
Rocky Enterprise Linux 9.2 Manual Pages on command 'readlinkat.2'

$ man readlinkat.2

READLINK(2) Linux Programmer's Manual READLINK(2)

NAME

 readlink, readlinkat - read value of a symbolic link

SYNOPSIS

 #include <unistd.h>

 ssize_t readlink(const char *pathname, char *buf, size_t bufsiz);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <unistd.h>

 ssize_t readlinkat(int dirfd, const char *pathname,

 char *buf, size_t bufsiz);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 readlink():

 _XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

 readlinkat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

DESCRIPTION

 readlink() places the contents of the symbolic link pathname in the buffer buf, which has

 size bufsiz. readlink() does not append a null byte to buf. It will (silently) truncate

 the contents (to a length of bufsiz characters), in case the buffer is too small to hold Page 1/5

 all of the contents.

 readlinkat()

 The readlinkat() system call operates in exactly the same way as readlink(), except for

 the differences described here.

 If the pathname given in pathname is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor dirfd (rather than relative to the current

 working directory of the calling process, as is done by readlink() for a relative path?

 name).

 If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is inter?

 preted relative to the current working directory of the calling process (like readlink()).

 If pathname is absolute, then dirfd is ignored.

 Since Linux 2.6.39, pathname can be an empty string, in which case the call operates on

 the symbolic link referred to by dirfd (which should have been obtained using open(2) with

 the O_PATH and O_NOFOLLOW flags).

 See openat(2) for an explanation of the need for readlinkat().

RETURN VALUE

 On success, these calls return the number of bytes placed in buf. (If the returned value

 equals bufsiz, then truncation may have occurred.) On error, -1 is returned and errno is

 set to indicate the error.

ERRORS

 EACCES Search permission is denied for a component of the path prefix. (See also

 path_resolution(7).)

 EFAULT buf extends outside the process's allocated address space.

 EINVAL bufsiz is not positive.

 EINVAL The named file (i.e., the final filename component of pathname) is not a symbolic

 link.

 EIO An I/O error occurred while reading from the filesystem.

 ELOOP Too many symbolic links were encountered in translating the pathname.

 ENAMETOOLONG

 A pathname, or a component of a pathname, was too long.

 ENOENT The named file does not exist.

 ENOMEM Insufficient kernel memory was available.

 ENOTDIR Page 2/5

 A component of the path prefix is not a directory.

 The following additional errors can occur for readlinkat():

 EBADF dirfd is not a valid file descriptor.

 ENOTDIR

 pathname is relative and dirfd is a file descriptor referring to a file other than

 a directory.

VERSIONS

 readlinkat() was added to Linux in kernel 2.6.16; library support was added to glibc in

 version 2.4.

CONFORMING TO

 readlink(): 4.4BSD (readlink() first appeared in 4.2BSD), POSIX.1-2001, POSIX.1-2008.

 readlinkat(): POSIX.1-2008.

NOTES

 In versions of glibc up to and including glibc 2.4, the return type of readlink() was de?

 clared as int. Nowadays, the return type is declared as ssize_t, as (newly) required in

 POSIX.1-2001.

 Using a statically sized buffer might not provide enough room for the symbolic link con?

 tents. The required size for the buffer can be obtained from the stat.st_size value re?

 turned by a call to lstat(2) on the link. However, the number of bytes written by read?

 link() and readlinkat() should be checked to make sure that the size of the symbolic link

 did not increase between the calls. Dynamically allocating the buffer for readlink() and

 readlinkat() also addresses a common portability problem when using PATH_MAX for the buf?

 fer size, as this constant is not guaranteed to be defined per POSIX if the system does

 not have such limit.

 Glibc notes

 On older kernels where readlinkat() is unavailable, the glibc wrapper function falls back

 to the use of readlink(). When pathname is a relative pathname, glibc constructs a path?

 name based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

EXAMPLES

 The following program allocates the buffer needed by readlink() dynamically from the in?

 formation provided by lstat(2), falling back to a buffer of size PATH_MAX in cases where

 lstat(2) reports a size of zero.

 #include <sys/types.h> Page 3/5

 #include <sys/stat.h>

 #include <limits.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 int

 main(int argc, char *argv[])

 {

 struct stat sb;

 char *buf;

 ssize_t nbytes, bufsiz;

 if (argc != 2) {

 fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 if (lstat(argv[1], &sb) == -1) {

 perror("lstat");

 exit(EXIT_FAILURE);

 }

 /* Add one to the link size, so that we can determine whether

 the buffer returned by readlink() was truncated. */

 bufsiz = sb.st_size + 1;

 /* Some magic symlinks under (for example) /proc and /sys

 report 'st_size' as zero. In that case, take PATH_MAX as

 a "good enough" estimate. */

 if (sb.st_size == 0)

 bufsiz = PATH_MAX;

 buf = malloc(bufsiz);

 if (buf == NULL) {

 perror("malloc");

 exit(EXIT_FAILURE);

 }

 nbytes = readlink(argv[1], buf, bufsiz); Page 4/5

 if (nbytes == -1) {

 perror("readlink");

 exit(EXIT_FAILURE);

 }

 printf("'%s' points to '%.*s'\n", argv[1], (int) nbytes, buf);

 /* If the return value was equal to the buffer size, then the

 the link target was larger than expected (perhaps because the

 target was changed between the call to lstat() and the call to

 readlink()). Warn the user that the returned target may have

 been truncated. */

 if (nbytes == bufsiz)

 printf("(Returned buffer may have been truncated)\n");

 free(buf);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 readlink(1), lstat(2), stat(2), symlink(2), realpath(3), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 READLINK(2)

Page 5/5

