
Rocky Enterprise Linux 9.2 Manual Pages on command 'rsyncd.conf.5'

$ man rsyncd.conf.5

rsyncd.conf(5) User Commands rsyncd.conf(5)

NAME

 rsyncd.conf - configuration file for rsync in daemon mode

SYNOPSIS

 rsyncd.conf

 The online version of this manpage (that includes cross-linking of topics) is available at

 https://download.samba.org/pub/rsync/rsyncd.conf.5.

DESCRIPTION

 The rsyncd.conf file is the runtime configuration file for rsync when run as an rsync dae?

 mon.

 The rsyncd.conf file controls authentication, access, logging and available modules.

FILE FORMAT

 The file consists of modules and parameters. A module begins with the name of the module

 in square brackets and continues until the next module begins. Modules contain parameters

 of the form name = value.

 The file is line-based -- that is, each newline-terminated line represents either a com?

 ment, a module name or a parameter.

 Only the first equals sign in a parameter is significant. Whitespace before or after the

 first equals sign is discarded. Leading, trailing and internal whitespace in module and

 parameter names is irrelevant. Leading and trailing whitespace in a parameter value is

 discarded. Internal whitespace within a parameter value is retained verbatim.

 Any line beginning with a hash (#) is ignored, as are lines containing only whitespace.

 (If a hash occurs after anything other than leading whitespace, it is considered a part of Page 1/28

 the line's content.)

 Any line ending in a \ is "continued" on the next line in the customary UNIX fashion.

 The values following the equals sign in parameters are all either a string (no quotes

 needed) or a boolean, which may be given as yes/no, 0/1 or true/false. Case is not sig?

 nificant in boolean values, but is preserved in string values.

LAUNCHING THE RSYNC DAEMON

 The rsync daemon is launched by specifying the --daemon option to rsync.

 The daemon must run with root privileges if you wish to use chroot, to bind to a port num?

 bered under 1024 (as is the default 873), or to set file ownership. Otherwise, it must

 just have permission to read and write the appropriate data, log, and lock files.

 You can launch it either via inetd, as a stand-alone daemon, or from an rsync client via a

 remote shell. If run as a stand-alone daemon then just run the command "rsync --daemon"

 from a suitable startup script.

 When run via inetd you should add a line like this to /etc/services:

 rsync 873/tcp

 and a single line something like this to /etc/inetd.conf:

 rsync stream tcp nowait root /usr/bin/rsync rsyncd --daemon

 Replace "/usr/bin/rsync" with the path to where you have rsync installed on your system.

 You will then need to send inetd a HUP signal to tell it to reread its config file.

 Note that you should not send the rsync daemon a HUP signal to force it to reread the

 rsyncd.conf file. The file is re-read on each client connection.

GLOBAL PARAMETERS

 The first parameters in the file (before a [module] header) are the global parameters.

 Rsync also allows for the use of a "[global]" module name to indicate the start of one or

 more global-parameter sections (the name must be lower case).

 You may also include any module parameters in the global part of the config file in which

 case the supplied value will override the default for that parameter.

 You may use references to environment variables in the values of parameters. String pa?

 rameters will have %VAR% references expanded as late as possible (when the string is first

 used in the program), allowing for the use of variables that rsync sets at connection

 time, such as RSYNC_USER_NAME. Non-string parameters (such as true/false settings) are

 expanded when read from the config file. If a variable does not exist in the environment,

 or if a sequence of characters is not a valid reference (such as an un-paired percent Page 2/28

 sign), the raw characters are passed through unchanged. This helps with backward compati?

 bility and safety (e.g. expanding a non-existent %VAR% to an empty string in a path could

 result in a very unsafe path). The safest way to insert a literal % into a value is to

 use %%.

 motd file

 This parameter allows you to specify a "message of the day" (MOTD) to display to

 clients on each connect. This usually contains site information and any legal no?

 tices. The default is no MOTD file. This can be overridden by the --dparam=motd?

 file=FILE command-line option when starting the daemon.

 pid file

 This parameter tells the rsync daemon to write its process ID to that file. The

 rsync keeps the file locked so that it can know when it is safe to overwrite an ex?

 isting file.

 The filename can be overridden by the --dparam=pidfile=FILE command-line option

 when starting the daemon.

 port You can override the default port the daemon will listen on by specifying this

 value (defaults to 873). This is ignored if the daemon is being run by inetd, and

 is superseded by the --port command-line option.

 address

 You can override the default IP address the daemon will listen on by specifying

 this value. This is ignored if the daemon is being run by inetd, and is superseded

 by the --address command-line option.

 socket options

 This parameter can provide endless fun for people who like to tune their systems to

 the utmost degree. You can set all sorts of socket options which may make transfers

 faster (or slower!). Read the manpage for the setsockopt() system call for details

 on some of the options you may be able to set. By default no special socket options

 are set. These settings can also be specified via the --sockopts command-line op?

 tion.

 listen backlog

 You can override the default backlog value when the daemon listens for connections.

 It defaults to 5.

MODULE PARAMETERS Page 3/28

 After the global parameters you should define a number of modules, each module exports a

 directory tree as a symbolic name. Modules are exported by specifying a module name in

 square brackets [module] followed by the parameters for that module. The module name can?

 not contain a slash or a closing square bracket. If the name contains whitespace, each

 internal sequence of whitespace will be changed into a single space, while leading or

 trailing whitespace will be discarded. Also, the name cannot be "global" as that exact

 name indicates that global parameters follow (see above).

 As with GLOBAL PARAMETERS, you may use references to environment variables in the values

 of parameters. See the GLOBAL PARAMETERS section for more details.

 comment

 This parameter specifies a description string that is displayed next to the module

 name when clients obtain a list of available modules. The default is no comment.

 path This parameter specifies the directory in the daemon's filesystem to make available

 in this module. You must specify this parameter for each module in rsyncd.conf.

 If the value contains a "/./" element then the path will be divided at that point

 into a chroot dir and an inner-chroot subdir. If use chroot is set to false,

 though, the extraneous dot dir is just cleaned out of the path. An example of this

 idiom is:

 path = /var/rsync/./module1

 This will (when chrooting) chroot to "/var/rsync" and set the inside-chroot path to

 "/module1".

