following options: now, never, +seconds or UNIX time of
expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for
this date and time).
You can also use keywords "now" or "never" for the expiration time to allow
<protocol> password to expire immediately or never expire.
tls-creds=ID
Provides the ID of a set of TLS credentials to use to secure the VNC
server. They will apply to both the normal VNC server socket and the
websocket socket (if enabled). Setting TLS credentials will cause the VNC
server socket to enable the VeNCrypt auth mechanism. The credentials
should have been previously created using the -object tIs-creds argument.
tls-authz=1D
Provides the ID of the QAuthZ authorization object against which the
client's x509 distinguished name will validated. This object is only
resolved at time of use, so can be deleted and recreated on the fly while

the VNC server is active. If missing, it will default to denying access. Page 34/88

sasl
Require that the client use SASL to authenticate with the VNC server. The
exact choice of authentication method used is controlled from the system /
user's SASL configuration file for the 'gemu’ service. This is typically
found in /etc/sasl2/gemu.conf. If running QEMU as an unprivileged user, an
environment variable SASL_CONF_PATH can be used to make it search alternate
locations for the service config. While some SASL auth methods can also
provide data encryption (eg GSSAPI), it is recommended that SASL always be
combined with the 'tls' and 'x509' settings to enable use of SSL and server
certificates. This ensures a data encryption preventing compromise of
authentication credentials. See the vnc_security section for details on
using SASL authentication.

sasl-authz=ID
Provides the ID of the QAuthZ authorization object against which the
client's SASL username will validated. This object is only resolved at time
of use, so can be deleted and recreated on the fly while the VNC server is
active. If missing, it will default to denying access.

acl Legacy method for enabling authorization of clients against the x509
distinguished name and SASL username. It results in the creation of two
"authz-list" objects with IDs of "vnc.username" and "vnc.x509dname". The
rules for these objects must be configured with the HMP ACL commands.
This option is deprecated and should no longer be used. The new sasl-authz
and tls-authz options are a replacement.

lossy
Enable lossy compression methods (gradient, JPEG, ...). If this option is
set, VNC client may receive lossy framebuffer updates depending on its
encoding settings. Enabling this option can save a lot of bandwidth at the
expense of quality.

non-adaptive
Disable adaptive encodings. Adaptive encodings are enabled by default. An
adaptive encoding will try to detect frequently updated screen regions, and
send updates in these regions using a lossy encoding (like JPEG). This can

be really helpful to save bandwidth when playing videos. Disabling adaptive Page 35/88

encodings restores the original static behavior of encodings like Tight.
share=[allow-exclusive|force-shared|ignore]
Set display sharing policy. 'allow-exclusive' allows clients to ask for
exclusive access. As suggested by the rfb spec this is implemented by
dropping other connections. Connecting multiple clients in parallel
requires all clients asking for a shared session (vncviewer: -shared
switch). This is the default. ‘force-shared' disables exclusive client
access. Useful for shared desktop sessions, where you don't want someone
forgetting specify -shared disconnect everybody else. 'ignore' completely
ignores the shared flag and allows everybody connect unconditionally.
Doesn't conform to the rfb spec but is traditional QEMU behavior.
key-delay-ms
Set keyboard delay, for key down and key up events, in milliseconds.
Default is 10. Keyboards are low-bandwidth devices, so this slowdown can
help the device and guest to keep up and not lose events in case events are
arriving in bulk. Possible causes for the latter are flaky network
connections, or scripts for automated testing.
audiodev=audiodev
Use the specified audiodev when the VNC client requests audio transmission.
When not using an -audiodev argument, this option must be omitted,
otherwise is must be present and specify a valid audiodev.
i386 target only
-win2k-hack
Use it when installing Windows 2000 to avoid a disk full bug. After Windows
2000 is installed, you no longer need this option (this option slows down the
IDE transfers).
-no-fd-bootchk
Disable boot signature checking for floppy disks in BIOS. May be needed to boot
from old floppy disks.
-no-acpi
Disable ACPI (Advanced Configuration and Power Interface) support. Use it if
your guest OS complains about ACPI problems (PC target machine only).

_no_hpet Page 36/88

Disable HPET support.
-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n]
[,asl_compiler_id=str][,asl_compiler_rev=n][,data=file1[:file2]...]
Add ACPI table with specified header fields and context from specified files.
For file=, take whole ACPI table from the specified files, including all ACPI
headers (possible overridden by other options). For data=, only data portion
of the table is used, all header information is specified in the command line.
If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
to ensure the field matches required by the Microsoft SLIC spec and the ACPI
spec.
-smbios file=binary
Load SMBIOS entry from binary file.
-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d][,uefi=on|off]
Specify SMBIOS type 0 fields
-smbios
type=1[,manufacturer=str][,product=str][,version=str][,serial=str][,uuid=uuid][,sku=str][,family=str]
Specify SMBIOS type 1 fields
-smbios
type=2[,manufacturer=str][,product=str][,version=str][,serial=str][,asset=str][,location=str]
Specify SMBIOS type 2 fields
-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str][,sku=str]
Specify SMBIOS type 3 fields
-smbios
type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str][,asset=str][,part=str]
Specify SMBIOS type 4 fields
-smbios
type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str][,asset=str][,part=str][,speed=%d]
Specify SMBIOS type 17 fields
Network options
-nic
[tap|bridge|user|I2tpv3|vde|netmap|vhost-user|socket][,...][,mac=macaddr][,model=mn]

This option is a shortcut for configuring both the on-board (default) guest NIC Page 37/88

hardware and the host network backend in one go. The host backend options are
the same as with the corresponding -netdev options below. The guest NIC model
can be set with model=modelname. Use model=help to list the available device
types. The hardware MAC address can be set with mac=macaddr.
The following two example do exactly the same, to show how -nic can be used to
shorten the command line length (note that the e1000 is the default on i386, so
the model=e1000 parameter could even be omitted here, too):
gemu-system-x86_64 -netdev user,id=n1,ipv6=0ff -device e1000,netdev=n1,mac=52:54:98:76:54:32
gemu-system-x86_64 -nic user,ipv6=off, model=e1000,mac=52:54:98:76:54:32
-nic none
Indicate that no network devices should be configured. It is used to override
the default configuration (default NIC with "user" host network backend) which
is activated if no other networking options are provided.
-netdev user,id=id[,option][,option][,...]
Configure user mode host network backend which requires no administrator
privilege to run. Valid options are:
id=id
Assign symbolic name for use in monitor commands.
ipv4=on|off and ipv6=on|off
Specify that either IPv4 or IPv6 must be enabled. If neither is specified
both protocols are enabled.
net=addr[/mask]
Set IP network address the guest will see. Optionally specify the netmask,
either in the form a.b.c.d or as number of valid top-most bits. Default is
10.0.2.0/24.
host=addr
Specify the guest-visible address of the host. Default is the 2nd IP in the
guest network, i.e. X.X.X.2.
ipv6-net=addr[/int]
Set IPv6 network address the guest will see (default is fec0::/64). The
network prefix is given in the usual hexadecimal IPv6 address notation. The
prefix size is optional, and is given as the number of valid top-most bits

(default is 64). Page 38/88

ipv6-host=addr
Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6
in the guest network, i.e. xxxx::2.
restrict=on|off
If this option is enabled, the guest will be isolated, i.e. it will not be
able to contact the host and no guest IP packets will be routed over the
host to the outside. This option does not affect any explicitly set
forwarding rules.
hostname=name
Specifies the client hostname reported by the built-in DHCP server.
dhcpstart=addr
Specify the first of the 16 IPs the built-in DHCP server can assign.
Default is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to
X.X.X.31.
dns=addr
Specify the guest-visible address of the virtual nameserver. The address
must be different from the host address. Default is the 3rd IP in the guest
network, i.e. X.x.x.3.
ipv6-dns=addr
Specify the guest-visible address of the IPv6 virtual nameserver. The
address must be different from the host address. Default is the 3rd IP in
the guest network, i.e. xxxx::3.
dnssearch=domain
Provides an entry for the domain-search list sent by the built-in DHCP
server. More than one domain suffix can be transmitted by specifying this
option multiple times. If supported, this will cause the guest to
automatically try to append the given domain suffix(es) in case a domain
name can not be resolved.
Example:
gemu-system-x86_64 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
domainname=domain

Specifies the client domain name reported by the built-in DHCP server.

tftp=dir Page 39/88

When using the user mode network stack, activate a built-in TFTP server.
The files in dir will be exposed as the root of a TFTP server. The TFTP
client on the guest must be configured in binary mode (use the command
"bin" of the Unix TFTP client).

tftp-server-name=name

In BOOTP reply, broadcast name as the "TFTP server name" (RFC2132 option

66). This can be used to advise the guest to load boot files or
configurations from a different server than the host address.
bootfile=file
When using the user mode network stack, broadcast file as the BOOTP
filename. In conjunction with tftp, this can be used to network boot a
guest from a local directory.
Example (using pxelinux):
gemu-system-x86_64 -hda linux.img -boot n -device e1000,netdev=n1\
-netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
smb=dir[,smbserver=addr]
When using the user mode network stack, activate a built-in SMB server so
that Windows OSes can access to the host files in dir transparently. The IP
address of the SMB server can be set to addr. By default the 4th IP in the
guest network is used, i.e. x.x.x.4.
In the guest Windows OS, the line:
10.0.2.4 smbserver
must be added in the file C:\WINDOWS\LMHOSTS (for windows 9x/Me) or
C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS (Windows NT/2000).
Then dir can be accessed in \\smbserver\gemu.
Note that a SAMBA server must be installed on the host OS.
hostfwd=[tcp|udp]:[hostaddr]:hostport-[guestaddr]:guestport
Redirect incoming TCP or UDP connections to the host port hostport to the
guest IP address guestaddr on guest port guestport. If guestaddr is not
specified, its value is x.x.x.15 (default first address given by the built-
in DHCP server). By specifying hostaddr, the rule can be bound to a
specific host interface. If no connection type is set, TCP is used. This

option can be given multiple times.

