
Rocky Enterprise Linux 9.2 Manual Pages on command 'regex.7'

$ man regex.7

REGEX(7) Linux Programmer's Manual REGEX(7)

NAME

 regex - POSIX.2 regular expressions

DESCRIPTION

 Regular expressions ("RE"s), as defined in POSIX.2, come in two forms: modern REs (roughly

 those of egrep; POSIX.2 calls these "extended" REs) and obsolete REs (roughly those of

 ed(1); POSIX.2 "basic" REs). Obsolete REs mostly exist for backward compatibility in some

 old programs; they will be discussed at the end. POSIX.2 leaves some aspects of RE syntax

 and semantics open; "(!)" marks decisions on these aspects that may not be fully portable

 to other POSIX.2 implementations.

 A (modern) RE is one(!) or more nonempty(!) branches, separated by '|'. It matches any?

 thing that matches one of the branches.

 A branch is one(!) or more pieces, concatenated. It matches a match for the first, fol?

 lowed by a match for the second, and so on.

 A piece is an atom possibly followed by a single(!) '*', '+', '?', or bound. An atom fol?

 lowed by '*' matches a sequence of 0 or more matches of the atom. An atom followed by '+'

 matches a sequence of 1 or more matches of the atom. An atom followed by '?' matches a

 sequence of 0 or 1 matches of the atom.

 A bound is '{' followed by an unsigned decimal integer, possibly followed by ',' possibly

 followed by another unsigned decimal integer, always followed by '}'. The integers must

 lie between 0 and RE_DUP_MAX (255(!)) inclusive, and if there are two of them, the first

 may not exceed the second. An atom followed by a bound containing one integer i and no

 comma matches a sequence of exactly i matches of the atom. An atom followed by a bound Page 1/5

 containing one integer i and a comma matches a sequence of i or more matches of the atom.

 An atom followed by a bound containing two integers i and j matches a sequence of i

 through j (inclusive) matches of the atom.

 An atom is a regular expression enclosed in "()" (matching a match for the regular expres?

 sion), an empty set of "()" (matching the null string)(!), a bracket expression (see be?

 low), '.' (matching any single character), '^' (matching the null string at the beginning

 of a line), '$' (matching the null string at the end of a line), a '\' followed by one of

 the characters "^.[$()|*+?{\" (matching that character taken as an ordinary character), a

 '\' followed by any other character(!) (matching that character taken as an ordinary

 character, as if the '\' had not been present(!)), or a single character with no other

 significance (matching that character). A '{' followed by a character other than a digit

 is an ordinary character, not the beginning of a bound(!). It is illegal to end an RE

 with '\'.

 A bracket expression is a list of characters enclosed in "[]". It normally matches any

 single character from the list (but see below). If the list begins with '^', it matches

 any single character (but see below) not from the rest of the list. If two characters in

 the list are separated by '-', this is shorthand for the full range of characters between

 those two (inclusive) in the collating sequence, for example, "[0-9]" in ASCII matches any

 decimal digit. It is illegal(!) for two ranges to share an endpoint, for example,

 "a-c-e". Ranges are very collating-sequence-dependent, and portable programs should avoid

 relying on them.

 To include a literal ']' in the list, make it the first character (following a possible

 '^'). To include a literal '-', make it the first or last character, or the second end?

 point of a range. To use a literal '-' as the first endpoint of a range, enclose it in

 "[." and ".]" to make it a collating element (see below). With the exception of these

 and some combinations using '[' (see next paragraphs), all other special characters, in?

 cluding '\', lose their special significance within a bracket expression.

 Within a bracket expression, a collating element (a character, a multicharacter sequence

 that collates as if it were a single character, or a collating-sequence name for either)

 enclosed in "[." and ".]" stands for the sequence of characters of that collating element.

 The sequence is a single element of the bracket expression's list. A bracket expression

 containing a multicharacter collating element can thus match more than one character, for

 example, if the collating sequence includes a "ch" collating element, then the RE Page 2/5

 "[[.ch.]]*c" matches the first five characters of "chchcc".

