
Rocky Enterprise Linux 9.2 Manual Pages on command 'renameat2.2'

$ man renameat2.2

RENAME(2) Linux Programmer's Manual RENAME(2)

NAME

 rename, renameat, renameat2 - change the name or location of a file

SYNOPSIS

 #include <stdio.h>

 int rename(const char *oldpath, const char *newpath);

 #include <fcntl.h> /* Definition of AT_* constants */

 #include <stdio.h>

 int renameat(int olddirfd, const char *oldpath,

 int newdirfd, const char *newpath);

 int renameat2(int olddirfd, const char *oldpath,

 int newdirfd, const char *newpath, unsigned int flags);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 renameat():

 Since glibc 2.10:

 _POSIX_C_SOURCE >= 200809L

 Before glibc 2.10:

 _ATFILE_SOURCE

 renameat2():

 _GNU_SOURCE

DESCRIPTION

 rename() renames a file, moving it between directories if required. Any other hard links

 to the file (as created using link(2)) are unaffected. Open file descriptors for oldpath Page 1/6

 are also unaffected.

 Various restrictions determine whether or not the rename operation succeeds: see ERRORS

 below.

 If newpath already exists, it will be atomically replaced, so that there is no point at

 which another process attempting to access newpath will find it missing. However, there

 will probably be a window in which both oldpath and newpath refer to the file being re?

 named.

 If oldpath and newpath are existing hard links referring to the same file, then rename()

 does nothing, and returns a success status.

 If newpath exists but the operation fails for some reason, rename() guarantees to leave an

 instance of newpath in place.

 oldpath can specify a directory. In this case, newpath must either not exist, or it must

 specify an empty directory.

 If oldpath refers to a symbolic link, the link is renamed; if newpath refers to a symbolic

 link, the link will be overwritten.

 renameat()

 The renameat() system call operates in exactly the same way as rename(), except for the

 differences described here.

 If the pathname given in oldpath is relative, then it is interpreted relative to the di?

 rectory referred to by the file descriptor olddirfd (rather than relative to the current

 working directory of the calling process, as is done by rename() for a relative pathname).

 If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is inter?

 preted relative to the current working directory of the calling process (like rename()).

 If oldpath is absolute, then olddirfd is ignored.

 The interpretation of newpath is as for oldpath, except that a relative pathname is inter?

 preted relative to the directory referred to by the file descriptor newdirfd.

 See openat(2) for an explanation of the need for renameat().

 renameat2()

 renameat2() has an additional flags argument. A renameat2() call with a zero flags argu?

 ment is equivalent to renameat().

 The flags argument is a bit mask consisting of zero or more of the following flags:

 RENAME_EXCHANGE

 Atomically exchange oldpath and newpath. Both pathnames must exist but may be of Page 2/6

 different types (e.g., one could be a non-empty directory and the other a symbolic

 link).

 RENAME_NOREPLACE

 Don't overwrite newpath of the rename. Return an error if newpath already exists.

 RENAME_NOREPLACE can't be employed together with RENAME_EXCHANGE.

 RENAME_NOREPLACE requires support from the underlying filesystem. Support for var?

 ious filesystems was added as follows:

 * ext4 (Linux 3.15);

 * btrfs, shmem, and cifs (Linux 3.17);

 * xfs (Linux 4.0);

 * Support for many other filesystems was added in Linux 4.9, including ext2,

 minix, reiserfs, jfs, vfat, and bpf.

 RENAME_WHITEOUT (since Linux 3.18)

 This operation makes sense only for overlay/union filesystem implementations.

 Specifying RENAME_WHITEOUT creates a "whiteout" object at the source of the rename

 at the same time as performing the rename. The whole operation is atomic, so that

 if the rename succeeds then the whiteout will also have been created.

 A "whiteout" is an object that has special meaning in union/overlay filesystem con?

 structs. In these constructs, multiple layers exist and only the top one is ever

 modified. A whiteout on an upper layer will effectively hide a matching file in

 the lower layer, making it appear as if the file didn't exist.

 When a file that exists on the lower layer is renamed, the file is first copied up

 (if not already on the upper layer) and then renamed on the upper, read-write

 layer. At the same time, the source file needs to be "whiteouted" (so that the

 version of the source file in the lower layer is rendered invisible). The whole

 operation needs to be done atomically.

 When not part of a union/overlay, the whiteout appears as a character device with a

 {0,0} device number. (Note that other union/overlay implementations may employ

 different methods for storing whiteout entries; specifically, BSD union mount em?

 ploys a separate inode type, DT_WHT, which, while supported by some filesystems

 available in Linux, such as CODA and XFS, is ignored by the kernel's whiteout sup?

 port code, as of Linux 4.19, at least.)

 RENAME_WHITEOUT requires the same privileges as creating a device node (i.e., the Page 3/6

 CAP_MKNOD capability).

 RENAME_WHITEOUT can't be employed together with RENAME_EXCHANGE.