Page 40/88

For example, to redirect host X11 connection from screen 1 to guest screen
0, use the following:
on the host
gemu-system-x86_64 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
this host xterm should open in the guest X11 server
xterm -display :1
To redirect telnet connections from host port 5555 to telnet port on the
guest, use the following:
on the host
gemu-system-x86_64 -nic user,hostfwd=tcp::5555-:23
telnet localhost 5555
Then when you use on the host "telnet localhost 5555", you connect to the
guest telnet server.
guestfwd=[tcp]:server:port-dev
guestfwd=[tcp]:server:port-cmd:command
Forward guest TCP connections to the IP address server on port port to the
character device dev or to a program executed by cmd:command which gets
spawned for each connection. This option can be given multiple times.
You can either use a chardev directly and have that one used throughout
QEMU's lifetime, like in the following example:
open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
the guest accesses it
gemu-system-x86_64 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
Or you can execute a command on every TCP connection established by the
guest, so that QEMU behaves similar to an inetd process for that virtual
server:
call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
and connect the TCP stream to its stdin/stdout
gemu-system-x86_64 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321"
-netdev
tap,id=id[,fd=h][,ifname=name][,script=file][,downscript=dfile][,br=bridge][,helper=helper]
Configure a host TAP network backend with 1D id.

Use the network script file to configure it and the network script dfile to Page 41/88

deconfigure it. If name is not provided, the OS automatically provides one. The
default network configure script is /etc/gemu-ifup and the default network
deconfigure script is /etc/gemu-ifdown. Use script=no or downscript=no to
disable script execution.
If running QEMU as an unprivileged user, use the network helper helper to
configure the TAP interface and attach it to the bridge. The default network
helper executable is /path/to/gemu-bridge-helper and the default bridge device
is brO.
fd=h can be used to specify the handle of an already opened host TAP interface.
Examples:

#launch a QEMU instance with the default network script

gemu-system-x86_64 linux.img -nic tap

#launch a QEMU instance with two NICs, each one connected

#to a TAP device

gemu-system-x86_64 linux.img \

-netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \

-netdev tap,id=nd1,ifname=tapl -device rtI8139,netdev=nd1

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge br0

gemu-system-x86_64 linux.img -device virtio-net-pci,netdev=n1 \

-netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"

-netdev bridge,id=id[,br=bridge][,helper=helper]

Connect a host TAP network interface to a host bridge device.
Use the network helper helper to configure the TAP interface and attach it to
the bridge. The default network helper executable is
/path/to/gemu-bridge-helper and the default bridge device is brO0.
Examples:

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge br0

gemu-system-x86_64 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1

#launch a QEMU instance with the default network helper to

#connect a TAP device to bridge gemubr0

gemu-system-x86_64 linux.img -netdev bridge,br=gemubr0,id=n1 -device virtio-net,netdev=n1l Page 42/88

-netdev socket,id=id[,fd=h][,listen=[host]:port][,connect=host:port]
This host network backend can be used to connect the guest's network to another
QEMU virtual machine using a TCP socket connection. If listen is specified,
QEMU waits for incoming connections on port (host is optional). connect is used
to connect to another QEMU instance using the listen option. fd=h specifies an
already opened TCP socket.
Example:
launch a first QEMU instance
gemu-system-x86_64 linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,listen=:1234
connect the network of this instance to the network of the first instance
gemu-system-x86_64 linux.img \
-device e1000,netdev=n2,mac=52:54:00:12:34:57 \
-netdev socket,id=n2,connect=127.0.0.1:1234
-netdev socket,id=id[,fd=h][,mcast=maddr:port[,localaddr=addr]]
Configure a socket host network backend to share the guest's network traffic
with another QEMU virtual machines using a UDP multicast socket, effectively
making a bus for every QEMU with same multicast address maddr and port. NOTES:
1. Several QEMU can be running on different hosts and share same bus (assuming
correct multicast setup for these hosts).
2. mcast support is compatible with User Mode Linux (argument ethN=mcast), see
<http://user-mode-linux.sf.net>.
3. Use fd=h to specify an already opened UDP multicast socket.
Example:
launch one QEMU instance
gemu-system-x86_64 linux.img \
-device €1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,mcast=230.0.0.1:1234
launch another QEMU instance on same "bus"
gemu-system-x86_64 linux.img \
-device €1000,netdev=n2,mac=52:54:00:12:34:57 \

-netdev socket,id=n2,mcast=230.0.0.1:1234 Page 43/88

launch yet another QEMU instance on same "bus"
gemu-system-x86_64 linux.img \
-device €1000,netdev=n3,mac=52:54:00:12:34:58 \
-netdev socket,id=n3,mcast=230.0.0.1:1234
Example (User Mode Linux compat.):
launch QEMU instance (note mcast address selected is UML's default)
gemu-system-x86_64 linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,mcast=239.192.168.1:1102
launch UML
/path/to/linux ubdO=/path/to/root_fs ethO=mcast
Example (send packets from host's 1.2.3.4):
gemu-system-x86_64 linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4

-netdev

[2tpv3,id=id,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport],txsession=txsession[,rxsession=rxsession][,ipv6][,ud
p][,cookie64][,counter][,pincounter][,txcookie=txcookie][,rxcookie=rxcookie][,offset=offset]
Configure a L2TPv3 pseudowire host network backend. L2TPv3 (RFC3391) is a
popular protocol to transport Ethernet (and other Layer 2) data frames between
two systems. It is present in routers, firewalls and the Linux kernel (from
version 3.3 onwards).
This transport allows a VM to communicate to another VM, router or firewall
directly.
src=srcaddr
source address (mandatory)
dst=dstaddr
destination address (mandatory)
udp select udp encapsulation (default is ip).
srcport=srcport
source udp port.

dstport=dstport Page 44/88

destination udp port.
ipv6
force v6, otherwise defaults to v4.
rxcookie=rxcookie
txcookie=txcookie
Cookies are a weak form of security in the 12tpv3 specification. Their
function is mostly to prevent misconfiguration. By default they are 32 bit.
cookie64
Set cookie size to 64 bit instead of the default 32
counter=off
Force a 'cut-down' L2TPv3 with no counter as in
draft-mkonstan-I12tpext-keyed-ipv6-tunnel-00
pincounter=on
Work around broken counter handling in peer. This may also help on networks
which have packet reorder.
offset=offset
Add an extra offset between header and data
For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge
br-lan on the remote Linux host 1.2.3.4:
Setup tunnel on linux host using raw ip as encapsulation
#o0n1l.23.4
ip 12tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1\
encap udp udp_sport 16384 udp_dport 16384
ip [2tp add session tunnel_id 1 name vmtunnelO session_id \
OXFFFFFFFF peer_session_id OXFFFFFFFF
ifconfig vmtunnelO mtu 1500
ifconfig vmtunnelO up
brctl addif br-lan vmtunnelO
#0n4.3.2.1
launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
gemu-system-x86_64 linux.img -device e1000,netdev=n1\
-netdev

I2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384, rxsession=0xffffffff, txsession=0xffffffff, codpas 45/88

-netdev vde,id=id[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]
Configure VDE backend to connect to PORT n of a vde switch running on host and
listening for incoming connections on socketpath. Use GROUP groupname and MODE
octalmode to change default ownership and permissions for communication port.
This option is only available if QEMU has been compiled with vde support
enabled.

Example:
launch vde switch
vde_switch -F -sock /tmp/myswitch
launch QEMU instance
gemu-system-x86_64 linux.img -nic vde,sock=/tmp/myswitch
-netdev vhost-user,chardev=id[,vhostforce=on|off][,queues=n]
Establish a vhost-user netdev, backed by a chardev id. The chardev should be a
unix domain socket backed one. The vhost-user uses a specifically defined
protocol to pass vhost ioctl replacement messages to an application on the
other end of the socket. On non-MSIX guests, the feature can be forced with
vhostforce. Use 'queues=n' to specify the number of queues to be created for
multiqueue vhost-user.
Example:
gemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
-numa node,memdev=mem \
-chardev socket,id=chr0,path=/path/to/socket \
-netdev type=vhost-user,id=net0,chardev=chr0 \
-device virtio-net-pci,netdev=net0
-netdev hubport,id=id,hubid=hubid[,netdev=nd]
Create a hub port on the emulated hub with ID hubid.
The hubport netdev lets you connect a NIC to a QEMU emulated hub instead of a
single netdev. Alternatively, you can also connect the hubport to another
netdev with ID nd by using the netdev=nd option.

-net nic[,netdev=nd][,macaddr=mac][,model=type]

[,name=name][,addr=addr][,vectors=v]

Legacy option to configure or create an on-board (or machine default) Network

Interface Card(NIC) and connect it either to the emulated hub with ID 0 (i.e. Page 46/88

the default hub), or to the netdev nd. The NIC is an e1000 by default on the
PC target. Optionally, the MAC address can be changed to mac, the device
address set to addr (PCI cards only), and a name can be assigned for use in
monitor commands. Optionally, for PCI cards, you can specify the number v of
MSI-X vectors that the card should have; this option currently only affects
virtio cards; set v = 0 to disable MSI-X. If no -net option is specified, a
single NIC is created. QEMU can emulate several different models of network
card. Use "-net nic,model=help" for a list of available devices for your
target.

-net user|tap|bridge|socket|l2tpv3|vdel,...][,name=name]
Configure a host network backend (with the options corresponding to the same
-netdev option) and connect it to the emulated hub 0 (the default hub). Use
name to specify the name of the hub port.

