FPDF lerary

PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'readlinkat.2'

$ man readlinkat.2

READLINK(2) Linux Programmer's Manual READLINK(2)
NAME
readlink, readlinkat - read value of a symbolic link
SYNOPSIS
#include <unistd.h>
ssize_t readlink(const char *pathname, char *buf, size_t bufsiz);
#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>
ssize_t readlinkat(int dirfd, const char *pathname,
char *buf, size_t bufsiz);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
readlink():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L
|| 7* Glibc versions <= 2.19: */ BSD_SOURCE
readlinkat():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_ATFILE_SOURCE
DESCRIPTION
readlink() places the contents of the symbolic link pathname in the buffer buf, which has
size bufsiz. readlink() does not append a null byte to buf. It will (silently) truncate

the contents (to a length of bufsiz characters), in case the buffer is too small to hold Page 1/5

all of the contents.
readlinkat()

The readlinkat() system call operates in exactly the same way as readlink(), except for

the differences described here.

If the pathname given in pathname is relative, then it is interpreted relative to the di?

rectory referred to by the file descriptor dirfd (rather than relative to the current

working directory of the calling process, as is done by readlink() for a relative path?

name).

If pathname is relative and dirfd is the special value AT_FDCWD, then pathname is inter?

preted relative to the current working directory of the calling process (like readlink()).

If pathname is absolute, then dirfd is ignored.

Since Linux 2.6.39, pathname can be an empty string, in which case the call operates on

the symbolic link referred to by dirfd (which should have been obtained using open(2) with

the O_PATH and O_NOFOLLOW flags).

See openat(2) for an explanation of the need for readlinkat().

RETURN VALUE

On success, these calls return the number of bytes placed in buf. (If the returned value

equals bufsiz, then truncation may have occurred.) On error, -1 is returned and errno is

set to indicate the error.

ERRORS

EACCES Search permission is denied for a component of the path prefix. (See also
path_resolution(7).)

EFAULT buf extends outside the process's allocated address space.

EINVAL bufsiz is not positive.

EINVAL The named file (i.e., the final filename component of pathname) is not a symbolic
link.

EIO An 1/O error occurred while reading from the filesystem.

ELOOP Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A pathname, or a component of a pathname, was too long.

ENOENT The named file does not exist.

ENOMEM Insufficient kernel memory was available.

ENOTDIR Page 2/5

A component of the path prefix is not a directory.
The following additional errors can occur for readlinkat():
EBADF dirfd is not a valid file descriptor.
ENOTDIR
pathname is relative and dirfd is a file descriptor referring to a file other than
a directory.
VERSIONS
readlinkat() was added to Linux in kernel 2.6.16; library support was added to glibc in
version 2.4.
CONFORMING TO
readlink(): 4.4BSD (readlink() first appeared in 4.2BSD), POSIX.1-2001, POSIX.1-2008.
readlinkat(): POSIX.1-2008.
NOTES
In versions of glibc up to and including glibc 2.4, the return type of readlink() was de?
clared as int. Nowadays, the return type is declared as ssize_t, as (newly) required in
POSIX.1-2001.
Using a statically sized buffer might not provide enough room for the symbolic link con?
tents. The required size for the buffer can be obtained from the stat.st_size value re?
turned by a call to Istat(2) on the link. However, the number of bytes written by read?
link() and readlinkat() should be checked to make sure that the size of the symbolic link
did not increase between the calls. Dynamically allocating the buffer for readlink() and
readlinkat() also addresses a common portability problem when using PATH_MAX for the buf?
fer size, as this constant is not guaranteed to be defined per POSIX if the system does
not have such limit.
Glibc notes
On older kernels where readlinkat() is unavailable, the glibc wrapper function falls back
to the use of readlink(). When pathname is a relative pathname, glibc constructs a path?
name based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.
EXAMPLES
The following program allocates the buffer needed by readlink() dynamically from the in?
formation provided by Istat(2), falling back to a buffer of size PATH_MAX in cases where
Istat(2) reports a size of zero.

#include <sys/types.h> Page 3/5

#include <sys/stat.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int
main(int argc, char *argv[])
{
struct stat sb;
char *buf;
ssize_t nbytes, bufsiz;
if (argc 1= 2) {
fprintf(stderr, "Usage: %s <pathname>\n", argv[0]);
exit(EXIT_FAILURE);
}
if (Istat(argv[1], &sb) ==-1) {
perror(“Istat");
exit(EXIT_FAILURE);
}
/* Add one to the link size, so that we can determine whether
the buffer returned by readlink() was truncated. */
bufsiz = sh.st_size + 1;
/* Some magic symlinks under (for example) /proc and /sys
report 'st_size' as zero. In that case, take PATH_MAX as
a "good enough" estimate. */
if (sb.st_size == 0)
bufsiz = PATH_MAX;
buf = malloc(bufsiz);
if (buf == NULL) {
perror("malloc");
exit(EXIT_FAILURE);

}

nbytes = readlink(argv[1], buf, bufsiz); Page 4/5

if (nbytes ==-1) {
perror("readlink™);
exit(EXIT_FAILURE);
}
printf("'%s' points to '%.*s"\n", argv[1], (int) nbytes, buf);
/* If the return value was equal to the buffer size, then the
the link target was larger than expected (perhaps because the
target was changed between the call to Istat() and the call to
readlink()). Warn the user that the returned target may have
been truncated. */
if (nbytes == bufsiz)
printf("(Returned buffer may have been truncated)\n");
free(buf);
exit(EXIT_SUCCESS);
}
SEE ALSO
readlink(1), Istat(2), stat(2), symlink(2), realpath(3), path_resolution(7), symlink(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 READLINK(2)

Page 5/5