 You may base the path's value off of an environment variable by surrounding the

 variable name with percent signs. You can even reference a variable that is set by

 rsync when the user connects. For example, this would use the authorizing user's

 name in the path:

 path = /home/%RSYNC_USER_NAME%

 It is fine if the path includes internal spaces -- they will be retained verbatim

 (which means that you shouldn't try to escape them). If your final directory has a

 trailing space (and this is somehow not something you wish to fix), append a trail?

 ing slash to the path to avoid losing the trailing whitespace.

 use chroot

 If "use chroot" is true, the rsync daemon will chroot to the "path" before starting

 the file transfer with the client. This has the advantage of extra protection Page 4/28

 against possible implementation security holes, but it has the disadvantages of re?

 quiring super-user privileges, of not being able to follow symbolic links that are

 either absolute or outside of the new root path, and of complicating the preserva?

 tion of users and groups by name (see below).

 If use chroot is not set, it defaults to trying to enable a chroot but allows the

 daemon to continue (after logging a warning) if it fails. The one exception to this

 is when a module's path has a "/./" chroot divider in it -- this causes an unset

 value to be treated as true for that module.

 Prior to rsync 3.2.7, the default value was "true". The new "unset" default makes

 it easier to setup an rsync daemon as a non-root user or to run a daemon on a sys?

 tem where chroot fails. Explicitly setting the value to "true" in rsyncd.conf will

 always require the chroot to succeed.

 It is also possible to specify a dot-dir in the module's "path" to indicate that

 you want to chdir to the earlier part of the path and then serve files from inside

 the latter part of the path (with sanitizing and default symlink munging). This

 can be useful if you need some library dirs inside the chroot (typically for uid &

 gid lookups) but don't want to put the lib dir into the top of the served path

 (even though they can be hidden with an exclude directive). However, a better

 choice for a modern rsync setup is to use a name converter" and try to avoid inner

 lib dirs altogether. See also the daemon chroot parameter, which causes rsync to

 chroot into its own chroot area before doing any path-related chrooting.

 If the daemon is serving the "/" dir (either directly or due to being chrooted to

 the module's path), rsync does not do any path sanitizing or (default) munging.

 When it has to limit access to a particular subdir (either due to chroot being dis?

 abled or having an inside-chroot path set), rsync will munge symlinks (by default)

 and sanitize paths. Those that dislike munged symlinks (and really, really trust

 their users to not break out of the subdir) can disable the symlink munging via the

 "munge symlinks" parameter.

 When rsync is sanitizing paths, it trims ".." path elements from args that it be?

 lieves would escape the module hierarchy. It also substitutes leading slashes in

 absolute paths with the module's path (so that options such as --backup-dir &

 --compare-dest interpret an absolute path as rooted in the module's "path" dir).

 When a chroot is in effect and the "name converter" parameter is not set, the "nu? Page 5/28

 meric ids" parameter will default to being enabled (disabling name lookups). This

 means that if you manually setup name-lookup libraries in your chroot (instead of

 using a name converter) that you need to explicitly set numeric ids = false for

 rsync to do name lookups.

 If you copy library resources into the module's chroot area, you should protect

 them through your OS's normal user/group or ACL settings (to prevent the rsync mod?

 ule's user from being able to change them), and then hide them from the user's view

 via "exclude" (see how in the discussion of that parameter). However, it's easier

 and safer to setup a name converter.

 daemon chroot

 This parameter specifies a path to which the daemon will chroot before beginning

 communication with clients. Module paths (and any "use chroot" settings) will then

 be related to this one. This lets you choose if you want the whole daemon to be ch?

 rooted (with this setting), just the transfers to be chrooted (with "use chroot"),

 or both. Keep in mind that the "daemon chroot" area may need various OS/lib/etc

 files installed to allow the daemon to function. By default the daemon runs with?

 out any chrooting.

 proxy protocol

 When this parameter is enabled, all incoming connections must start with a V1 or V2

 proxy protocol header. If the header is not found, the connection is closed.

 Setting this to true requires a proxy server to forward source IP information to

 rsync, allowing you to log proper IP/host info and make use of client-oriented IP

 restrictions. The default of false means that the IP information comes directly

 from the socket's metadata. If rsync is not behind a proxy, this should be dis?

 abled.

 CAUTION: using this option can be dangerous if you do not ensure that only the

 proxy is allowed to connect to the rsync port. If any non-proxied connections are

 allowed through, the client will be able to use a modified rsync to spoof any re?

 mote IP address that they desire. You can lock this down using something like ipt?

 ables -uid-owner root rules (for strict localhost access), various firewall rules,

 or you can require password authorization so that any spoofing by users will not

 grant extra access.

 This setting is global. If you need some modules to require this and not others, Page 6/28

 then you will need to setup multiple rsync daemon processes on different ports.

 name converter

 This parameter lets you specify a program that will be run by the rsync daemon to

 do user & group conversions between names & ids. This script is started prior to

 any chroot being setup, and runs as the daemon user (not the transfer user). You

 can specify a fully qualified pathname or a program name that is on the $PATH.

 The program can be used to do normal user & group lookups without having to put any

 extra files into the chroot area of the module or you can do customized conver?

 sions.

 The nameconvert program has access to all of the environment variables that are de?

 scribed in the section on pre-xfer exec. This is useful if you want to customize

 the conversion using information about the module and/or the copy request.

 There is a sample python script in the support dir named "nameconvert" that imple?

 ments the normal user & group lookups. Feel free to customize it or just use it as

 documentation to implement your own.

 numeric ids

 Enabling this parameter disables the mapping of users and groups by name for the

 current daemon module. This prevents the daemon from trying to load any

 user/group-related files or libraries. This enabling makes the transfer behave as

 if the client had passed the --numeric-ids command-line option. By default, this

 parameter is enabled for chroot modules and disabled for non-chroot modules. Also

 keep in mind that uid/gid preservation requires the module to be running as root

 (see "uid") or for "fake super" to be configured.