 RENAME_WHITEOUT requires support from the underlying filesystem. Among the

 filesystems that provide that support are tmpfs (since Linux 3.18), ext4 (since

 Linux 3.18), XFS (since Linux 4.1), f2fs (since Linux 4.2), btrfs (since Linux

 4.7), and ubifs (since Linux 4.9).

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

ERRORS

 EACCES Write permission is denied for the directory containing oldpath or newpath, or,

 search permission is denied for one of the directories in the path prefix of old?

 path or newpath, or oldpath is a directory and does not allow write permission

 (needed to update the .. entry). (See also path_resolution(7).)

 EBUSY The rename fails because oldpath or newpath is a directory that is in use by some

 process (perhaps as current working directory, or as root directory, or because it

 was open for reading) or is in use by the system (for example as mount point),

 while the system considers this an error. (Note that there is no requirement to

 return EBUSY in such cases?there is nothing wrong with doing the rename anyway?but

 it is allowed to return EBUSY if the system cannot otherwise handle such situa?

 tions.)

 EDQUOT The user's quota of disk blocks on the filesystem has been exhausted.

 EFAULT oldpath or newpath points outside your accessible address space.

 EINVAL The new pathname contained a path prefix of the old, or, more generally, an attempt

 was made to make a directory a subdirectory of itself.

 EISDIR newpath is an existing directory, but oldpath is not a directory.

 ELOOP Too many symbolic links were encountered in resolving oldpath or newpath.

 EMLINK oldpath already has the maximum number of links to it, or it was a directory and

 the directory containing newpath has the maximum number of links.

 ENAMETOOLONG

 oldpath or newpath was too long.

 ENOENT The link named by oldpath does not exist; or, a directory component in newpath does

 not exist; or, oldpath or newpath is an empty string.

 ENOMEM Insufficient kernel memory was available. Page 4/6

 ENOSPC The device containing the file has no room for the new directory entry.

 ENOTDIR

 A component used as a directory in oldpath or newpath is not, in fact, a directory.

 Or, oldpath is a directory, and newpath exists but is not a directory.

 ENOTEMPTY or EEXIST

 newpath is a nonempty directory, that is, contains entries other than "." and "..".

 EPERM or EACCES

 The directory containing oldpath has the sticky bit (S_ISVTX) set and the process's

 effective user ID is neither the user ID of the file to be deleted nor that of the

 directory containing it, and the process is not privileged (Linux: does not have

 the CAP_FOWNER capability); or newpath is an existing file and the directory con?

 taining it has the sticky bit set and the process's effective user ID is neither

 the user ID of the file to be replaced nor that of the directory containing it, and

 the process is not privileged (Linux: does not have the CAP_FOWNER capability); or

 the filesystem containing pathname does not support renaming of the type requested.

 EROFS The file is on a read-only filesystem.

 EXDEV oldpath and newpath are not on the same mounted filesystem. (Linux permits a

 filesystem to be mounted at multiple points, but rename() does not work across dif?

 ferent mount points, even if the same filesystem is mounted on both.)

 The following additional errors can occur for renameat() and renameat2():

 EBADF olddirfd or newdirfd is not a valid file descriptor.

 ENOTDIR

 oldpath is relative and olddirfd is a file descriptor referring to a file other

 than a directory; or similar for newpath and newdirfd

 The following additional errors can occur for renameat2():

 EEXIST flags contains RENAME_NOREPLACE and newpath already exists.

 EINVAL An invalid flag was specified in flags.

 EINVAL Both RENAME_NOREPLACE and RENAME_EXCHANGE were specified in flags.

 EINVAL Both RENAME_WHITEOUT and RENAME_EXCHANGE were specified in flags.

 EINVAL The filesystem does not support one of the flags in flags.

 ENOENT flags contains RENAME_EXCHANGE and newpath does not exist.

 EPERM RENAME_WHITEOUT was specified in flags, but the caller does not have the CAP_MKNOD

 capability. Page 5/6

VERSIONS

 renameat() was added to Linux in kernel 2.6.16; library support was added to glibc in ver?

 sion 2.4.

 renameat2() was added to Linux in kernel 3.15; library support was added in glibc 2.28.

CONFORMING TO

 rename(): 4.3BSD, C89, C99, POSIX.1-2001, POSIX.1-2008.

 renameat(): POSIX.1-2008.

 renameat2() is Linux-specific.

NOTES

 Glibc notes

 On older kernels where renameat() is unavailable, the glibc wrapper function falls back to

 the use of rename(). When oldpath and newpath are relative pathnames, glibc constructs

 pathnames based on the symbolic links in /proc/self/fd that correspond to the olddirfd and

 newdirfd arguments.

BUGS

 On NFS filesystems, you can not assume that if the operation failed, the file was not re?

 named. If the server does the rename operation and then crashes, the retransmitted RPC

 which will be processed when the server is up again causes a failure. The application is

 expected to deal with this. See link(2) for a similar problem.

SEE ALSO

 mv(1), rename(1), chmod(2), link(2), symlink(2), unlink(2), path_resolution(7), symlink(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 RENAME(2)

Page 6/6

