PDF generator,

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'readdir_r.3'
$ man readdir_r.3
READDIR_R(3) Linux Programmer's Manual READDIR_R(3)
NAME
readdir_r - read a directory
SYNOPSIS
#include <dirent.h>
int readdir_r(DIR *dirp, struct dirent *entry, struct dirent **result);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
readdir_r():
_POSIX_C_SOURCE
|| /* Glibc versions <= 2.19: */ _.BSD_SOURCE || _SVID_SOURCE
DESCRIPTION
This function is deprecated; use readdir(3) instead.
The readdir_r() function was invented as a reentrant version of readdir(3). It reads the
next directory entry from the directory stream dirp, and returns it in the caller-allo?
cated buffer pointed to by entry. For details of the dirent structure, see readdir(3).
A pointer to the returned buffer is placed in *result; if the end of the directory stream
was encountered, then NULL is instead returned in *result.
It is recommended that applications use readdir(3) instead of readdir_r(). Furthermore,
since version 2.24, glibc deprecates readdir_r(). The reasons are as follows:
* On systems where NAME_MAX is undefined, calling readdir_r() may be unsafe because the
interface does not allow the caller to specify the length of the buffer used for the
returned directory entry.

* On some systems, readdir_r() can't read directory entries with very long names. When Page 1/3

the glibc implementation encounters such a name, readdir_r() fails with the error ENAM?
ETOOLONG after the final directory entry has been read. On some other systems, read?
dir_r() may return a success status, but the returned d_name field may not be null ter?
minated or may be truncated.

* In the current POSIX.1 specification (POSIX.1-2008), readdir(3) is not required to be
thread-safe. However, in modern implementations (including the glibc implementation),
concurrent calls to readdir(3) that specify different directory streams are thread-
safe. Therefore, the use of readdir_r() is generally unnecessary in multithreaded pro?
grams. In cases where multiple threads must read from the same directory stream, using
readdir(3) with external synchronization is still preferable to the use of readdir_r(),
for the reasons given in the points above.

* |t is expected that a future version of POSIX.1 will make readdir_r() obsolete, and re?
quire that readdir(3) be thread-safe when concurrently employed on different directory
streams.

RETURN VALUE
The readdir_r() function returns 0 on success. On error, it returns a positive error num?
ber (listed under ERRORS). If the end of the directory stream is reached, readdir_r() re?
turns 0, and returns NULL in *result.
ERRORS
EBADF Invalid directory stream descriptor dirp.
ENAMETOOLONG
A directory entry whose name was too long to be read was encountered.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 72??7???7?7?7??7?7?7?7?7?77

?Interface ? Attribute ? Value ?

PPV 2?7?7???7?7?7??7?7?7?7?7?77

?readdir_r() ? Thread safety ? MT-Safe ?

PPV 72??7???7?77??7?7?7?7?7?77?

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.
SEE ALSO

readdir(3) Page 2/3

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

2016-03-01 READDIR_R(3)

Page 3/3