 A chroot-enabled module should not have this parameter set to false unless you're

 using a "name converter" program or you've taken steps to ensure that the module

 has the necessary resources it needs to translate names and that it is not possible

 for a user to change those resources.

 munge symlinks

 This parameter tells rsync to modify all symlinks in the same way as the (non-dae?

 mon-affecting) --munge-links command-line option (using a method described below).

 This should help protect your files from user trickery when your daemon module is

 writable. The default is disabled when "use chroot" is on with an inside-chroot

 path of "/", OR if "daemon chroot" is on, otherwise it is enabled. Page 7/28

 If you disable this parameter on a daemon that is not read-only, there are tricks

 that a user can play with uploaded symlinks to access daemon-excluded items (if

 your module has any), and, if "use chroot" is off, rsync can even be tricked into

 showing or changing data that is outside the module's path (as access-permissions

 allow).

 The way rsync disables the use of symlinks is to prefix each one with the string

 "/rsyncd-munged/". This prevents the links from being used as long as that direc?

 tory does not exist. When this parameter is enabled, rsync will refuse to run if

 that path is a directory or a symlink to a directory. When using the "munge sym?

 links" parameter in a chroot area that has an inside-chroot path of "/", you should

 add "/rsyncd-munged/" to the exclude setting for the module so that a user can't

 try to create it.

 Note: rsync makes no attempt to verify that any pre-existing symlinks in the mod?

 ule's hierarchy are as safe as you want them to be (unless, of course, it just

 copied in the whole hierarchy). If you setup an rsync daemon on a new area or lo?

 cally add symlinks, you can manually protect your symlinks from being abused by

 prefixing "/rsyncd-munged/" to the start of every symlink's value. There is a perl

 script in the support directory of the source code named "munge-symlinks" that can

 be used to add or remove this prefix from your symlinks.

 When this parameter is disabled on a writable module and "use chroot" is off (or

 the inside-chroot path is not "/"), incoming symlinks will be modified to drop a

 leading slash and to remove ".." path elements that rsync believes will allow a

 symlink to escape the module's hierarchy. There are tricky ways to work around

 this, though, so you had better trust your users if you choose this combination of

 parameters.

 charset

 This specifies the name of the character set in which the module's filenames are

 stored. If the client uses an --iconv option, the daemon will use the value of the

 "charset" parameter regardless of the character set the client actually passed.

 This allows the daemon to support charset conversion in a chroot module without ex?

 tra files in the chroot area, and also ensures that name-translation is done in a

 consistent manner. If the "charset" parameter is not set, the --iconv option is

 refused, just as if "iconv" had been specified via "refuse options". Page 8/28

 If you wish to force users to always use --iconv for a particular module, add "no-

 iconv" to the "refuse options" parameter. Keep in mind that this will restrict ac?

 cess to your module to very new rsync clients.

 max connections

 This parameter allows you to specify the maximum number of simultaneous connections

 you will allow. Any clients connecting when the maximum has been reached will re?

 ceive a message telling them to try later. The default is 0, which means no limit.

 A negative value disables the module. See also the "lock file" parameter.

 log file

 When the "log file" parameter is set to a non-empty string, the rsync daemon will

 log messages to the indicated file rather than using syslog. This is particularly

 useful on systems (such as AIX) where syslog() doesn't work for chrooted programs.

 The file is opened before chroot() is called, allowing it to be placed outside the

 transfer. If this value is set on a per-module basis instead of globally, the

 global log will still contain any authorization failures or config-file error mes?

 sages.

 If the daemon fails to open the specified file, it will fall back to using syslog

 and output an error about the failure. (Note that the failure to open the speci?

 fied log file used to be a fatal error.)

 This setting can be overridden by using the --log-file=FILE or --dparam=log?

 file=FILE command-line options. The former overrides all the log-file parameters

 of the daemon and all module settings. The latter sets the daemon's log file and

 the default for all the modules, which still allows modules to override the default

 setting.

 syslog facility

 This parameter allows you to specify the syslog facility name to use when logging

 messages from the rsync daemon. You may use any standard syslog facility name which

 is defined on your system. Common names are auth, authpriv, cron, daemon, ftp,

 kern, lpr, mail, news, security, syslog, user, uucp, local0, local1, local2, lo?

 cal3, local4, local5, local6 and local7. The default is daemon. This setting has

 no effect if the "log file" setting is a non-empty string (either set in the per-

 modules settings, or inherited from the global settings).

 syslog tag Page 9/28

 This parameter allows you to specify the syslog tag to use when logging messages

 from the rsync daemon. The default is "rsyncd". This setting has no effect if the

 "log file" setting is a non-empty string (either set in the per-modules settings,

 or inherited from the global settings).

 For example, if you wanted each authenticated user's name to be included in the

 syslog tag, you could do something like this:

 syslog tag = rsyncd.%RSYNC_USER_NAME%

 max verbosity

 This parameter allows you to control the maximum amount of verbose information that

 you'll allow the daemon to generate (since the information goes into the log file).

 The default is 1, which allows the client to request one level of verbosity.

 This also affects the user's ability to request higher levels of --info and --debug

 logging. If the max value is 2, then no info and/or debug value that is higher

 than what would be set by -vv will be honored by the daemon in its logging. To see

 how high of a verbosity level you need to accept for a particular info/debug level,

 refer to rsync --info=help and rsync --debug=help. For instance, it takes max-ver?

 bosity 4 to be able to output debug TIME2 and FLIST3.

 lock file

 This parameter specifies the file to use to support the "max connections" parame?

 ter. The rsync daemon uses record locking on this file to ensure that the max con?

 nections limit is not exceeded for the modules sharing the lock file. The default

 is /var/run/rsyncd.lock.

 read only

 This parameter determines whether clients will be able to upload files or not. If

 "read only" is true then any attempted uploads will fail. If "read only" is false

 then uploads will be possible if file permissions on the daemon side allow them.

 The default is for all modules to be read only.

 Note that "auth users" can override this setting on a per-user basis.

 write only

 This parameter determines whether clients will be able to download files or not. If

 "write only" is true then any attempted downloads will fail. If "write only" is

 false then downloads will be possible if file permissions on the daemon side allow

 them. The default is for this parameter to be disabled. Page 10/28

 Helpful hint: you probably want to specify "refuse options = delete" for a write-

 only module.

 open noatime

 When set to True, this parameter tells the rsync daemon to open files with the

 O_NOATIME flag (on systems that support it) to avoid changing the access time of

 the files that are being transferred. If your OS does not support the O_NOATIME

 flag then rsync will silently ignore this option. Note also that some filesystems

 are mounted to avoid updating the atime on read access even without the O_NOATIME

 flag being set.