Character device options

The general form of a character device option is:

-chardev backend,id=id[,mux=on|off][,options]
Backend is one of: null, socket, udp, msmouse, vc, ringbuf, file, pipe,
console, serial, pty, stdio, braille, tty, parallel, parport, spicevmc,
spiceport. The specific backend will determine the applicable options.
Use "-chardev help" to print all available chardev backend types.
All devices must have an id, which can be any string up to 127 characters long.
It is used to uniquely identify this device in other command line directives.
A character device may be used in multiplexing mode by multiple front-ends.
Specify mux=on to enable this mode. A multiplexer is a "1:N" device, and here
the "1" end is your specified chardev backend, and the "N" end is the various
parts of QEMU that can talk to a chardev. If you create a chardev with id=myid
and mux=on, QEMU will create a multiplexer with your specified ID, and you can
then configure multiple front ends to use that chardev ID for their
input/output. Up to four different front ends can be connected to a single
multiplexed chardev. (Without multiplexing enabled, a chardev can only be used
by a single front end.) For instance you could use this to allow a single
stdio chardev to be used by two serial ports and the QEMU monitor:

-chardev stdio,mux=on,id=char0 \ Page 47/88

-mon chardev=char0,mode=readline \
-serial chardev:charO \
-serial chardev:charO
You can have more than one multiplexer in a system configuration; for instance
you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
multiplexed between the QEMU monitor and a parallel port:
-chardev stdio,mux=on,id=char0 \
-mon chardev=char0,mode=readline \
-parallel chardev:char0 \
-chardev tcp,...,mux=on,id=charl \
-serial chardev:charl \
-serial chardev:charl
When you're using a multiplexed character device, some escape sequences are
interpreted in the input.
Note that some other command line options may implicitly create multiplexed
character backends; for instance -serial mon:stdio creates a multiplexed stdio
backend connected to the serial port and the QEMU monitor, and -nographic also
multiplexes the console and the monitor to stdio.
There is currently no support for multiplexing in the other direction (where a
single QEMU front end takes input and output from multiple chardevs).
Every backend supports the logfile option, which supplies the path to a file to
record all data transmitted via the backend. The logappend option controls
whether the log file will be truncated or appended to when opened.
The available backends are:
-chardev null,id=id
A void device. This device will not emit any data, and will drop any data it
receives. The null backend does not take any options.
-chardev socket,id=id[, TCP options or unix
options][,server][,nowait][,telnet][,websocket][,reconnect=seconds][,tls-creds=id][,tIs-authz=id]
Create a two-way stream socket, which can be either a TCP or a unix socket. A
unix socket will be created if path is specified. Behaviour is undefined if TCP
options are specified for a unix socket.

server specifies that the socket shall be a listening socket. Page 48/88

nowait specifies that QEMU should not block waiting for a client to connect to
a listening socket.
telnet specifies that traffic on the socket should interpret telnet escape
sequences.
websocket specifies that the socket uses WebSocket protocol for communication.
reconnect sets the timeout for reconnecting on non-server sockets when the
remote end goes away. gemu will delay this many seconds and then attempt to
reconnect. Zero disables reconnecting, and is the default.
tls-creds requests enablement of the TLS protocol for encryption, and specifies
the id of the TLS credentials to use for the handshake. The credentials must be
previously created with the -object tls-creds argument.
tls-auth provides the ID of the QAuthZ authorization object against which the
client's x509 distinguished name will be validated. This object is only
resolved at time of use, so can be deleted and recreated on the fly while the
chardev server is active. If missing, it will default to denying access.
TCP and unix socket options are given below:
TCP options: port=port[,host=host][,to=to][,ipv4][,ipv6][,nodelay]
host for a listening socket specifies the local address to be bound. For a
connecting socket species the remote host to connect to. host is optional
for listening sockets. If not specified it defaults to 0.0.0.0.
port for a listening socket specifies the local port to be bound. For a
connecting socket specifies the port on the remote host to connect to.
port can be given as either a port number or a service name. port is
required.
to is only relevant to listening sockets. If it is specified, and port
cannot be bound, QEMU will attempt to bind to subsequent ports up to and
including to until it succeeds. to must be specified as a port number.
ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If neither is
specified the socket may use either protocol.
nodelay disables the Nagle algorithm.
unix options: path=path
path specifies the local path of the unix socket. path is required.

-chardev Page 49/88

udp,id=id[,host=host],port=port[,localaddr=localaddr][,localport=localport][,ipv4][,ipv6]
Sends all traffic from the guest to a remote host over UDP.
host specifies the remote host to connect to. If not specified it defaults to
"localhost".
port specifies the port on the remote host to connect to. port is required.
localaddr specifies the local address to bind to. If not specified it defaults
to 0.0.0.0.
localport specifies the local port to bind to. If not specified any available
local port will be used.
ipv4 and ipv6 specify that either IPv4 or IPv6 must be used. If neither is
specified the device may use either protocol.

-chardev msmouse,id=id
Forward QEMU's emulated msmouse events to the guest. msmouse does not take any
options.

-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]
Connect to a QEMU text console. vc may optionally be given a specific size.
width and height specify the width and height respectively of the console, in
pixels.
cols and rows specify that the console be sized to fit a text console with the
given dimensions.

-chardev ringbuf,id=id[,size=size]

Create a ring buffer with fixed size size. size must be a power of two and
defaults to "64K".

-chardev file,id=id,path=path
Log all traffic received from the guest to a file.
path specifies the path of the file to be opened. This file will be created if
it does not already exist, and overwritten if it does. path is required.

-chardev pipe,id=id,path=path
Create a two-way connection to the guest. The behaviour differs slightly
between Windows hosts and other hosts:

On Windows, a single duplex pipe will be created at \\.pipe\path.
On other hosts, 2 pipes will be created called path.in and path.out. Data

written to path.in will be received by the guest. Data written by the guest can Page 50/88

be read from path.out. QEMU will not create these fifos, and requires them to
be present.
path forms part of the pipe path as described above. path is required.
-chardev console,id=id
Send traffic from the guest to QEMU's standard output. console does not take
any options.
console is only available on Windows hosts.
-chardev serial,id=id,path=path
Send traffic from the guest to a serial device on the host.
On Unix hosts serial will actually accept any tty device, not only serial
lines.
path specifies the name of the serial device to open.
-chardev pty,id=id
Create a new pseudo-terminal on the host and connect to it. pty does not take
any options.
pty is not available on Windows hosts.
-chardev stdio,id=id[,signal=on|off]
Connect to standard input and standard output of the QEMU process.
signal controls if signals are enabled on the terminal, that includes exiting
QEMU with the key sequence Control-c. This option is enabled by default, use
signal=off to disable it.
-chardev braille,id=id
Connect to a local BrlAPI server. braille does not take any options.
-chardev tty,id=id,path=path
tty is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and DragonFlyBSD
hosts. It is an alias for serial.
path specifies the path to the tty. path is required.
-chardev parallel,id=id,path=path
-chardev parport,id=id,path=path
parallel is only available on Linux, FreeBSD and DragonFlyBSD hosts.
Connect to a local parallel port.
path specifies the path to the parallel port device. path is required.

-chardev spicevmc,id=id,debug=debug,name=name

Page 51/88

spicevmc is only available when spice support is built in.
debug debug level for spicevmc
name name of spice channel to connect to
Connect to a spice virtual machine channel, such as vdiport.
-chardev spiceport,id=id,debug=debug,name=name
spiceport is only available when spice support is built in.
debug debug level for spicevmc
name name of spice port to connect to
Connect to a spice port, allowing a Spice client to handle the traffic
identified by a name (preferably a fqdn).
Bluetooth(R) options
-bt hcil...]
Defines the function of the corresponding Bluetooth HCI. -bt options are
matched with the HCIs present in the chosen machine type. For example when
emulating a machine with only one HCI built into it, only the first "-bt
hcil...]" option is valid and defines the HCI's logic. The Transport Layer is
decided by the machine type. Currently the machines "n800" and "n810" have one
HCI and all other machines have none.
Note: This option and the whole bluetooth subsystem is considered as
deprecated. If you still use it, please send a mail to <gemu-devel@nongnu.org>
where you describe your usecase.
The following three types are recognized:
-bt hci,null
(default) The corresponding Bluetooth HCI assumes no internal logic and
will not respond to any HCI commands or emit events.
-bt hci,host[:id]
("bluez" only) The corresponding HCI passes commands / events to / from the
physical HCI identified by the name id (default: "hci0") on the computer
running QEMU. Only available on "bluez" capable systems like Linux.
-bt hci[,vlan=n]
Add a virtual, standard HCI that will participate in the Bluetooth
scatternet n (default 0). Similarly to -net VLANS, devices inside a

bluetooth network n can only communicate with other devices in the same Page 52/88

network (scatternet).

-bt vhei[,vlan=n]
(Linux-host only) Create a HCI in scatternet n (default 0) attached to the host
bluetooth stack instead of to the emulated target. This allows the host and
target machines to participate in a common scatternet and communicate.
Requires the Linux "vhci" driver installed. Can be used as following:

gemu-system-x86_64 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5

-bt device:dev[,vlan=n]
Emulate a bluetooth device dev and place it in network n (default 0). QEMU can
only emulate one type of bluetooth devices currently:
keyboard

Virtual wireless keyboard implementing the HIDP bluetooth profile.

TPM device options

The general form of a TPM device option is:

-tpmdev backend,id=id[,options]
The specific backend type will determine the applicable options. The "-tpmdev"
option creates the TPM backend and requires a "-device" option that specifies
the TPM frontend interface model.
Use "-tpmdev help" to print all available TPM backend types.

The available backends are:

-tpmdev passthrough,id=id,path=path,cancel-path=cancel-path
(Linux-host only) Enable access to the host's TPM using the passthrough driver.
path specifies the path to the host's TPM device, i.e., on a Linux host this
would be "/dev/tpmQ". path is optional and by default "/dev/tpm0" is used.
cancel-path specifies the path to the host TPM device's sysfs entry allowing
for cancellation of an ongoing TPM command. cancel-path is optional and by
default QEMU will search for the sysfs entry to use.
Some notes about using the host's TPM with the passthrough driver:
The TPM device accessed by the passthrough driver must not be used by any other
application on the host.
Since the host's firmware (BIOS/UEFI) has already initialized the TPM, the VM's
firmware (BIOS/UEFI) will not be able to initialize the TPM again and may

therefore not show a TPM-specific menu that would otherwise allow the user to Page 53/88

configure the TPM, e.g., allow the user to enable/disable or
activate/deactivate the TPM. Further, if TPM ownership is released from within
a VM then the host's TPM will get disabled and deactivated. To enable and
activate the TPM again afterwards, the host has to be rebooted and the user is
required to enter the firmware's menu to enable and activate the TPM. If the
TPM is left disabled and/or deactivated most TPM commands will fail.
To create a passthrough TPM use the following two options:
-tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpmO0
Note that the "-tpmdev" id is "tpm0" and is referenced by "tpmdev=tpmQ" in the
device option.
-tpmdev emulator,id=id,chardev=dev
(Linux-host only) Enable access to a TPM emulator using Unix domain socket
based chardev backend.
chardev specifies the unique ID of a character device backend that provides
connection to the software TPM server.
To create a TPM emulator backend device with chardev socket backend:
-chardev socket,id=chrtpm,path=/tmp/swtpm-sock -tpmdev emulator,id=tpm0,chardev=chrtpm -device
tpm-tis,tpmdev=tpmO
Linux/Multiboot boot specific
When using these options, you can use a given Linux or Multiboot kernel without
installing it in the disk image. It can be useful for easier testing of various
kernels.
-kernel bzlmage
Use bzlmage as kernel image. The kernel can be either a Linux kernel or in
multiboot format.
-append cmdline
Use cmdline as kernel command line
-initrd file
Use file as initial ram disk.
-initrd "file1 arg=foo,file2"
This syntax is only available with multiboot.

