
Rocky Enterprise Linux 9.2 Manual Pages on command 'recv.2'

$ man recv.2

RECV(2) Linux Programmer's Manual RECV(2)

NAME

 recv, recvfrom, recvmsg - receive a message from a socket

SYNOPSIS

 #include <sys/types.h>

 #include <sys/socket.h>

 ssize_t recv(int sockfd, void *buf, size_t len, int flags);

 ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,

 struct sockaddr *src_addr, socklen_t *addrlen);

 ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

DESCRIPTION

 The recv(), recvfrom(), and recvmsg() calls are used to receive messages from a socket.

 They may be used to receive data on both connectionless and connection-oriented sockets.

 This page first describes common features of all three system calls, and then describes

 the differences between the calls.

 The only difference between recv() and read(2) is the presence of flags. With a zero

 flags argument, recv() is generally equivalent to read(2) (but see NOTES). Also, the fol?

 lowing call

 recv(sockfd, buf, len, flags);

 is equivalent to

 recvfrom(sockfd, buf, len, flags, NULL, NULL);

 All three calls return the length of the message on successful completion. If a message

 is too long to fit in the supplied buffer, excess bytes may be discarded depending on the Page 1/8

 type of socket the message is received from.

 If no messages are available at the socket, the receive calls wait for a message to ar?

 rive, unless the socket is nonblocking (see fcntl(2)), in which case the value -1 is re?

 turned and the external variable errno is set to EAGAIN or EWOULDBLOCK. The receive calls

 normally return any data available, up to the requested amount, rather than waiting for

 receipt of the full amount requested.

 An application can use select(2), poll(2), or epoll(7) to determine when more data arrives

 on a socket.

 The flags argument

 The flags argument is formed by ORing one or more of the following values:

 MSG_CMSG_CLOEXEC (recvmsg() only; since Linux 2.6.23)

 Set the close-on-exec flag for the file descriptor received via a UNIX domain file

 descriptor using the SCM_RIGHTS operation (described in unix(7)). This flag is

 useful for the same reasons as the O_CLOEXEC flag of open(2).

 MSG_DONTWAIT (since Linux 2.2)

 Enables nonblocking operation; if the operation would block, the call fails with

 the error EAGAIN or EWOULDBLOCK. This provides similar behavior to setting the

 O_NONBLOCK flag (via the fcntl(2) F_SETFL operation), but differs in that MSG_DONT?

 WAIT is a per-call option, whereas O_NONBLOCK is a setting on the open file de?

 scription (see open(2)), which will affect all threads in the calling process and

 as well as other processes that hold file descriptors referring to the same open

 file description.

 MSG_ERRQUEUE (since Linux 2.2)

 This flag specifies that queued errors should be received from the socket error

 queue. The error is passed in an ancillary message with a type dependent on the

 protocol (for IPv4 IP_RECVERR). The user should supply a buffer of sufficient

 size. See cmsg(3) and ip(7) for more information. The payload of the original

 packet that caused the error is passed as normal data via msg_iovec. The original

 destination address of the datagram that caused the error is supplied via msg_name.

 The error is supplied in a sock_extended_err structure:

 #define SO_EE_ORIGIN_NONE 0

 #define SO_EE_ORIGIN_LOCAL 1

 #define SO_EE_ORIGIN_ICMP 2 Page 2/8

 #define SO_EE_ORIGIN_ICMP6 3

 struct sock_extended_err

 {

 uint32_t ee_errno; /* Error number */

 uint8_t ee_origin; /* Where the error originated */

 uint8_t ee_type; /* Type */

 uint8_t ee_code; /* Code */

 uint8_t ee_pad; /* Padding */

 uint32_t ee_info; /* Additional information */

 uint32_t ee_data; /* Other data */

 /* More data may follow */

 };

 struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

 ee_errno contains the errno number of the queued error. ee_origin is the origin

 code of where the error originated. The other fields are protocol-specific. The

 macro SOCK_EE_OFFENDER returns a pointer to the address of the network object where

 the error originated from given a pointer to the ancillary message. If this ad?

 dress is not known, the sa_family member of the sockaddr contains AF_UNSPEC and the

 other fields of the sockaddr are undefined. The payload of the packet that caused

 the error is passed as normal data.