 When set to False, this parameters ensures that files on the server are not opened

 with O_NOATIME.

 When set to Unset (the default) the user controls the setting via --open-noatime.

 list This parameter determines whether this module is listed when the client asks for a

 listing of available modules. In addition, if this is false, the daemon will pre?

 tend the module does not exist when a client denied by "hosts allow" or "hosts

 deny" attempts to access it. Realize that if "reverse lookup" is disabled globally

 but enabled for the module, the resulting reverse lookup to a potentially client-

 controlled DNS server may still reveal to the client that it hit an existing mod?

 ule. The default is for modules to be listable.

 uid This parameter specifies the user name or user ID that file transfers to and from

 that module should take place as when the daemon was run as root. In combination

 with the "gid" parameter this determines what file permissions are available. The

 default when run by a super-user is to switch to the system's "nobody" user. The

 default for a non-super-user is to not try to change the user. See also the "gid"

 parameter.

 The RSYNC_USER_NAME environment variable may be used to request that rsync run as

 the authorizing user. For example, if you want a rsync to run as the same user

 that was received for the rsync authentication, this setup is useful:

 uid = %RSYNC_USER_NAME%

 gid = *

 gid This parameter specifies one or more group names/IDs that will be used when access?

 ing the module. The first one will be the default group, and any extra ones be set

 as supplemental groups. You may also specify a "*" as the first gid in the list, Page 11/28

 which will be replaced by all the normal groups for the transfer's user (see

 "uid"). The default when run by a super-user is to switch to your OS's "nobody"

 (or perhaps "nogroup") group with no other supplementary groups. The default for a

 non-super-user is to not change any group attributes (and indeed, your OS may not

 allow a non-super-user to try to change their group settings).

 The specified list is normally split into tokens based on spaces and commas. How?

 ever, if the list starts with a comma, then the list is only split on commas, which

 allows a group name to contain a space. In either case any leading and/or trailing

 whitespace is removed from the tokens and empty tokens are ignored.

 daemon uid

 This parameter specifies a uid under which the daemon will run. The daemon usually

 runs as user root, and when this is left unset the user is left unchanged. See also

 the "uid" parameter.

 daemon gid

 This parameter specifies a gid under which the daemon will run. The daemon usually

 runs as group root, and when this is left unset, the group is left unchanged. See

 also the "gid" parameter.

 fake super

 Setting "fake super = yes" for a module causes the daemon side to behave as if the

 --fake-super command-line option had been specified. This allows the full at?

 tributes of a file to be stored without having to have the daemon actually running

 as root.

 filter The daemon has its own filter chain that determines what files it will let the

 client access. This chain is not sent to the client and is independent of any fil?

 ters the client may have specified. Files excluded by the daemon filter chain

 (daemon-excluded files) are treated as non-existent if the client tries to pull

 them, are skipped with an error message if the client tries to push them (trigger?

 ing exit code 23), and are never deleted from the module. You can use daemon fil?

 ters to prevent clients from downloading or tampering with private administrative

 files, such as files you may add to support uid/gid name translations.

 The daemon filter chain is built from the "filter", "include from", "include", "ex?

 clude from", and "exclude" parameters, in that order of priority. Anchored pat?

 terns are anchored at the root of the module. To prevent access to an entire sub? Page 12/28

 tree, for example, "/secret", you must exclude everything in the subtree; the easi?

 est way to do this is with a triple-star pattern like "/secret/***".

 The "filter" parameter takes a space-separated list of daemon filter rules, though

 it is smart enough to know not to split a token at an internal space in a rule

 (e.g. "- /foo - /bar" is parsed as two rules). You may specify one or more merge-

 file rules using the normal syntax. Only one "filter" parameter can apply to a

 given module in the config file, so put all the rules you want in a single parame?

 ter. Note that per-directory merge-file rules do not provide as much protection as

 global rules, but they can be used to make --delete work better during a client

 download operation if the per-dir merge files are included in the transfer and the

 client requests that they be used.

 exclude

 This parameter takes a space-separated list of daemon exclude patterns. As with

 the client --exclude option, patterns can be qualified with "- " or "+ " to explic?

 itly indicate exclude/include. Only one "exclude" parameter can apply to a given

 module. See the "filter" parameter for a description of how excluded files affect

 the daemon.

 include

 Use an "include" to override the effects of the "exclude" parameter. Only one "in?

 clude" parameter can apply to a given module. See the "filter" parameter for a de?

 scription of how excluded files affect the daemon.

 exclude from

 This parameter specifies the name of a file on the daemon that contains daemon ex?

 clude patterns, one per line. Only one "exclude from" parameter can apply to a

 given module; if you have multiple exclude-from files, you can specify them as a

 merge file in the "filter" parameter. See the "filter" parameter for a description

 of how excluded files affect the daemon.

 include from

 Analogue of "exclude from" for a file of daemon include patterns. Only one "in?

 clude from" parameter can apply to a given module. See the "filter" parameter for

 a description of how excluded files affect the daemon.

 incoming chmod

 This parameter allows you to specify a set of comma-separated chmod strings that Page 13/28

 will affect the permissions of all incoming files (files that are being received by

 the daemon). These changes happen after all other permission calculations, and

 this will even override destination-default and/or existing permissions when the

 client does not specify --perms. See the description of the --chmod rsync option

 and the chmod(1) manpage for information on the format of this string.

 outgoing chmod

 This parameter allows you to specify a set of comma-separated chmod strings that

 will affect the permissions of all outgoing files (files that are being sent out

 from the daemon). These changes happen first, making the sent permissions appear

 to be different than those stored in the filesystem itself. For instance, you

 could disable group write permissions on the server while having it appear to be on

 to the clients. See the description of the --chmod rsync option and the chmod(1)

 manpage for information on the format of this string.

 auth users

 This parameter specifies a comma and/or space-separated list of authorization

 rules. In its simplest form, you list the usernames that will be allowed to con?

 nect to this module. The usernames do not need to exist on the local system. The

 rules may contain shell wildcard characters that will be matched against the user?

 name provided by the client for authentication. If "auth users" is set then the

 client will be challenged to supply a username and password to connect to the mod?

 ule. A challenge response authentication protocol is used for this exchange. The

 plain text usernames and passwords are stored in the file specified by the "secrets

 file" parameter. The default is for all users to be able to connect without a pass?

 word (this is called "anonymous rsync").