Use filel and file2 as modules and pass arg=foo as parameter to the first

module. Page 54/88

-dtb file
Use file as a device tree binary (dtb) image and pass it to the kernel on boot.
Debug/Expert options
-fw_cfg [name=]namefile=file
Add named fw_cfg entry with contents from file file.
-fw_cfg [name=]name,string=str
Add named fw_cfg entry with contents from string str.
The terminating NUL character of the contents of str will not be included as
part of the fw_cfg item data. To insert contents with embedded NUL characters,
you have to use the file parameter.
The fw_cfg entries are passed by QEMU through to the guest.
Example:
-fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
creates an fw_cfg entry named opt/com.mycompany/blob with contents from
./my_blob.bin.
-serial dev
Redirect the virtual serial port to host character device dev. The default
device is "vc" in graphical mode and "stdio" in non graphical mode.
This option can be used several times to simulate up to 4 serial ports.
Use "-serial none" to disable all serial ports.
Available character devices are:
vC[:WxH]
Virtual console. Optionally, a width and height can be given in pixel with
vC:800x600
It is also possible to specify width or height in characters:
vc:80Cx24C
pty [Linux only] Pseudo TTY (a new PTY is automatically allocated)
none
No device is allocated.
null
void device
chardev:id

Use a named character device defined with the "-chardev" option. Page 55/88

/dev/IXXX
[Linux only] Use host tty, e.g. /dev/ttyS0. The host serial port parameters
are set according to the emulated ones.

/dev/parportN
[Linux only, parallel port only] Use host parallel port N. Currently SPP
and EPP parallel port features can be used.

file:filename
Write output to filename. No character can be read.

stdio
[Unix only] standard input/output

pipe:filename
name pipe filename

COMn
[Windows only] Use host serial port n

udp:[remote_host]:remote_port[@[src_ip]:src_port]
This implements UDP Net Console. When remote_host or src_ip are not
specified they default to 0.0.0.0. When not using a specified src_port a
random port is automatically chosen.
If you just want a simple readonly console you can use "netcat" or "nc", by
starting QEMU with: "-serial udp::4555" and nc as: "nc -u - -p 4555". Any
time QEMU writes something to that port it will appear in the netconsole
session.
If you plan to send characters back via netconsole or you want to stop and
start QEMU a lot of times, you should have QEMU use the same source port
each time by using something like "-serial udp::4555@4556" to QEMU. Another
approach is to use a patched version of netcat which can listen to a TCP
port and send and receive characters via udp. If you have a patched
version of netcat which activates telnet remote echo and single char
transfer, then you can use the following options to set up a netcat
redirector to allow telnet on port 5555 to access the QEMU port.
"QEMU Options:"

-serial udp::4555@4556

"netcat options:" Page 56/88

-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
"telnet options:"
localhost 5555
tcp:[host]:port[,server][,nowait][,nodelay][,reconnect=seconds]
The TCP Net Console has two modes of operation. It can send the serial /0
to a location or wait for a connection from a location. By default the TCP
Net Console is sent to host at the port. If you use the server option QEMU
will wait for a client socket application to connect to the port before
continuing, unless the "nowait" option was specified. The "nodelay" option
disables the Nagle buffering algorithm. The "reconnect" option only
applies if noserver is set, if the connection goes down it will attempt to
reconnect at the given interval. If host is omitted, 0.0.0.0 is assumed.
Only one TCP connection at a time is accepted. You can use "telnet" to
connect to the corresponding character device.
"Example to send tcp console to 192.168.0.2 port 4444"
-serial tcp:192.168.0.2:4444
"Example to listen and wait on port 4444 for connection”
-serial tcp::4444, server
"Example to not wait and listen on ip 192.168.0.100 port 4444"
-serial tcp:192.168.0.100:4444,server,nowait
telnet:host:port[,server][,nowait][,nodelay]
The telnet protocol is used instead of raw tcp sockets. The options work
the same as if you had specified "-serial tcp". The difference is that the
port acts like a telnet server or client using telnet option negotiation.
This will also allow you to send the MAGIC_SYSRQ sequence if you use a
telnet that supports sending the break sequence. Typically in unix telnet
you do it with Control-] and then type "send break" followed by pressing
the enter key.
websocket:host:port,server[,nowait][,nodelay]
The WebSocket protocol is used instead of raw tcp socket. The port acts as
a WebSocket server. Client mode is not supported.
unix:path[,server][,nowait][,reconnect=seconds]

A unix domain socket is used instead of a tcp socket. The option works the Page 57/88

same as if you had specified "-serial tcp" except the unix domain socket
path is used for connections.
mon:dev_string
This is a special option to allow the monitor to be multiplexed onto
another serial port. The monitor is accessed with key sequence of Control-
a and then pressing c. dev_string should be any one of the serial devices
specified above. An example to multiplex the monitor onto a telnet server
listening on port 4444 would be:
"-serial mon:telnet::4444,server,nowait"
When the monitor is multiplexed to stdio in this way, Ctrl+C will not
terminate QEMU any more but will be passed to the guest instead.
braille
Braille device. This will use BrlAPI to display the braille output on a
real or fake device.
msmouse
Three button serial mouse. Configure the guest to use Microsoft protocol.
-parallel dev
Redirect the virtual parallel port to host device dev (same devices as the
serial port). On Linux hosts, /dev/parportN can be used to use hardware devices
connected on the corresponding host parallel port.
This option can be used several times to simulate up to 3 parallel ports.
Use "-parallel none" to disable all parallel ports.
-monitor dev
Redirect the monitor to host device dev (same devices as the serial port). The
default device is "vc" in graphical mode and "stdio" in non graphical mode.
Use "-monitor none" to disable the default monitor.
-gmp dev
Like -monitor but opens in 'control' mode.
-gmp-pretty dev
Like -gmp but uses pretty JSON formatting.
-mon [chardev=]name[,mode=readline|control][,pretty[=on|off]]
Setup monitor on chardev name. "pretty" turns on JSON pretty printing easing

human reading and debugging. Page 58/88

-debugcon dev
Redirect the debug console to host device dev (same devices as the serial
port). The debug console is an I/O port which is typically port 0xe9; writing
to that 1/0 port sends output to this device. The default device is "vc" in
graphical mode and "stdio" in non graphical mode.

-pidfile file
Store the QEMU process PID in file. It is useful if you launch QEMU from a
script.

-singlestep
Run the emulation in single step mode.

--preconfig
Pause QEMU for interactive configuration before the machine is created, which
allows querying and configuring properties that will affect machine
initialization. Use QMP command 'x-exit-preconfig' to exit the preconfig state
and move to the next state (i.e. run guest if -S isn't used or pause the second
time if -S is used). This option is experimental.

-S Do not start CPU at startup (you must type 'c' in the monitor).

-realtime mlock=on|off
Run gemu with realtime features. mlocking gemu and guest memory can be enabled
via mlock=on (enabled by default).

-overcommit mem-lock=on|off

-overcommit cpu-pm=on|off
Run gemu with hints about host resource overcommit. The default is to assume
that host overcommits all resources.
Locking gemu and guest memory can be enabled via mem-lock=on (disabled by
default). This works when host memory is not overcommitted and reduces the
worst-case latency for guest. This is equivalent to realtime.
Guest ability to manage power state of host cpus (increasing latency for other
processes on the same host cpu, but decreasing latency for guest) can be
enabled via cpu-pm=on (disabled by default). This works best when host CPU is
not overcommitted. When used, host estimates of CPU cycle and power utilization
will be incorrect, not taking into account guest idle time.

-gdb dev Page 59/88

Wait for gdb connection on device dev. Typical connections will likely be TCP-
based, but also UDP, pseudo TTY, or even stdio are reasonable use case. The
latter is allowing to start QEMU from within gdb and establish the connection
via a pipe:
(gdb) target remote | exec gemu-system-x86_64 -gdb stdio ...

-s Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234.

-d item1][,...]
Enable logging of specified items. Use '-d help' for a list of log items.

-D logfile
Output log in logdfile instead of to stderr

-dfilter rangel],...]
Filter debug output to that relevant to a range of target addresses. The filter
spec can be either start+size, start-size or start..end where start end and
size are the addresses and sizes required. For example:

-dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000

Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
the 0x200 sized block starting at Oxffffffc000080000 and another 0x1000 sized
block starting at Oxffffffc00005f000.

-seed number
Force the guest to use a deterministic pseudo-random number generator, seeded
with number. This does not affect crypto routines within the host.

-L path
Set the directory for the BIOS, VGA BIOS and keymaps.
To list all the data directories, use "-L help”.

-bios file
Set the filename for the BIOS.

-enable-kvm
Enable KVM full virtualization support. This option is only available if KVM
support is enabled when compiling.

-xen-domid id
Specify xen guest domain id (XEN only).

-xen-attach

Attach to existing xen domain. libxl will use this when starting QEMU (XEN

Page 60/88

only). Restrict set of available xen operations to specified domain id (XEN
only).

-no-reboot
Exit instead of rebooting.

-no-shutdown
Don't exit QEMU on guest shutdown, but instead only stop the emulation. This
allows for instance switching to monitor to commit changes to the disk image.

-loadvm file
Start right away with a saved state ("loadvm™ in monitor)

-daemonize
Daemonize the QEMU process after initialization. QEMU will not detach from
standard IO until it is ready to receive connections on any of its devices.
This option is a useful way for external programs to launch QEMU without having
to cope with initialization race conditions.

-option-rom file
Load the contents of file as an option ROM. This option is useful to load
things like EtherBoot.

