
Rocky Enterprise Linux 9.2 Manual Pages on command 'regerror.3'

$ man regerror.3

REGEX(3) Linux Programmer's Manual REGEX(3)

NAME

 regcomp, regexec, regerror, regfree - POSIX regex functions

SYNOPSIS

 #include <regex.h>

 int regcomp(regex_t *preg, const char *regex, int cflags);

 int regexec(const regex_t *preg, const char *string, size_t nmatch,

 regmatch_t pmatch[], int eflags);

 size_t regerror(int errcode, const regex_t *preg, char *errbuf,

 size_t errbuf_size);

 void regfree(regex_t *preg);

DESCRIPTION

 POSIX regex compiling

 regcomp() is used to compile a regular expression into a form that is suitable for subse?

 quent regexec() searches.

 regcomp() is supplied with preg, a pointer to a pattern buffer storage area; regex, a

 pointer to the null-terminated string and cflags, flags used to determine the type of com?

 pilation.

 All regular expression searching must be done via a compiled pattern buffer, thus

 regexec() must always be supplied with the address of a regcomp() initialized pattern buf?

 fer.

 cflags is the bitwise-or of zero or more of the following:

 REG_EXTENDED Page 1/6

 Use POSIX Extended Regular Expression syntax when interpreting regex. If not set,

 POSIX Basic Regular Expression syntax is used.

 REG_ICASE

 Do not differentiate case. Subsequent regexec() searches using this pattern buffer

 will be case insensitive.

 REG_NOSUB

 Do not report position of matches. The nmatch and pmatch arguments to regexec()

 are ignored if the pattern buffer supplied was compiled with this flag set.

 REG_NEWLINE

 Match-any-character operators don't match a newline.

 A nonmatching list ([^...]) not containing a newline does not match a newline.

 Match-beginning-of-line operator (^) matches the empty string immediately after a

 newline, regardless of whether eflags, the execution flags of regexec(), contains

 REG_NOTBOL.

 Match-end-of-line operator ($) matches the empty string immediately before a new?

 line, regardless of whether eflags contains REG_NOTEOL.

 POSIX regex matching

 regexec() is used to match a null-terminated string against the precompiled pattern buf?

 fer, preg. nmatch and pmatch are used to provide information regarding the location of

 any matches. eflags is the bitwise-or of zero or more of the following flags:

 REG_NOTBOL

 The match-beginning-of-line operator always fails to match (but see the compilation

 flag REG_NEWLINE above). This flag may be used when different portions of a string

 are passed to regexec() and the beginning of the string should not be interpreted

 as the beginning of the line.

 REG_NOTEOL

 The match-end-of-line operator always fails to match (but see the compilation flag

 REG_NEWLINE above).

 REG_STARTEND

 Use pmatch[0] on the input string, starting at byte pmatch[0].rm_so and ending be?

 fore byte pmatch[0].rm_eo. This allows matching embedded NUL bytes and avoids a

 strlen(3) on large strings. It does not use nmatch on input, and does not change

 REG_NOTBOL or REG_NEWLINE processing. This flag is a BSD extension, not present in Page 2/6

 POSIX.

 Byte offsets

 Unless REG_NOSUB was set for the compilation of the pattern buffer, it is possible to ob?

 tain match addressing information. pmatch must be dimensioned to have at least nmatch el?

 ements. These are filled in by regexec() with substring match addresses. The offsets of

 the subexpression starting at the ith open parenthesis are stored in pmatch[i]. The en?

 tire regular expression's match addresses are stored in pmatch[0]. (Note that to return

 the offsets of N subexpression matches, nmatch must be at least N+1.) Any unused struc?

 ture elements will contain the value -1.

 The regmatch_t structure which is the type of pmatch is defined in <regex.h>.

 typedef struct {

 regoff_t rm_so;

 regoff_t rm_eo;

 } regmatch_t;

 Each rm_so element that is not -1 indicates the start offset of the next largest substring

 match within the string. The relative rm_eo element indicates the end offset of the

 match, which is the offset of the first character after the matching text.

 POSIX error reporting

 regerror() is used to turn the error codes that can be returned by both regcomp() and

 regexec() into error message strings.

 regerror() is passed the error code, errcode, the pattern buffer, preg, a pointer to a

 character string buffer, errbuf, and the size of the string buffer, errbuf_size. It re?

 turns the size of the errbuf required to contain the null-terminated error message string.

 If both errbuf and errbuf_size are nonzero, errbuf is filled in with the first errbuf_size

 - 1 characters of the error message and a terminating null byte ('\0').

 POSIX pattern buffer freeing

 Supplying regfree() with a precompiled pattern buffer, preg will free the memory allocated

 to the pattern buffer by the compiling process, regcomp().

RETURN VALUE

 regcomp() returns zero for a successful compilation or an error code for failure.

 regexec() returns zero for a successful match or REG_NOMATCH for failure.

ERRORS

 The following errors can be returned by regcomp(): Page 3/6

 REG_BADBR

 Invalid use of back reference operator.

 REG_BADPAT

 Invalid use of pattern operators such as group or list.

 REG_BADRPT

 Invalid use of repetition operators such as using '*' as the first character.

 REG_EBRACE

 Un-matched brace interval operators.

 REG_EBRACK

 Un-matched bracket list operators.

 REG_ECOLLATE

 Invalid collating element.

 REG_ECTYPE

 Unknown character class name.

 REG_EEND

 Nonspecific error. This is not defined by POSIX.2.

 REG_EESCAPE

 Trailing backslash.

 REG_EPAREN

 Un-matched parenthesis group operators.

 REG_ERANGE

 Invalid use of the range operator; for example, the ending point of the range oc?

 curs prior to the starting point.

 REG_ESIZE

 Compiled regular expression requires a pattern buffer larger than 64 kB. This is

 not defined by POSIX.2.

 REG_ESPACE

 The regex routines ran out of memory.

 REG_ESUBREG

 Invalid back reference to a subexpression.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ?? Page 4/6

 ?Interface ? Attribute ? Value ?

 ??

 ?regcomp(), regexec() ? Thread safety ? MT-Safe locale ?

 ??

 ?regerror() ? Thread safety ? MT-Safe env ?

 ??

 ?regfree() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

EXAMPLES

 #include <stdint.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <regex.h>

 #define ARRAY_SIZE(arr) (sizeof((arr)) / sizeof((arr)[0]))

 static const char *const str =

 "1) John Driverhacker;\n2) John Doe;\n3) John Foo;\n";

 static const char *const re = "John.*o";

 int main(void)

 {

 static const char *s = str;

 regex_t regex;

 regmatch_t pmatch[1];

 regoff_t off, len;

 if (regcomp(®ex, re, REG_NEWLINE))

 exit(EXIT_FAILURE);

 printf("String = \"%s\"\n", str);

 printf("Matches:\n");

 for (int i = 0; ; i++) {

 if (regexec(®ex, s, ARRAY_SIZE(pmatch), pmatch, 0))

 break;

 off = pmatch[0].rm_so + (s - str); Page 5/6

 len = pmatch[0].rm_eo - pmatch[0].rm_so;

 printf("#%d:\n", i);

 printf("offset = %jd; length = %jd\n", (intmax_t) off,

 (intmax_t) len);

 printf("substring = \"%.*s\"\n", len, s + pmatch[0].rm_so);

 s += pmatch[0].rm_eo;

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 grep(1), regex(7)

 The glibc manual section, Regular Expressions

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

GNU 2020-08-13 REGEX(3)

Page 6/6