 In addition to username matching, you can specify groupname matching via a '@' pre?

 fix. When using groupname matching, the authenticating username must be a real

 user on the system, or it will be assumed to be a member of no groups. For exam?

 ple, specifying "@rsync" will match the authenticating user if the named user is a

 member of the rsync group.

 Finally, options may be specified after a colon (:). The options allow you to

 "deny" a user or a group, set the access to "ro" (read-only), or set the access to

 "rw" (read/write). Setting an auth-rule-specific ro/rw setting overrides the mod?

 ule's "read only" setting. Page 14/28

 Be sure to put the rules in the order you want them to be matched, because the

 checking stops at the first matching user or group, and that is the only auth that

 is checked. For example:

 auth users = joe:deny @guest:deny admin:rw @rsync:ro susan joe sam

 In the above rule, user joe will be denied access no matter what. Any user that is

 in the group "guest" is also denied access. The user "admin" gets access in

 read/write mode, but only if the admin user is not in group "guest" (because the

 admin user-matching rule would never be reached if the user is in group "guest").

 Any other user who is in group "rsync" will get read-only access. Finally, users

 susan, joe, and sam get the ro/rw setting of the module, but only if the user

 didn't match an earlier group-matching rule.

 If you need to specify a user or group name with a space in it, start your list

 with a comma to indicate that the list should only be split on commas (though lead?

 ing and trailing whitespace will also be removed, and empty entries are just ig?

 nored). For example:

 auth users = , joe:deny, @Some Group:deny, admin:rw, @RO Group:ro

 See the description of the secrets file for how you can have per-user passwords as

 well as per-group passwords. It also explains how a user can authenticate using

 their user password or (when applicable) a group password, depending on what rule

 is being authenticated.

 See also the section entitled "USING RSYNC-DAEMON FEATURES VIA A REMOTE SHELL CON?

 NECTION" in rsync(1) for information on how handle an rsyncd.conf-level username

 that differs from the remote-shell-level username when using a remote shell to con?

 nect to an rsync daemon.

 secrets file

 This parameter specifies the name of a file that contains the username:password

 and/or @groupname:password pairs used for authenticating this module. This file is

 only consulted if the "auth users" parameter is specified. The file is line-based

 and contains one name:password pair per line. Any line has a hash (#) as the very

 first character on the line is considered a comment and is skipped. The passwords

 can contain any characters but be warned that many operating systems limit the

 length of passwords that can be typed at the client end, so you may find that pass?

 words longer than 8 characters don't work. Page 15/28

 The use of group-specific lines are only relevant when the module is being autho?

 rized using a matching "@groupname" rule. When that happens, the user can be au?

 thorized via either their "username:password" line or the "@groupname:password"

 line for the group that triggered the authentication.

 It is up to you what kind of password entries you want to include, either users,

 groups, or both. The use of group rules in "auth users" does not require that you

 specify a group password if you do not want to use shared passwords.

 There is no default for the "secrets file" parameter, you must choose a name (such

 as /etc/rsyncd.secrets). The file must normally not be readable by "other"; see

 "strict modes". If the file is not found or is rejected, no logins for an "auth

 users" module will be possible.

 strict modes

 This parameter determines whether or not the permissions on the secrets file will

 be checked. If "strict modes" is true, then the secrets file must not be readable

 by any user ID other than the one that the rsync daemon is running under. If

 "strict modes" is false, the check is not performed. The default is true. This

 parameter was added to accommodate rsync running on the Windows operating system.

 hosts allow

 This parameter allows you to specify a list of comma- and/or whitespace-separated

 patterns that are matched against a connecting client's hostname and IP address.

 If none of the patterns match, then the connection is rejected.

 Each pattern can be in one of six forms:

 o a dotted decimal IPv4 address of the form a.b.c.d, or an IPv6 address of the

 form a:b:c::d:e:f. In this case the incoming machine's IP address must match

 exactly.

 o an address/mask in the form ipaddr/n where ipaddr is the IP address and n is

 the number of one bits in the netmask. All IP addresses which match the

 masked IP address will be allowed in.

 o an address/mask in the form ipaddr/maskaddr where ipaddr is the IP address

 and maskaddr is the netmask in dotted decimal notation for IPv4, or similar

 for IPv6, e.g. ffff:ffff:ffff:ffff:: instead of /64. All IP addresses which

 match the masked IP address will be allowed in.

 o a hostname pattern using wildcards. If the hostname of the connecting IP (as Page 16/28

 determined by a reverse lookup) matches the wildcarded name (using the same

 rules as normal Unix filename matching), the client is allowed in. This

 only works if "reverse lookup" is enabled (the default).

 o a hostname. A plain hostname is matched against the reverse DNS of the con?

 necting IP (if "reverse lookup" is enabled), and/or the IP of the given

 hostname is matched against the connecting IP (if "forward lookup" is en?

 abled, as it is by default). Any match will be allowed in.

 o an '@' followed by a netgroup name, which will match if the reverse DNS of

 the connecting IP is in the specified netgroup.

 Note IPv6 link-local addresses can have a scope in the address specification:

 fe80::1%link1

 fe80::%link1/64

 fe80::%link1/ffff:ffff:ffff:ffff::

 You can also combine "hosts allow" with "hosts deny" as a way to add exceptions to

 your deny list. When both parameters are specified, the "hosts allow" parameter is

 checked first and a match results in the client being able to connect. A non-al?

 lowed host is then matched against the "hosts deny" list to see if it should be re?

 jected. A host that does not match either list is allowed to connect.