-rtc [base=utc|localtime|datetime][,clock=host|rt|lvm][,driftfix=none|slew]
Specify base as "utc" or "localtime" to let the RTC start at the current UTC or
local time, respectively. "localtime"” is required for correct date in MS-DOS or
Windows. To start at a specific point in time, provide datetime in the format
"2006-06-17T16:01:21" or "2006-06-17". The default base is UTC.
By default the RTC is driven by the host system time. This allows using of the
RTC as accurate reference clock inside the guest, specifically if the host time
is smoothly following an accurate external reference clock, e.g. via NTP. If
you want to isolate the guest time from the host, you can set clock to "rt"
instead, which provides a host monotonic clock if host support it. To even
prevent the RTC from progressing during suspension, you can set clock to "vm"
(virtual clock). clock=vm is recommended especially in icount mode in order to
preserve determinism; however, note that in icount mode the speed of the
virtual clock is variable and can in general differ from the host clock.
Enable driftfix (i386 targets only) if you experience time drift problems,

specifically with Windows' ACPI HAL. This option will try to figure out how Page 61/88

many timer interrupts were not processed by the Windows guest and will re-
inject them.

-icount [shift=N|auto][,rr=record|replay,rrfile=filename,rrsnapshot=snapshot]
Enable virtual instruction counter. The virtual cpu will execute one
instruction every 2”N ns of virtual time. If "auto” is specified then the
virtual cpu speed will be automatically adjusted to keep virtual time within a
few seconds of real time.
When the virtual cpu is sleeping, the virtual time will advance at default
speed unless sleep=on|off is specified. With sleep=on|off, the virtual time
will jump to the next timer deadline instantly whenever the virtual cpu goes to
sleep mode and will not advance if no timer is enabled. This behavior give
deterministic execution times from the guest point of view.
Note that while this option can give deterministic behavior, it does not
provide cycle accurate emulation. Modern CPUs contain superscalar out of order
cores with complex cache hierarchies. The number of instructions executed
often has little or no correlation with actual performance.
align=on will activate the delay algorithm which will try to synchronise the
host clock and the virtual clock. The goal is to have a guest running at the
real frequency imposed by the shift option. Whenever the guest clock is behind
the host clock and if align=on is specified then we print a message to the user
to inform about the delay. Currently this option does not work when shift is
"auto". Note: The sync algorithm will work for those shift values for which
the guest clock runs ahead of the host clock. Typically this happens when the
shift value is high (how high depends on the host machine).
When rr option is specified deterministic record/replay is enabled. Replay log
is written into filename file in record mode and read from this file in replay
mode.
Option rrsnapshot is used to create new vm snapshot named snapshot at the start
of execution recording. In replay mode this option is used to load the initial
VM state.

-watchdog model
Create a virtual hardware watchdog device. Once enabled (by a guest action),

the watchdog must be periodically polled by an agent inside the guest or else Page 62/88

the guest will be restarted. Choose a model for which your guest has drivers.
The model is the model of hardware watchdog to emulate. Use "-watchdog help" to
list available hardware models. Only one watchdog can be enabled for a guest.
The following models may be available:
ib700
iIBASE 700 is a very simple ISA watchdog with a single timer.
i6300esb
Intel 6300ESB 1/O controller hub is a much more featureful PCl-based dual-
timer watchdog.
diag288
A virtual watchdog for s390x backed by the diagnose 288 hypercall
(currently KVM only).
-watchdog-action action
The action controls what QEMU will do when the watchdog timer expires. The
default is "reset" (forcefully reset the guest). Other possible actions are:
"shutdown" (attempt to gracefully shutdown the guest), "poweroff" (forcefully
poweroff the guest), "inject-nmi" (inject a NMI into the guest), "pause” (pause
the guest), "debug" (print a debug message and continue), or "none" (do
nothing).
Note that the "shutdown" action requires that the guest responds to ACPI
signals, which it may not be able to do in the sort of situations where the
watchdog would have expired, and thus "-watchdog-action shutdown" is not
recommended for production use.
Examples:
"-watchdog i6300esbh -watchdog-action pause"
"-watchdog ib700"
-echr numeric_ascii_value
Change the escape character used for switching to the monitor when using
monitor and serial sharing. The default is 0x01 when using the "-nographic”
option. 0x01 is equal to pressing "Control-a". You can select a different
character from the ascii control keys where 1 through 26 map to Control-a
through Control-z. For instance you could use the either of the following to

change the escape character to Control-t. Page 63/88

"-echr 0x14"
"-echr 20"
-show-cursor
Show cursor.
-tb-size n
Set TB size.
-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]
-incoming rdma:host:port[,ipv4][,ipv6]
Prepare for incoming migration, listen on a given tcp port.
-incoming unix:socketpath
Prepare for incoming migration, listen on a given unix socket.
-incoming fd:fd
Accept incoming migration from a given filedescriptor.
-incoming exec:cmdline
Accept incoming migration as an output from specified external command.
-incoming defer
Wait for the URI to be specified via migrate_incoming. The monitor can be used
to change settings (such as migration parameters) prior to issuing the
migrate_incoming to allow the migration to begin.
-only-migratable
Only allow migratable devices. Devices will not be allowed to enter an
unmigratable state.
-nodefaults
Don't create default devices. Normally, QEMU sets the default devices like
serial port, parallel port, virtual console, monitor device, VGA adapter,
floppy and CD-ROM drive and others. The "-nodefaults" option will disable all
those default devices.
-chroot dir
Immediately before starting guest execution, chroot to the specified directory.
Especially useful in combination with -runas.
-runas user
Immediately before starting guest execution, drop root privileges, switching to

the specified user. Page 64/88

-prom-env variable=value
Set OpenBIOS nvram variable to given value (PPC, SPARC only).
-semihosting
Enable semihosting mode (ARM, M68K, Xtensa, MIPS, Nios Il only).
-semihosting-config
[enable=on|off][,target=native|gdb|auto][,chardev=id][,arg=str[,...]]
Enable and configure semihosting (ARM, M68K, Xtensa, MIPS, Nios Il only).
target="native|gdb|auto"
Defines where the semihosting calls will be addressed, to QEMU ("native")
or to GDB ("gdb"). The default is "auto", which means "gdb" during debug
sessions and "native" otherwise.
chardev=strl
Send the output to a chardev backend output for native or auto output when
not in gdb
arg=strl,arg=str2,...
Allows the user to pass input arguments, and can be used multiple times to
build up a list. The old-style "-kernel"/"-append" method of passing a
command line is still supported for backward compatibility. If both the
"--semihosting-config arg" and the "-kernel"/"-append" are specified, the
former is passed to semihosting as it always takes precedence.
-old-param
Old param mode (ARM only).
-sandbox
arg[,obsolete=string][,elevateprivileges=string][,spawn=string][,resourcecontrol=string]
Enable Seccomp mode 2 system call filter. 'on’ will enable syscall filtering
and 'off' will disable it. The default is 'off".
obsolete=string
Enable Obsolete system calls
elevateprivileges=string
Disable set*uid|gid system calls
spawn=string
Disable *fork and execve

resourcecontrol=string Page 65/88

Disable process affinity and schedular priority
-readconfig file
Read device configuration from file. This approach is useful when you want to
spawn QEMU process with many command line options but you don't want to exceed
the command line character limit.
-writeconfig file
Write device configuration to file. The file can be either flename to save
command line and device configuration into file or dash "-") character to print
the output to stdout. This can be later used as input file for "-readconfig"
option.
-no-user-config
The "-no-user-config" option makes QEMU not load any of the user-provided
config files on sysconfdir.
-trace [[enable=]pattern][,events=file][,file=file]
Specify tracing options.
[enable=]pattern
Immediately enable events matching pattern (either event name or a globbing
pattern). This option is only available if QEMU has been compiled with the
simple, log or ftrace tracing backend. To specify multiple events or
patterns, specify the -trace option multiple times.
Use "-trace help" to print a list of names of trace points.
events=file
Immediately enable events listed in file. The file must contain one event
name (as listed in the trace-events-all file) per line; globbing patterns
are accepted too. This option is only available if QEMU has been compiled
with the simple, log or ftrace tracing backend.
file=file
Log output traces to file. This option is only available if QEMU has been
compiled with the simple tracing backend.
-plugin file=file[,arg=string]
Load a plugin.
file=file

Load the given plugin from a shared library file.

Page 66/88

arg=string
Argument string passed to the plugin. (Can be given multiple times.)
-enable-fips
Enable FIPS 140-2 compliance mode.
-msg timestamp[=on|off]
prepend a timestamp to each log message.(default:on)
-dump-vmstate file
Dump json-encoded vmstate information for current machine type to file in file
-enable-sync-profile
Enable synchronization profiling.
Generic object creation
-object typename[,propl=valuel,...]
Create a new object of type typename setting properties in the order they are
specified. Note that the 'id' property must be set. These objects are placed
in the '/objects' path.

-object

memory-backend-file,id=id,size=size,mem-path=dir,share=on|off,discard-data=on|off, merge=on|off,dump=on|off,prealloc=on
|off,host-nodes=host-
nodes,policy=default|preferred|bind|interleave,align=align
Creates a memory file backend object, which can be used to back the guest
RAM with huge pages.
The id parameter is a unique ID that will be used to reference this memory
region when configuring the -numa argument.
The size option provides the size of the memory region, and accepts common
suffixes, eg 500M.
The mem-path provides the path to either a shared memory or huge page
filesystem mount.
The share boolean option determines whether the memory region is marked as
private to QEMU, or shared. The latter allows a co-operating external
process to access the QEMU memory region.
The share is also required for pvrdma devices due to limitations in the

RDMA API provided by Linux. Page 67/88

Setting share=on might affect the ability to configure NUMA bindings for
the memory backend under some circumstances, see
Documentation/vm/numa_memory_policy.txt on the Linux kernel source tree for
additional details.
Setting the discard-data boolean option to on indicates that file contents
can be destroyed when QEMU exits, to avoid unnecessarily flushing data to
the backing file. Note that discard-data is only an optimization, and QEMU
might not discard file contents if it aborts unexpectedly or is terminated
using SIGKILL.
The merge boolean option enables memory merge, also known as
MADV_MERGEABLE, so that Kernel Samepage Merging will consider the pages for
memory deduplication.
Setting the dump boolean option to off excludes the memory from core dumps.
This feature is also known as MADV_DONTDUMP.
The prealloc boolean option enables memory preallocation.
The host-nodes option binds the memory range to a list of NUMA host nodes.
The policy option sets the NUMA policy to one of the following values:
default

default host policy
preferred

prefer the given host node list for allocation
bind

restrict memory allocation to the given host node list
interleave

interleave memory allocations across the given host node list
The align option specifies the base address alignment when QEMU mmap(2)
mem-path, and accepts common suffixes, eg 2M. Some backend store specified
by mem-path requires an alignment different than the default one used by
QEMU, eg the device DAX /dev/dax0.0 requires 2M alignment rather than 4K.
In such cases, users can specify the required alignment via this option.
The pmem option specifies whether the backing file specified by mem-path is
in host persistent memory that can be accessed using the SNIA NVM

programming model (e.g. Intel NVDIMM). If pmem is set to 'on', QEMU will Page 68/88

take necessary operations to guarantee the persistence of its own writes to

mem-path (e.g. in vNVDIMM label emulation and live migration). Also, we

will map the backend-file with MAP_SYNC flag, which ensures the file

metadata is in sync for mem-path in case of host crash or a power failure.