 For local errors, no address is passed (this can be checked with the cmsg_len mem?

 ber of the cmsghdr). For error receives, the MSG_ERRQUEUE flag is set in the ms?

 ghdr. After an error has been passed, the pending socket error is regenerated

 based on the next queued error and will be passed on the next socket operation.

 MSG_OOB

 This flag requests receipt of out-of-band data that would not be received in the

 normal data stream. Some protocols place expedited data at the head of the normal

 data queue, and thus this flag cannot be used with such protocols.

 MSG_PEEK

 This flag causes the receive operation to return data from the beginning of the re?

 ceive queue without removing that data from the queue. Thus, a subsequent receive

 call will return the same data.

 MSG_TRUNC (since Linux 2.2) Page 3/8

 For raw (AF_PACKET), Internet datagram (since Linux 2.4.27/2.6.8), netlink (since

 Linux 2.6.22), and UNIX datagram (since Linux 3.4) sockets: return the real length

 of the packet or datagram, even when it was longer than the passed buffer.

 For use with Internet stream sockets, see tcp(7).

 MSG_WAITALL (since Linux 2.2)

 This flag requests that the operation block until the full request is satisfied.

 However, the call may still return less data than requested if a signal is caught,

 an error or disconnect occurs, or the next data to be received is of a different

 type than that returned. This flag has no effect for datagram sockets.

 recvfrom()

 recvfrom() places the received message into the buffer buf. The caller must specify the

 size of the buffer in len.

 If src_addr is not NULL, and the underlying protocol provides the source address of the

 message, that source address is placed in the buffer pointed to by src_addr. In this

 case, addrlen is a value-result argument. Before the call, it should be initialized to

 the size of the buffer associated with src_addr. Upon return, addrlen is updated to con?

 tain the actual size of the source address. The returned address is truncated if the buf?

 fer provided is too small; in this case, addrlen will return a value greater than was sup?

 plied to the call.

 If the caller is not interested in the source address, src_addr and addrlen should be

 specified as NULL.

 recv()

 The recv() call is normally used only on a connected socket (see connect(2)). It is

 equivalent to the call:

 recvfrom(fd, buf, len, flags, NULL, 0);

 recvmsg()

 The recvmsg() call uses a msghdr structure to minimize the number of directly supplied ar?

 guments. This structure is defined as follows in <sys/socket.h>:

 struct iovec { /* Scatter/gather array items */

 void *iov_base; /* Starting address */

 size_t iov_len; /* Number of bytes to transfer */

 };

 struct msghdr { Page 4/8

 void *msg_name; /* Optional address */

 socklen_t msg_namelen; /* Size of address */

 struct iovec *msg_iov; /* Scatter/gather array */

 size_t msg_iovlen; /* # elements in msg_iov */

 void *msg_control; /* Ancillary data, see below */

 size_t msg_controllen; /* Ancillary data buffer len */

 int msg_flags; /* Flags on received message */

 };

 The msg_name field points to a caller-allocated buffer that is used to return the source

 address if the socket is unconnected. The caller should set msg_namelen to the size of

 this buffer before this call; upon return from a successful call, msg_namelen will contain

 the length of the returned address. If the application does not need to know the source

 address, msg_name can be specified as NULL.

 The fields msg_iov and msg_iovlen describe scatter-gather locations, as discussed in

 readv(2).

 The field msg_control, which has length msg_controllen, points to a buffer for other pro?

 tocol control-related messages or miscellaneous ancillary data. When recvmsg() is called,

 msg_controllen should contain the length of the available buffer in msg_control; upon re?

 turn from a successful call it will contain the length of the control message sequence.