 The default is no "hosts allow" parameter, which means all hosts can connect.

 hosts deny

 This parameter allows you to specify a list of comma- and/or whitespace-separated

 patterns that are matched against a connecting clients hostname and IP address. If

 the pattern matches then the connection is rejected. See the "hosts allow" parame?

 ter for more information.

 The default is no "hosts deny" parameter, which means all hosts can connect.

 reverse lookup

 Controls whether the daemon performs a reverse lookup on the client's IP address to

 determine its hostname, which is used for "hosts allow" & "hosts deny" checks and

 the "%h" log escape. This is enabled by default, but you may wish to disable it to

 save time if you know the lookup will not return a useful result, in which case the

 daemon will use the name "UNDETERMINED" instead.

 If this parameter is enabled globally (even by default), rsync performs the lookup

 as soon as a client connects, so disabling it for a module will not avoid the Page 17/28

 lookup. Thus, you probably want to disable it globally and then enable it for mod?

 ules that need the information.

 forward lookup

 Controls whether the daemon performs a forward lookup on any hostname specified in

 an hosts allow/deny setting. By default this is enabled, allowing the use of an

 explicit hostname that would not be returned by reverse DNS of the connecting IP.

 ignore errors

 This parameter tells rsyncd to ignore I/O errors on the daemon when deciding

 whether to run the delete phase of the transfer. Normally rsync skips the --delete

 step if any I/O errors have occurred in order to prevent disastrous deletion due to

 a temporary resource shortage or other I/O error. In some cases this test is

 counter productive so you can use this parameter to turn off this behavior.

 ignore nonreadable

 This tells the rsync daemon to completely ignore files that are not readable by the

 user. This is useful for public archives that may have some non-readable files

 among the directories, and the sysadmin doesn't want those files to be seen at all.

 transfer logging

 This parameter enables per-file logging of downloads and uploads in a format some?

 what similar to that used by ftp daemons. The daemon always logs the transfer at

 the end, so if a transfer is aborted, no mention will be made in the log file.

 If you want to customize the log lines, see the "log format" parameter.

 log format

 This parameter allows you to specify the format used for logging file transfers

 when transfer logging is enabled. The format is a text string containing embedded

 single-character escape sequences prefixed with a percent (%) character. An op?

 tional numeric field width may also be specified between the percent and the escape

 letter (e.g. "%-50n %8l %07p"). In addition, one or more apostrophes may be spec?

 ified prior to a numerical escape to indicate that the numerical value should be

 made more human-readable. The 3 supported levels are the same as for the --human-

 readable command-line option, though the default is for human-readability to be

 off. Each added apostrophe increases the level (e.g. "%''l %'b %f").

 The default log format is "%o %h [%a] %m (%u) %f %l", and a "%t [%p] " is always

 prefixed when using the "log file" parameter. (A perl script that will summarize Page 18/28

 this default log format is included in the rsync source code distribution in the

 "support" subdirectory: rsyncstats.)

 The single-character escapes that are understood are as follows:

 o %a the remote IP address (only available for a daemon)

 o %b the number of bytes actually transferred

 o %B the permission bits of the file (e.g. rwxrwxrwt)

 o %c the total size of the block checksums received for the basis file (only

 when sending)

 o %C the full-file checksum if it is known for the file. For older rsync pro?

 tocols/versions, the checksum was salted, and is thus not a useful value

 (and is not displayed when that is the case). For the checksum to output for

 a file, either the --checksum option must be in-effect or the file must have

 been transferred without a salted checksum being used. See the --checksum-

 choice option for a way to choose the algorithm.

 o %f the filename (long form on sender; no trailing "/")

 o %G the gid of the file (decimal) or "DEFAULT"

 o %h the remote host name (only available for a daemon)

 o %i an itemized list of what is being updated

 o %l the length of the file in bytes

 o %L the string " -> SYMLINK", " => HARDLINK", or "" (where SYMLINK or

 HARDLINK is a filename)

 o %m the module name

 o %M the last-modified time of the file

 o %n the filename (short form; trailing "/" on dir)

 o %o the operation, which is "send", "recv", or "del." (the latter includes

 the trailing period)

 o %p the process ID of this rsync session

 o %P the module path

 o %t the current date time

 o %u the authenticated username or an empty string

 o %U the uid of the file (decimal)

 For a list of what the characters mean that are output by "%i", see the --itemize-

 changes option in the rsync manpage. Page 19/28

 Note that some of the logged output changes when talking with older rsync versions.

 For instance, deleted files were only output as verbose messages prior to rsync

 2.6.4.

 timeout

 This parameter allows you to override the clients choice for I/O timeout for this

 module. Using this parameter you can ensure that rsync won't wait on a dead client

 forever. The timeout is specified in seconds. A value of zero means no timeout and

 is the default. A good choice for anonymous rsync daemons may be 600 (giving a 10

 minute timeout).

 refuse options

 This parameter allows you to specify a space-separated list of rsync command-line

 options that will be refused by your rsync daemon. You may specify the full option

 name, its one-letter abbreviation, or a wild-card string that matches multiple op?

 tions. Beginning in 3.2.0, you can also negate a match term by starting it with a

 "!".

 When an option is refused, the daemon prints an error message and exits.

 For example, this would refuse --checksum (-c) and all the various delete options:

 refuse options = c delete

 The reason the above refuses all delete options is that the options imply --delete,

 and implied options are refused just like explicit options.

 The use of a negated match allows you to fine-tune your refusals after a wild-card,

 such as this:

 refuse options = delete-* !delete-during

 Negated matching can also turn your list of refused options into a list of accepted

 options. To do this, begin the list with a "*" (to refuse all options) and then

 specify one or more negated matches to accept. For example:

 refuse options = * !a !v !compress*

 Don't worry that the "*" will refuse certain vital options such as --dry-run,

 --server, --no-iconv, --seclude-args, etc. These important options are not matched

 by wild-card, so they must be overridden by their exact name. For instance, if

 you're forcing iconv transfers you could use something like this:

 refuse options = * no-iconv !a !v

 As an additional aid (beginning in 3.2.0), refusing (or "!refusing") the "a" or Page 20/28

 "archive" option also affects all the options that the --archive option implies

 (-rdlptgoD), but only if the option is matched explicitly (not using a wildcard).