MAP_SYNC requires support from both the host kernel (since Linux kernel

4.15) and the filesystem of mem-path mounted with DAX option.
-object
memory-backend-ram,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size ,host-nodes=host-
nodes,policy=default|preferred|bind|interleave

Creates a memory backend object, which can be used to back the guest RAM.

Memory backend objects offer more control than the -m option that is

traditionally used to define guest RAM. Please refer to memory-backend-file

for a description of the options.
-object
memory-backend-memfd,id=id,merge=on|off,dump=on|off,share=on|off,prealloc=on|off,size=size,host-nodes=host-
nodes,policy=default|preferred|bind|interleave,seal=on|off,hugetlb=on|off,hugetlbsize=size

Creates an anonymous memory file backend object, which allows QEMU to share

the memory with an external process (e.g. when using vhost-user). The

memory is allocated with memfd and optional sealing. (Linux only)

The seal option creates a sealed-file, that will block further resizing the

memory (‘on' by default).

The hugetlb option specify the file to be created resides in the hugetlbfs

filesystem (since Linux 4.14). Used in conjunction with the hugetlb

option, the hugetlbsize option specify the hugetlb page size on systems

that support multiple hugetlb page sizes (it must be a power of 2 value

supported by the system).

In some versions of Linux, the hugetlb option is incompatible with the seal

option (requires at least Linux 4.16).

Please refer to memory-backend-file for a description of the other options.

The share boolean option is on by default with memfd.
-object rng-builtin,id=id

Creates a random number generator backend which obtains entropy from QEMU

builtin functions. The id parameter is a unique ID that will be used to Page 69/88

reference this entropy backend from the virtio-rng device. By default, the
virtio-rng device uses this RNG backend.

-object rng-random,id=id,filename=/dev/random
Creates a random number generator backend which obtains entropy from a
device on the host. The id parameter is a unique ID that will be used to
reference this entropy backend from the virtio-rng device. The filename
parameter specifies which file to obtain entropy from and if omitted
defaults to /dev/urandom.

-object rng-egd,id=id,chardev=chardevid
Creates a random number generator backend which obtains entropy from an
external daemon running on the host. The id parameter is a unique ID that
will be used to reference this entropy backend from the virtio-rng device.
The chardev parameter is the unique ID of a character device backend that
provides the connection to the RNG daemon.

-object

tls-creds-anon,id=id,endpoint=endpoint,dir=/path/to/cred/dir,verify-peer=on|off
Creates a TLS anonymous credentials object, which can be used to provide
TLS support on network backends. The id parameter is a unique 1D which
network backends will use to access the credentials. The endpoint is either
server or client depending on whether the QEMU network backend that uses
the credentials will be acting as a client or as a server. If verify-peer
is enabled (the default) then once the handshake is completed, the peer
credentials will be verified, though this is a no-op for anonymous
credentials.
The dir parameter tells QEMU where to find the credential files. For server
endpoints, this directory may contain a file dh-params.pem providing
diffie-hellman parameters to use for the TLS server. If the file is
missing, QEMU will generate a set of DH parameters at startup. This is a
computationally expensive operation that consumes random pool entropy, so
it is recommended that a persistent set of parameters be generated upfront
and saved.

-object

tls-creds-psk,id=id,endpoint=endpoint,dir=/path/to/keys/dir[,username=username] Page 70/88

Creates a TLS Pre-Shared Keys (PSK) credentials object, which can be used
to provide TLS support on network backends. The id parameter is a unique 1D
which network backends will use to access the credentials. The endpoint is
either server or client depending on whether the QEMU network backend that
uses the credentials will be acting as a client or as a server. For clients
only, username is the username which will be sent to the server. If
omitted it defaults to "gemu".
The dir parameter tells QEMU where to find the keys file. It is called
"dir/keys.psk" and contains "username:key" pairs. This file can most
easily be created using the GnuTLS "psktool" program.
For server endpoints, dir may also contain a file dh-params.pem providing
diffie-hellman parameters to use for the TLS server. If the file is
missing, QEMU will generate a set of DH parameters at startup. This is a
computationally expensive operation that consumes random pool entropy, so
it is recommended that a persistent set of parameters be generated up front
and saved.
-object
tls-creds-x509,id=id,endpoint=endpoint,dir=/path/to/cred/dir,priority=priority,verify-peer=on|off,passwordid=id
Creates a TLS anonymous credentials object, which can be used to provide
TLS support on network backends. The id parameter is a unique ID which
network backends will use to access the credentials. The endpoint is either
server or client depending on whether the QEMU network backend that uses
the credentials will be acting as a client or as a server. If verify-peer
is enabled (the default) then once the handshake is completed, the peer
credentials will be verified. With x509 certificates, this implies that the
clients must be provided with valid client certificates too.
The dir parameter tells QEMU where to find the credential files. For server
endpoints, this directory may contain a file dh-params.pem providing
diffie-hellman parameters to use for the TLS server. If the file is
missing, QEMU will generate a set of DH parameters at startup. This is a
computationally expensive operation that consumes random pool entropy, so
it is recommended that a persistent set of parameters be generated upfront

and saved. Page 71/88

For x509 certificate credentials the directory will contain further files
providing the x509 certificates. The certificates must be stored in PEM
format, in filenames ca-cert.pem, ca-crl.pem (optional), server-cert.pem
(only servers), server-key.pem (only servers), client-cert.pem (only
clients), and client-key.pem (only clients).

For the server-key.pem and client-key.pem files which contain sensitive

private keys, it is possible to use an encrypted version by providing the

passwordid parameter. This provides the ID of a previously created "secret"

object containing the password for decryption.
The priority parameter allows to override the global default priority used
by gnutls. This can be useful if the system administrator needs to use a

weaker set of crypto priorities for QEMU without potentially forcing the

weakness onto all applications. Or conversely if one wants wants a stronger

default for QEMU than for all other applications, they can do this through
this parameter. Its format is a gnutls priority string as described at
<https://gnutls.org/manual/html_node/Priority-Strings.html>.

-object
filter-buffer,id=id,netdev=netdevid,interval=t[,queue=all|rx|tx][,status=0n]|off]
Interval t can't be 0, this filter batches the packet delivery: all packets
arriving in a given interval on netdev netdevid are delayed until the end

of the interval. Interval is in microseconds. status is optional that
indicate whether the netfilter is on (enabled) or off (disabled), the
default status for netfilter will be 'on'.

queue all|rx|tx is an option that can be applied to any netfilter.

all: the filter is attached both to the receive and the transmit queue of
the netdev (default).

rx: the filter is attached to the receive queue of the netdev, where it
will receive packets sent to the netdev.

tx: the filter is attached to the transmit queue of the netdev, where it
will receive packets sent by the netdev.

-object

filter-mirror,id=id,netdev=netdevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]

filter-mirror on netdev netdevid,mirror net packet to chardevchardevid, if

Page 72/88

it has the vnet_hdr_support flag, filter-mirror will mirror packet with
vnhet_hdr_len.

-object

filter-redirector,id=id,netdev=netdevid,indev=chardevid,outdev=chardevid,queue=all|rx|tx[,vnet_hdr_support]
filter-redirector on netdev netdevid,redirect filter's net packet to
chardev chardevid,and redirect indev's packet to filter.if it has the
vnet_hdr_support flag, filter-redirector will redirect packet with
vnhet_hdr_len. Create a filter-redirector we need to differ outdev id from
indev id, id can not be the same. we can just use indev or outdev, but at
least one of indev or outdev need to be specified.

-object

filter-rewriter,id=id,netdev=netdevid,queue=all|rx|tx,[vnet_hdr_support]
Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
secondary from primary to keep secondary tcp connection,and rewrite tcp
packet to primary from secondary make tcp packet can be handled by
client.if it has the vnet_hdr_support flag, we can parse packet with vnet
header.
usage: colo secondary: -object
filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0 -object
filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=redl -object
filter-rewriter,id=rew0,netdev=hn0,queue=all

-object filter-dump,id=id,netdev=deV[,file=filename][,maxlen=len]
Dump the network traffic on netdev dev to the file specified by filename.
At most len bytes (64k by default) per packet are stored. The file format
is libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.

-object

colo-compare,id=id,primary_in=chardevid,secondary_in=chardevid,outdev=chardevid,iothread=id[,vnet_hdr_support][,notify
_dev=id]

Colo-compare gets packet from primary_inchardevid and

secondary_inchardevid, than compare primary packet with secondary packet.