 Within a bracket expression, a collating element enclosed in "[=" and "=]" is an equiva?

 lence class, standing for the sequences of characters of all collating elements equivalent

 to that one, including itself. (If there are no other equivalent collating elements, the

 treatment is as if the enclosing delimiters were "[." and ".]".) For example, if o and ^

 are the members of an equivalence class, then "[[=o=]]", "[[=^=]]", and "[o^]" are all

 synonymous. An equivalence class may not(!) be an endpoint of a range.

 Within a bracket expression, the name of a character class enclosed in "[:" and ":]"

 stands for the list of all characters belonging to that class. Standard character class

 names are:

 alnum digit punct

 alpha graph space

 blank lower upper

 cntrl print xdigit

 These stand for the character classes defined in wctype(3). A locale may provide others.

 A character class may not be used as an endpoint of a range.

 In the event that an RE could match more than one substring of a given string, the RE

 matches the one starting earliest in the string. If the RE could match more than one sub?

 string starting at that point, it matches the longest. Subexpressions also match the

 longest possible substrings, subject to the constraint that the whole match be as long as

 possible, with subexpressions starting earlier in the RE taking priority over ones start?

 ing later. Note that higher-level subexpressions thus take priority over their lower-

 level component subexpressions.

 Match lengths are measured in characters, not collating elements. A null string is con?

 sidered longer than no match at all. For example, "bb*" matches the three middle charac?

 ters of "abbbc", "(wee|week)(knights|nights)" matches all ten characters of "weeknights",

 when "(.*).*" is matched against "abc" the parenthesized subexpression matches all three

 characters, and when "(a*)*" is matched against "bc" both the whole RE and the parenthe?

 sized subexpression match the null string.

 If case-independent matching is specified, the effect is much as if all case distinctions

 had vanished from the alphabet. When an alphabetic that exists in multiple cases appears

 as an ordinary character outside a bracket expression, it is effectively transformed into

 a bracket expression containing both cases, for example, 'x' becomes "[xX]". When it ap? Page 3/5

 pears inside a bracket expression, all case counterparts of it are added to the bracket

 expression, so that, for example, "[x]" becomes "[xX]" and "[^x]" becomes "[^xX]".

 No particular limit is imposed on the length of REs(!). Programs intended to be portable

 should not employ REs longer than 256 bytes, as an implementation can refuse to accept

 such REs and remain POSIX-compliant.

 Obsolete ("basic") regular expressions differ in several respects. '|', '+', and '?' are

 ordinary characters and there is no equivalent for their functionality. The delimiters

 for bounds are "\{" and "\}", with '{' and '}' by themselves ordinary characters. The

 parentheses for nested subexpressions are "\(" and "\)", with '(' and ')' by themselves

 ordinary characters. '^' is an ordinary character except at the beginning of the RE or(!)

 the beginning of a parenthesized subexpression, '$' is an ordinary character except at the

 end of the RE or(!) the end of a parenthesized subexpression, and '*' is an ordinary char?

 acter if it appears at the beginning of the RE or the beginning of a parenthesized subex?

 pression (after a possible leading '^').

 Finally, there is one new type of atom, a back reference: '\' followed by a nonzero deci?

 mal digit d matches the same sequence of characters matched by the dth parenthesized sub?

 expression (numbering subexpressions by the positions of their opening parentheses, left

 to right), so that, for example, "\([bc]\)\1" matches "bb" or "cc" but not "bc".

BUGS

 Having two kinds of REs is a botch.

 The current POSIX.2 spec says that ')' is an ordinary character in the absence of an un?

 matched '('; this was an unintentional result of a wording error, and change is likely.

 Avoid relying on it.

 Back references are a dreadful botch, posing major problems for efficient implementations.

 They are also somewhat vaguely defined (does "a\(\(b\)*\2\)*d" match "abbbd"?). Avoid us?

 ing them.

 POSIX.2's specification of case-independent matching is vague. The "one case implies all

 cases" definition given above is current consensus among implementors as to the right in?

 terpretation.

AUTHOR

 This page was taken from Henry Spencer's regex package.

SEE ALSO

 grep(1), regex(3) Page 4/5

 POSIX.2, section 2.8 (Regular Expression Notation).

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 2020-08-13 REGEX(7)

Page 5/5