 If you want to do something tricky, you can use "archive*" to avoid this side-ef?

 fect, but keep in mind that no normal rsync client ever sends the actual archive

 option to the server.

 As an additional safety feature, the refusal of "delete" also refuses remove-

 source-files when the daemon is the sender; if you want the latter without the for?

 mer, instead refuse "delete-*" as that refuses all the delete modes without affect?

 ing --remove-source-files. (Keep in mind that the client's --delete option typi?

 cally results in --delete-during.)

 When un-refusing delete options, you should either specify "!delete*" (to accept

 all delete options) or specify a limited set that includes "delete", such as:

 refuse options = * !a !delete !delete-during

 ... whereas this accepts any delete option except --delete-after:

 refuse options = * !a !delete* delete-after

 A note on refusing "compress": it may be better to set the "dont compress" daemon

 parameter to "*" and ensure that RSYNC_COMPRESS_LIST=zlib is set in the environment

 of the daemon in order to disable compression silently instead of returning an er?

 ror that forces the client to remove the -z option.

 If you are un-refusing the compress option, you may want to match "!compress*" if

 you also want to allow the --compress-level option.

 Note that the "copy-devices" & "write-devices" options are refused by default, but

 they can be explicitly accepted with "!copy-devices" and/or "!write-devices". The

 options "log-file" and "log-file-format" are forcibly refused and cannot be ac?

 cepted.

 Here are all the options that are not matched by wild-cards:

 o --server: Required for rsync to even work.

 o --rsh, -e: Required to convey compatibility flags to the server.

 o --out-format: This is required to convey output behavior to a remote re?

 ceiver. While rsync passes the older alias --log-format for compatibility

 reasons, this options should not be confused with --log-file-format.

 o --sender: Use "write only" parameter instead of refusing this.

 o --dry-run, -n: Who would want to disable this? Page 21/28

 o --seclude-args, -s: Is the oldest arg-protection method.

 o --from0, -0: Makes it easier to accept/refuse --files-from without affecting

 this helpful modifier.

 o --iconv: This is auto-disabled based on "charset" parameter.

 o --no-iconv: Most transfers use this option.

 o --checksum-seed: Is a fairly rare, safe option.

 o --write-devices: Is non-wild but also auto-disabled.

 dont compress

 NOTE: This parameter currently has no effect except in one instance: if it is set

 to "*" then it minimizes or disables compression for all files (for those that

 don't want to refuse the --compress option completely).

 This parameter allows you to select filenames based on wildcard patterns that

 should not be compressed when pulling files from the daemon (no analogous parameter

 exists to govern the pushing of files to a daemon). Compression can be expensive

 in terms of CPU usage, so it is usually good to not try to compress files that

 won't compress well, such as already compressed files.

 The "dont compress" parameter takes a space-separated list of case-insensitive

 wildcard patterns. Any source filename matching one of the patterns will be com?

 pressed as little as possible during the transfer. If the compression algorithm

 has an "off" level, then no compression occurs for those files. If an algorithms

 has the ability to change the level in mid-stream, it will be minimized to reduce

 the CPU usage as much as possible.

 See the --skip-compress parameter in the rsync(1) manpage for the list of file suf?

 fixes that are skipped by default if this parameter is not set.

 early exec, pre-xfer exec, post-xfer exec

 You may specify a command to be run in the early stages of the connection, or right

 before and/or after the transfer. If the early exec or pre-xfer exec command re?

 turns an error code, the transfer is aborted before it begins. Any output from the

 pre-xfer exec command on stdout (up to several KB) will be displayed to the user

 when aborting, but is not displayed if the script returns success. The other pro?

 grams cannot send any text to the user. All output except for the pre-xfer exec

 stdout goes to the corresponding daemon's stdout/stderr, which is typically dis?

 carded. See the --no-detatch option for a way to see the daemon's output, which Page 22/28

 can assist with debugging.

 Note that the early exec command runs before any part of the transfer request is

 known except for the module name. This helper script can be used to setup a disk

 mount or decrypt some data into a module dir, but you may need to use lock file and

 max connections to avoid concurrency issues. If the client rsync specified the

 --early-input=FILE option, it can send up to about 5K of data to the stdin of the

 early script. The stdin will otherwise be empty.

 Note that the post-xfer exec command is still run even if one of the other scripts

 returns an error code. The pre-xfer exec command will not be run, however, if the

 early exec command fails.

 The following environment variables will be set, though some are specific to the

 pre-xfer or the post-xfer environment:

 o RSYNC_MODULE_NAME: The name of the module being accessed.

 o RSYNC_MODULE_PATH: The path configured for the module.

 o RSYNC_HOST_ADDR: The accessing host's IP address.

 o RSYNC_HOST_NAME: The accessing host's name.

 o RSYNC_USER_NAME: The accessing user's name (empty if no user).

 o RSYNC_PID: A unique number for this transfer.

 o RSYNC_REQUEST: (pre-xfer only) The module/path info specified by the user.

 Note that the user can specify multiple source files, so the request can be

 something like "mod/path1 mod/path2", etc.

 o RSYNC_ARG#: (pre-xfer only) The pre-request arguments are set in these num?

 bered values. RSYNC_ARG0 is always "rsyncd", followed by the options that

 were used in RSYNC_ARG1, and so on. There will be a value of "." indicat?

 ing that the options are done and the path args are beginning -- these con?

 tain similar information to RSYNC_REQUEST, but with values separated and the

 module name stripped off.

 o RSYNC_EXIT_STATUS: (post-xfer only) the server side's exit value. This will

 be 0 for a successful run, a positive value for an error that the server

 generated, or a -1 if rsync failed to exit properly. Note that an error

 that occurs on the client side does not currently get sent to the server

 side, so this is not the final exit status for the whole transfer.

 o RSYNC_RAW_STATUS: (post-xfer only) the raw exit value from waitpid(). Page 23/28

 Even though the commands can be associated with a particular module, they are run

 using the permissions of the user that started the daemon (not the module's uid/gid

 setting) without any chroot restrictions.

 These settings honor 2 environment variables: use RSYNC_SHELL to set a shell to use

 when running the command (which otherwise uses your system() call's default shell),

 and use RSYNC_NO_XFER_EXEC to disable both options completely.