If the packets are same, we will output primary packet to outdevchardevid,

else we will notify colo-frame do checkpoint and send primary packet to Page 73/88

outdevchardevid. In order to improve efficiency, we need to put the task
of comparison in another thread. If it has the vnet_hdr_support flag, colo
compare will send/recv packet with vnet_hdr_len. If you want to use Xen
COLO, will need the notify_dev to notify Xen colo-frame to do checkpoint.
we must use it with the help of filter-mirror and filter-redirector.
KVM COLO
primary:
-netdev tap,id=hn0,vhost=0off,script=/etc/qgemu-ifup,downscript=/etc/qgemu-ifdown
-device €1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
-chardev socket,id=comparel,host=3.3.3.3,port=9004,server,nowait
-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
-chardev socket,id=compare0-0,host=3.3.3.3,port=9001
-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
-chardev socket,id=compare_out0,host=3.3.3.3,port=9005
-object iothread,id=iothread1
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirrorQ
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
-object
colo-compare,id=compO,primary_in=compare0-0,secondary_in=comparel,outdev=compare_out0,iothread=iothreadl
secondary:
-netdev tap,id=hn0,vhost=0off,script=/etc/qgemu-ifup,down script=/etc/gemu-ifdown
-device €1000,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=red0,host=3.3.3.3,port=9003
-chardev socket,id=red1,host=3.3.3.3,port=9004
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
Xen COLO
primary:
-netdev tap,id=hn0,vhost=0off,script=/etc/qgemu-ifup,downscript=/etc/gemu-ifdown
-device €1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66

-chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait Page 74/88

-chardev socket,id=comparel,host=3.3.3.3,port=9004,server,nowait
-chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
-chardev socket,id=compare0-0,host=3.3.3.3,port=9001
-chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
-chardev socket,id=compare_out0,host=3.3.3.3,port=9005
-chardev socket,id=notify_way,host=3.3.3.3,port=9009,server,nowait
-object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
-object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
-object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
-object iothread,id=iothreadl
-object
colo-compare,id=compO,primary_in=compare0-0,secondary_in=comparel,outdev=compare_out0,notify _dev=nofity way,iot
hread=iothreadl
secondary:
-netdev tap,id=hn0,vhost=0off,script=/etc/qgemu-ifup,down script=/etc/gemu-ifdown
-device e1000,netdev=hn0,mac=52:a4:00:12:78:66
-chardev socket,id=red0,host=3.3.3.3,port=9003
-chardev socket,id=red1,host=3.3.3.3,port=9004
-object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
-object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
If you want to know the detail of above command line, you can read the
colo-compare git log.
-object cryptodev-backend-builtin,id=id[,queues=queues]
Creates a cryptodev backend which executes crypto opreation from the QEMU
cipher APIS. The id parameter is a unique ID that will be used to reference
this cryptodev backend from the virtio-crypto device. The queues parameter
is optional, which specify the queue number of cryptodev backend, the
default of queues is 1.
gemu-system-x86_64 \
[\
-object cryptodev-backend-builtin,id=cryptodevO \
-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodevO \

[...] Page 75/88

-object cryptodev-vhost-user,id=id,chardev=chardevid[,queues=queues]
Creates a vhost-user cryptodev backend, backed by a chardev chardevid. The
id parameter is a unique ID that will be used to reference this cryptodev
backend from the virtio-crypto device. The chardev should be a unix domain
socket backed one. The vhost-user uses a specifically defined protocol to
pass vhost ioctl replacement messages to an application on the other end of
the socket. The queues parameter is optional, which specify the queue
number of cryptodev backend for multiqueue vhost-user, the default of
queues is 1.

gemu-system-x86_64 \

[..]\

-chardev socket,id=chardev0,path=/path/to/socket \

-object cryptodev-vhost-user,id=cryptodev0,chardev=chardevO \
-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodevO \

[.-]

-object secret,id=id,data=string,format=raw|base64[,keyid=secretid,iv=string]

-object secret,id=id,file=filename,format=raw|base64[,keyid=secretid,iv=string]
Defines a secret to store a password, encryption key, or some other
sensitive data. The sensitive data can either be passed directly via the
data parameter, or indirectly via the file parameter. Using the data
parameter is insecure unless the sensitive data is encrypted.

The sensitive data can be provided in raw format (the default), or base64.
When encoded as JSON, the raw format only supports valid UTF-8 characters,
so base64 is recommended for sending binary data. QEMU will convert from
which ever format is provided to the format it needs internally. eg, an RBD
password can be provided in raw format, even though it will be base64
encoded when passed onto the RBD sever.

For added protection, it is possible to encrypt the data associated with a
secret using the AES-256-CBC cipher. Use of encryption is indicated by
providing the keyid and iv parameters. The keyid parameter provides the ID
of a previously defined secret that contains the AES-256 decryption key.
This key should be 32-bytes long and be base64 encoded. The iv parameter

provides the random initialization vector used for encryption of this

Page 76/88

particular secret and should be a base64 encrypted string of the 16-byte
V.
The simplest (insecure) usage is to provide the secret inline

gemu-system-x86_64 -object secret,id=sec0,data=letmein,format=raw
The simplest secure usage is to provide the secret via a file
printf "letmein" > mypasswd.txt # gemu-system-x86_64 -object
secret,id=secO,file=mypasswd.txt,format=raw
For greater security, AES-256-CBC should be used. To illustrate usage,
consider the openssl command line tool which can encrypt the data. Note
that when encrypting, the plaintext must be padded to the cipher block size
(32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
First a master key needs to be created in base64 encoding:

openssl rand -base64 32 > key.b64

KEY=%(base64 -d key.b64 | hexdump -v -e /1 "%02X")
Each secret to be encrypted needs to have a random initialization vector
generated. These do not need to be kept secret

openssl rand -base64 16 > iv.b64

IV=$(baseb4 -d iv.b64 | hexdump -v -e '/1 "%02X"")
The secret to be defined can now be encrypted, in this case we're telling
openssl to base64 encode the result, but it could be left as raw bytes if
desired.

SECRET=$(printf "letmein" |

openssl enc -aes-256-chc -a -K $KEY -iv $IV)
When launching QEMU, create a master secret pointing to "key.b64" and
specify that to be used to decrypt the user password. Pass the contents of
"iv.b64" to the second secret

gemu-system-x86_64 \

-object secret,id=secmaster0,format=base64,file=key.b64 \

-object secret,id=sec0,keyid=secmaster0,format=base64,\

data=$SECRET,iv=$(<iv.b64)

-object

sev-guest,id=id,cbitpos=cbitpos,reduced-phys-bits=val,[sev-device=string,policy=policy,handle=handle,dh-cert-fR@sfle/ $&3i

on-file=file]

Create a Secure Encrypted Virtualization (SEV) guest object, which can be
used to provide the guest memory encryption support on AMD processors.
When memory encryption is enabled, one of the physical address bit (aka the
C-bit) is utilized to mark if a memory page is protected. The cbitpos is
used to provide the C-bit position. The C-bit position is Host family
dependent hence user must provide this value. On EPYC, the value should be
47.
When memory encryption is enabled, we loose certain bits in physical
address space. The reduced-phys-bits is used to provide the number of bits
we loose in physical address space. Similar to C-bit, the value is Host
family dependent. On EPYC, the value should be 5.
The sev-device provides the device file to use for communicating with the
SEV firmware running inside AMD Secure Processor. The default device is
'ldev/sev'. If hardware supports memory encryption then /dev/sev devices
are created by CCP driver.
The policy provides the guest policy to be enforced by the SEV firmware and
restrict what configuration and operational commands can be performed on
this guest by the hypervisor. The policy should be provided by the guest
owner and is bound to the guest and cannot be changed throughout the
lifetime of the guest. The default is 0.
If guest policy allows sharing the key with another SEV guest then handle
can be use to provide handle of the guest from which to share the key.
The dh-cert-file and session-file provides the guest owner's Public Diffie-
Hillman key defined in SEV spec. The PDH and session parameters are used
for establishing a cryptographic session with the guest owner to negotiate
keys used for attestation. The file must be encoded in base64.
e.g to launch a SEV guest

gemu-system-x86_64 \

-object sev-guest,id=sevO0,cbitpos=47,reduced-phys-bits=5 \

-machine ...,memory-encryption=sev0

Page 78/88

-object authz-simple,id=id,identity=string
Create an authorization object that will control access to network
services.
The identity parameter is identifies the user and its format depends on the
network service that authorization object is associated with. For
authorizing based on TLS x509 certificates, the identity must be the x509
distinguished name. Note that care must be taken to escape any commas in
the distinguished name.
An example authorization object to validate a x509 distinguished name would
look like:

gemu-system-x86_64 \

-object ‘'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example

Org,,L=London,,ST=London,,C=GB" \

Note the use of quotes due to the x509 distinguished name containing
whitespace, and escaping of ',".
-object authz-listfile,id=id,filename=path,refresh=yes|no
Create an authorization object that will control access to network
services.
The filename parameter is the fully qualified path to a file containing the
access control list rules in JSON format.
An example set of rules that match against SASL usernames might look like:

{

"rules": [

{ "match": "fred", "policy": "allow", "format": "exact" },

{ "match": "bob", "policy": "allow", "format": "exact" },

{ "match™: "danb", "policy": "deny", "format": "glob" },

{ "match": "dan*", "policy": "allow", "format": "exact" },
1,

"policy": "deny"

}

When checking access the object will iterate over all the rules and the Page 79/88

first rule to match will have its policy value returned as the result. If

no rules match, then the default policy value is returned.

The rules can either be an exact string match, or they can use the simple
UNIX glob pattern matching to allow wildcards to be used.

If refresh is set to true the file will be monitored and automatically
reloaded whenever its content changes.

As with the "authz-simple” object, the format of the identity strings being
matched depends on the network service, but is usually a TLS x509
distinguished name, or a SASL username.