 The messages are of the form:

 struct cmsghdr {

 size_t cmsg_len; /* Data byte count, including header

 (type is socklen_t in POSIX) */

 int cmsg_level; /* Originating protocol */

 int cmsg_type; /* Protocol-specific type */

 /* followed by

 unsigned char cmsg_data[]; */

 };

 Ancillary data should be accessed only by the macros defined in cmsg(3).

 As an example, Linux uses this ancillary data mechanism to pass extended errors, IP op?

 tions, or file descriptors over UNIX domain sockets. For further information on the use

 of ancillary data in various socket domains, see unix(7) and ip(7).

 The msg_flags field in the msghdr is set on return of recvmsg(). It can contain several Page 5/8

 flags:

 MSG_EOR

 indicates end-of-record; the data returned completed a record (generally used with

 sockets of type SOCK_SEQPACKET).

 MSG_TRUNC

 indicates that the trailing portion of a datagram was discarded because the data?

 gram was larger than the buffer supplied.

 MSG_CTRUNC

 indicates that some control data was discarded due to lack of space in the buffer

 for ancillary data.

 MSG_OOB

 is returned to indicate that expedited or out-of-band data was received.

 MSG_ERRQUEUE

 indicates that no data was received but an extended error from the socket error

 queue.

RETURN VALUE

 These calls return the number of bytes received, or -1 if an error occurred. In the event

 of an error, errno is set to indicate the error.

 When a stream socket peer has performed an orderly shutdown, the return value will be 0

 (the traditional "end-of-file" return).

 Datagram sockets in various domains (e.g., the UNIX and Internet domains) permit zero-

 length datagrams. When such a datagram is received, the return value is 0.

 The value 0 may also be returned if the requested number of bytes to receive from a stream

 socket was 0.

ERRORS

 These are some standard errors generated by the socket layer. Additional errors may be

 generated and returned from the underlying protocol modules; see their manual pages.

 EAGAIN or EWOULDBLOCK

 The socket is marked nonblocking and the receive operation would block, or a re?

 ceive timeout had been set and the timeout expired before data was received.

 POSIX.1 allows either error to be returned for this case, and does not require

 these constants to have the same value, so a portable application should check for

 both possibilities. Page 6/8

 EBADF The argument sockfd is an invalid file descriptor.

 ECONNREFUSED

 A remote host refused to allow the network connection (typically because it is not

 running the requested service).

 EFAULT The receive buffer pointer(s) point outside the process's address space.

 EINTR The receive was interrupted by delivery of a signal before any data was available;

 see signal(7).

 EINVAL Invalid argument passed.

 ENOMEM Could not allocate memory for recvmsg().

 ENOTCONN

 The socket is associated with a connection-oriented protocol and has not been con?

 nected (see connect(2) and accept(2)).

 ENOTSOCK

 The file descriptor sockfd does not refer to a socket.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.4BSD (these interfaces first appeared in 4.2BSD).

 POSIX.1 describes only the MSG_OOB, MSG_PEEK, and MSG_WAITALL flags.

NOTES

 If a zero-length datagram is pending, read(2) and recv() with a flags argument of zero

 provide different behavior. In this circumstance, read(2) has no effect (the datagram re?

 mains pending), while recv() consumes the pending datagram.

 The socklen_t type was invented by POSIX. See also accept(2).

 According to POSIX.1, the msg_controllen field of the msghdr structure should be typed as

 socklen_t, and the msg_iovlen field should be typed as int, but glibc currently types both

 as size_t.

 See recvmmsg(2) for information about a Linux-specific system call that can be used to re?

 ceive multiple datagrams in a single call.

EXAMPLES

 An example of the use of recvfrom() is shown in getaddrinfo(3).

SEE ALSO

 fcntl(2), getsockopt(2), read(2), recvmmsg(2), select(2), shutdown(2), socket(2), cmsg(3),

 sockatmark(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

COLOPHON Page 7/8

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 RECV(2)

Page 8/8