CONFIG DIRECTIVES

 There are currently two config directives available that allow a config file to incorpo?

 rate the contents of other files: &include and &merge. Both allow a reference to either

 a file or a directory. They differ in how segregated the file's contents are considered

 to be.

 The &include directive treats each file as more distinct, with each one inheriting the de?

 faults of the parent file, starting the parameter parsing as globals/defaults, and leaving

 the defaults unchanged for the parsing of the rest of the parent file.

 The &merge directive, on the other hand, treats the file's contents as if it were simply

 inserted in place of the directive, and thus it can set parameters in a module started in

 another file, can affect the defaults for other files, etc.

 When an &include or &merge directive refers to a directory, it will read in all the *.conf

 or *.inc files (respectively) that are contained inside that directory (without any recur?

 sive scanning), with the files sorted into alpha order. So, if you have a directory named

 "rsyncd.d" with the files "foo.conf", "bar.conf", and "baz.conf" inside it, this direc?

 tive:

 &include /path/rsyncd.d

 would be the same as this set of directives:

 &include /path/rsyncd.d/bar.conf

 &include /path/rsyncd.d/baz.conf

 &include /path/rsyncd.d/foo.conf

 except that it adjusts as files are added and removed from the directory.

 The advantage of the &include directive is that you can define one or more modules in a

 separate file without worrying about unintended side-effects between the self-contained

 module files.

 The advantage of the &merge directive is that you can load config snippets that can be in?

 cluded into multiple module definitions, and you can also set global values that will af? Page 24/28

 fect connections (such as motd file), or globals that will affect other include files.

 For example, this is a useful /etc/rsyncd.conf file:

 port = 873

 log file = /var/log/rsync.log

 pid file = /var/lock/rsync.lock

 &merge /etc/rsyncd.d

 &include /etc/rsyncd.d

 This would merge any /etc/rsyncd.d/*.inc files (for global values that should stay in ef?

 fect), and then include any /etc/rsyncd.d/*.conf files (defining modules without any

 global-value cross-talk).

AUTHENTICATION STRENGTH

 The authentication protocol used in rsync is a 128 bit MD4 based challenge response sys?

 tem. This is fairly weak protection, though (with at least one brute-force hash-finding

 algorithm publicly available), so if you want really top-quality security, then I recom?

 mend that you run rsync over ssh. (Yes, a future version of rsync will switch over to a

 stronger hashing method.)

 Also note that the rsync daemon protocol does not currently provide any encryption of the

 data that is transferred over the connection. Only authentication is provided. Use ssh as

 the transport if you want encryption.

 You can also make use of SSL/TLS encryption if you put rsync behind an SSL proxy.

SSL/TLS Daemon Setup

 When setting up an rsync daemon for access via SSL/TLS, you will need to configure a TCP

 proxy (such as haproxy or nginx) as the front-end that handles the encryption.

 o You should limit the access to the backend-rsyncd port to only allow the proxy to

 connect. If it is on the same host as the proxy, then configuring it to only lis?

 ten on localhost is a good idea.

 o You should consider turning on the proxy protocol rsync-daemon parameter if your

 proxy supports sending that information. The examples below assume that this is

 enabled.

 An example haproxy setup is as follows:

 frontend fe_rsync-ssl

 bind :::874 ssl crt /etc/letsencrypt/example.com/combined.pem

 mode tcp Page 25/28

 use_backend be_rsync

 backend be_rsync

 mode tcp

 server local-rsync 127.0.0.1:873 check send-proxy

 An example nginx proxy setup is as follows:

 stream {

 server {

 listen 874 ssl;

 listen [::]:874 ssl;

 ssl_certificate /etc/letsencrypt/example.com/fullchain.pem;

 ssl_certificate_key /etc/letsencrypt/example.com/privkey.pem;

 proxy_pass localhost:873;

 proxy_protocol on; # Requires rsyncd.conf "proxy protocol = true"

 proxy_timeout 1m;

 proxy_connect_timeout 5s;

 }

 }

DAEMON CONFIG EXAMPLES

 A simple rsyncd.conf file that allow anonymous rsync to a ftp area at /home/ftp would be:

 [ftp]

 path = /home/ftp

 comment = ftp export area

 A more sophisticated example would be:

 uid = nobody

 gid = nobody

 use chroot = yes

 max connections = 4

 syslog facility = local5

 pid file = /var/run/rsyncd.pid

 [ftp]

 path = /var/ftp/./pub

 comment = whole ftp area (approx 6.1 GB)

 [sambaftp] Page 26/28

 path = /var/ftp/./pub/samba

 comment = Samba ftp area (approx 300 MB)

 [rsyncftp]

 path = /var/ftp/./pub/rsync

 comment = rsync ftp area (approx 6 MB)

 [sambawww]

 path = /public_html/samba

 comment = Samba WWW pages (approx 240 MB)

 [cvs]

 path = /data/cvs

 comment = CVS repository (requires authentication)

 auth users = tridge, susan

 secrets file = /etc/rsyncd.secrets

 The /etc/rsyncd.secrets file would look something like this:

 tridge:mypass

 susan:herpass

FILES

 /etc/rsyncd.conf or rsyncd.conf

SEE ALSO

 rsync(1), rsync-ssl(1)

BUGS

 Please report bugs! The rsync bug tracking system is online at https://rsync.samba.org/.

VERSION

 This manpage is current for version 3.2.7 of rsync.

CREDITS

 Rsync is distributed under the GNU General Public License. See the file COPYING for de?

 tails.

 An rsync web site is available at https://rsync.samba.org/ and its github project is

 https://github.com/WayneD/rsync.

THANKS

 Thanks to Warren Stanley for his original idea and patch for the rsync daemon. Thanks to

 Karsten Thygesen for his many suggestions and documentation!

AUTHOR Page 27/28

 Rsync was originally written by Andrew Tridgell and Paul Mackerras. Many people have

 later contributed to it. It is currently maintained by Wayne Davison.

 Mailing lists for support and development are available at https://lists.samba.org/.

rsyncd.conf from rsync 3.2.7 20 Oct 2022 rsyncd.conf(5)

Page 28/28