An example authorization object to validate a SASL username would look
like:

gemu-system-x86_64 \

-object authz-simple,id=authO,filename=/etc/gemu/vnc-sasl.acl,refresh=yes

-object authz-pam,id=id,service=string
Create an authorization object that will control access to network
services.
The service parameter provides the name of a PAM service to use for
authorization. It requires that a file "/etc/pam.d/service" exist to
provide the configuration for the "account" subsystem.
An example authorization object to validate a TLS x509 distinguished name
would look like:

gemu-system-x86_64 \

-object authz-pam,id=auth0,service=gemu-vnc

There would then be a corresponding config file for PAM at
"letc/pam.d/gemu-vnc" that contains:
account requisite pam_listfile.so item=user sense=allow \
file=/etc/gemu/vnc.allow
Finally the "/etc/gemu/vnc.allow" file would contain the list of x509

distingished names that are permitted access Page 80/88

CN=laptop.example.com,0=Example Home,L=London,ST=London,C=GB

During the graphical emulation, you can use special key combinations to change
modes. The default key mappings are shown below, but if you use "-alt-grab" then
the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use "-ctrl-grab"
then the madifier is the right Ctrl key (instead of Ctrl-Alt):
Ctrl-Alt-f

Toggle full screen
Ctrl-Alt-+

Enlarge the screen
Ctrl-Alt--

Shrink the screen
Ctrl-Alt-u

Restore the screen's un-scaled dimensions
Ctrl-Alt-n

Switch to virtual console 'n'. Standard console mappings are:

1 Target system display

2 Monitor

3 Serial port
Ctrl-Alt

Toggle mouse and keyboard grab.
In the virtual consoles, you can use Ctrl-Up, Ctrl-Down, Ctrl-PageUp and Ctrl-
PageDown to move in the back log.
During emulation, if you are using a character backend multiplexer (which is the
default if you are using -nographic) then several commands are available via an
escape sequence. These key sequences all start with an escape character, which is
Ctrl-a by default, but can be changed with -echr. The list below assumes you're
using the default.
Ctrl-ah

Print this help
Ctrl-a x

Exit emulator
Ctrl-as

Save disk data back to file (if -snapshot)

Page 81/88

Ctrl-at
Toggle console timestamps
Ctrl-ab
Send break (magic sysrq in Linux)
Ctrl-ac
Rotate between the frontends connected to the multiplexer (usually this
switches between the monitor and the console)
Ctrl-a Ctrl-a
Send the escape character to the frontend
The following options are specific to the PowerPC emulation:
-g WxH[XDEPTH]
Set the initial VGA graphic mode. The default is 800x600x32.
-prom-env string
Set OpenBIOS variables in NVRAM, for example:
gemu-system-ppc -prom-env 'auto-boot?=false"' \
-prom-env 'boot-device=hd:2,\yaboot' \
-prom-env 'boot-args=conf=hd:2,\yaboot.conf'
These variables are not used by Open Hack'Ware.
The following options are specific to the Sparc32 emulation:
-g WxHX[XDEPTH]
Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
of 1152x900x8 for people who wish to use OBP.
-prom-env string
Set OpenBIOS variables in NVRAM, for example:
gemu-system-sparc -prom-env ‘auto-boot?=false" \
-prom-env 'boot-device=sd(0,2,0):d" -prom-env 'boot-args=linux single'
-M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [[SPARCbook]
Set the emulated machine type. Default is SS-5.
The following options are specific to the Sparc64 emulation:
-prom-env string
Set OpenBIOS variables in NVRAM, for example:

gemu-system-sparc64 -prom-env ‘auto-boot?=false’

Page 82/88

-M [sun4u|sundv|niagara]
Set the emulated machine type. The default is sun4u.

The following options are specific to the ARM emulation:

-semihosting
Enable semihosting syscall emulation.
On ARM this implements the "Angel" interface.
Note that this allows guest direct access to the host filesystem, so should
only be used with trusted guest OS.

The following options are specific to the ColdFire emulation:

-semihosting
Enable semihosting syscall emulation.
On M68K this implements the "ColdFire GDB" interface used by libgloss.
Note that this allows guest direct access to the host filesystem, so should
only be used with trusted guest OS.

The following options are specific to the Xtensa emulation:

-semihosting
Enable semihosting syscall emulation.
Xtensa semihosting provides basic file 1O calls, such as
open/read/write/seek/select. Tensilica baremetal libc for ISS and linux
platform "sim" use this interface.
Note that this allows guest direct access to the host filesystem, so should
only be used with trusted guest OS.

NOTES

In addition to using normal file images for the emulated storage devices, QEMU can

also use networked resources such as iSCSI devices. These are specified using a

special URL syntax.

iSCSI
iISCSI support allows QEMU to access iSCSI resources directly and use as images
for the guest storage. Both disk and cdrom images are supported.
Syntax for specifying iISCSI LUNSs is
"iscsi://<target-ip>[:<port>]/<target-ign>/<lun>"
By default gemu will use the iSCSI initiator-name

'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command Page 83/88

line or a configuration file.
Since version Qemu 2.4 it is possible to specify a iISCSI request timeout to
detect stalled requests and force a reestablishment of the session. The timeout
is specified in seconds. The default is 0 which means no timeout. Libiscsi
1.15.0 or greater is required for this feature.
Example (without authentication):
gemu-system-x86_64 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
-cdrom iscsi://192.0.2.1/ign.2001-04.com.example/2 \
-drive file=iscsi://192.0.2.1/iqgn.2001-04.com.example/1
Example (CHAP username/password via URL):
gemu-system-x86_64 -drive file=iscsi://user%password@192.0.2.1/ign.2001-04.com.example/1
Example (CHAP username/password via environment variables):
LIBISCSI_CHAP_USERNAME="user" \
LIBISCSI_CHAP_PASSWORD="password" \
gemu-system-x86_64 -drive file=iscsi://192.0.2.1/ign.2001-04.com.example/1
NBD QEMU supports NBD (Network Block Devices) both using TCP protocol as well as
Unix Domain Sockets. With TCP, the default port is 10809.
Syntax for specifying a NBD device using TCP, in preferred URI form:
"nbd://<server-ip>[:<port>]/[<export>]"
Syntax for specifying a NBD device using Unix Domain Sockets; remember that '?'
is a shell glob character and may need quoting:
"nbd-+unix:///[<export>]?socket=<domain-socket>"
Older syntax that is also recognized:
"nbd:<server-ip>:<port>[:exporthame=<export>]"
Syntax for specifying a NBD device using Unix Domain Sockets
"nbd:unix:<domain-socket>[:exportname=<export>]"
Example for TCP
gemu-system-x86_64 --drive file=nbd:192.0.2.1:30000
Example for Unix Domain Sockets
gemu-system-x86_64 --drive file=nbd:unix:/tmp/nbd-socket
SSH QEMU supports SSH (Secure Shell) access to remote disks.
Examples:

gemu-system-x86_64 -drive file=ssh://user@host/path/to/disk.img Page 84/88

gemu-system-x86_64 -drive file.driver=ssh,file.user=user file.host=host,file.port=22file.path=/path/to/disk.img

Currently authentication must be done using ssh-agent. Other authentication
methods may be supported in future.
Sheepdog
Sheepdog is a distributed storage system for QEMU. QEMU supports using either
local sheepdog devices or remote networked devices.
Syntax for specifying a sheepdog device
sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
Example
gemu-system-x86_64 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
See also <https://sheepdog.github.io/sheepdog/>.
GlusterFS
GlusterFS is a user space distributed file system. QEMU supports the use of
GlusterFS volumes for hosting VM disk images using TCP, Unix Domain Sockets and
RDMA transport protocols.
Syntax for specifying a VM disk image on GlusterFS volume is
URI:
gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]

JSON:

'ison:{"driver":"gcow2","file":{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile

"server":[{"type":"tcp","host":"...","port":"..."},
{"type":"unix","socket":"..."}]}}'
Example
URI:
gemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
file.debug=9,file.logfile=/var/log/gemu-gluster.log
JSON:
gemu-system-x86_64 'json:{"driver":"qcow2",
"file":{"driver":"gluster",
"volume":"testvol","path™:"a.img",
"debug":9,"logfile":"/var/log/gemu-gluster.log",
"server":[{"type":"tcp","host":"1.2.3.4","port":24007},

{"type":"unix","socket":"/var/run/glusterd.socket"}}}'

Page 85/88

gemu-system-x86_64 -drive driver=qcow?,file.driver=glusterfile.volume=testvol,file.path=/path/a.img,
file.debug=9,file.logfile=/var/log/gemu-gluster.log,
file.server.0.type=tcp,file.server.0.host=1.2.3.4 file.server.0.port=24007,
file.server.1.type=unix,file.server.1l.socket=/var/run/glusterd.socket
See also <http://www.gluster.org>.
HTTP/HTTPS/FTP/FTPS
QEMU supports read-only access to files accessed over http(s) and ftp(s).
Syntax using a single filename:
<protocol>://[<username>[:<password>]@]<host>/<path>
where:
protocol
‘http', 'https', 'ftp', or 'ftps'.
username
Optional username for authentication to the remote server.
password
Optional password for authentication to the remote server.
host
Address of the remote server.
path
Path on the remote server, including any query string.
The following options are also supported:
url The full URL when passing options to the driver explicitly.
readahead
The amount of data to read ahead with each range request to the remote
server. This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k’
or 'b'. If it does not have a sulffix, it will be assumed to be in bytes.
The value must be a multiple of 512 bytes. It defaults to 256k.
sslverify
Whether to verify the remote server's certificate when connecting over SSL.
It can have the value 'on' or 'off". It defaults to 'on'.
cookie
Send this cookie (it can also be a list of cookies separated by ';") with

each outgoing request. Only supported when using protocols such as HTTP Page 86/88

which support cookies, otherwise ignored.
timeout
Set the timeout in seconds of the CURL connection. This timeout is the time
that CURL waits for a response from the remote server to get the size of
the image to be downloaded. If not set, the default timeout of 5 seconds is
used.
Note that when passing options to gemu explicitly, driver is the value of
<protocol>.
Example: boot from a remote Fedora 20 live ISO image
gemu-system-x86_64 --drive
media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-
x86_64-20-1.iso,readonly
gemu-system-x86_64 --drive
media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-
Desktop-x86_64-20-1.iso,readonly
Example: boot from a remote Fedora 20 cloud image using a local overlay for
writes, copy-on-read, and a readahead of 64k
gemu-img create -f qcow2 -o backing_file="json:{"file.driver":"http",,
"file.url":"http://archives.fedoraproject.org/pub/archive/fedoral/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211
.1-sda.qcow2",, "file.readahead":"64k"}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow?2
gemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
Example: boot from an image stored on a VMware vSphere server with a self-
signed certificate using a local overlay for writes, a readahead of 64k and a
timeout of 10 seconds.
gemu-img create -f qcow2 -0 backing_file='json:{"file.driver":"https",,
"file.ur!l":"https://user:password@vsphere.example.com/folder/test/test-flat.ymdk?dcPath=Datacenter&dsName=datastorel",,
"file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10}' /tmp/test.qcow?2
gemu-system-x86_64 -drive file=/tmp/test.qcow2
SEE ALSO
The HTML documentation of QEMU for more precise information and Linux user mode
emulator invocation.
AUTHOR

Fabrice Bellard Page 87/88

2022-12-08 QEMU.1(1)

Page 88/88

