
Rocky Enterprise Linux 9.2 Manual Pages on command 'rt_sigaction.2'

$ man rt_sigaction.2

SIGACTION(2) Linux Programmer's Manual SIGACTION(2)

NAME

 sigaction, rt_sigaction - examine and change a signal action

SYNOPSIS

 #include <signal.h>

 int sigaction(int signum, const struct sigaction *act,

 struct sigaction *oldact);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sigaction(): _POSIX_C_SOURCE

 siginfo_t: _POSIX_C_SOURCE >= 199309L

DESCRIPTION

 The sigaction() system call is used to change the action taken by a process on receipt of

 a specific signal. (See signal(7) for an overview of signals.)

 signum specifies the signal and can be any valid signal except SIGKILL and SIGSTOP.

 If act is non-NULL, the new action for signal signum is installed from act. If oldact is

 non-NULL, the previous action is saved in oldact.

 The sigaction structure is defined as something like:

 struct sigaction {

 void (*sa_handler)(int);

 void (*sa_sigaction)(int, siginfo_t *, void *);

 sigset_t sa_mask;

 int sa_flags;

 void (*sa_restorer)(void); Page 1/13

 };

 On some architectures a union is involved: do not assign to both sa_handler and sa_sigac?

 tion.

 The sa_restorer field is not intended for application use. (POSIX does not specify a

 sa_restorer field.) Some further details of the purpose of this field can be found in si?

 greturn(2).

 sa_handler specifies the action to be associated with signum and is be one of the follow?

 ing:

 * SIG_DFL for the default action.

 * SIG_IGN to ignore this signal.

 * A pointer to a signal handling function. This function receives the signal number as

 its only argument.

 If SA_SIGINFO is specified in sa_flags, then sa_sigaction (instead of sa_handler) speci?

 fies the signal-handling function for signum. This function receives three arguments, as

 described below.

 sa_mask specifies a mask of signals which should be blocked (i.e., added to the signal

 mask of the thread in which the signal handler is invoked) during execution of the signal

 handler. In addition, the signal which triggered the handler will be blocked, unless the

 SA_NODEFER flag is used.

 sa_flags specifies a set of flags which modify the behavior of the signal. It is formed

 by the bitwise OR of zero or more of the following:

 SA_NOCLDSTOP

 If signum is SIGCHLD, do not receive notification when child processes stop (i.e.,

 when they receive one of SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU) or resume (i.e.,

 they receive SIGCONT) (see wait(2)). This flag is meaningful only when establish?

 ing a handler for SIGCHLD.

 SA_NOCLDWAIT (since Linux 2.6)

 If signum is SIGCHLD, do not transform children into zombies when they terminate.

 See also waitpid(2). This flag is meaningful only when establishing a handler for

 SIGCHLD, or when setting that signal's disposition to SIG_DFL.

 If the SA_NOCLDWAIT flag is set when establishing a handler for SIGCHLD, POSIX.1

 leaves it unspecified whether a SIGCHLD signal is generated when a child process

 terminates. On Linux, a SIGCHLD signal is generated in this case; on some other Page 2/13

 implementations, it is not.

 SA_NODEFER

 Do not add the signal to the thread's signal mask while the handler is executing,

 unless the signal is specified in act.sa_mask. Consequently, a further instance of

 the signal may be delivered to the thread while it is executing the handler. This

 flag is meaningful only when establishing a signal handler.

 SA_NOMASK is an obsolete, nonstandard synonym for this flag.

 SA_ONSTACK

 Call the signal handler on an alternate signal stack provided by sigaltstack(2).

 If an alternate stack is not available, the default stack will be used. This flag

 is meaningful only when establishing a signal handler.

 SA_RESETHAND

 Restore the signal action to the default upon entry to the signal handler. This

 flag is meaningful only when establishing a signal handler.

 SA_ONESHOT is an obsolete, nonstandard synonym for this flag.

 SA_RESTART

 Provide behavior compatible with BSD signal semantics by making certain system

 calls restartable across signals. This flag is meaningful only when establishing a

 signal handler. See signal(7) for a discussion of system call restarting.

 SA_RESTORER

 Not intended for application use. This flag is used by C libraries to indicate

 that the sa_restorer field contains the address of a "signal trampoline". See si?

 greturn(2) for more details.

 SA_SIGINFO (since Linux 2.2)

 The signal handler takes three arguments, not one. In this case, sa_sigaction

 should be set instead of sa_handler. This flag is meaningful only when establish?

 ing a signal handler.

 The siginfo_t argument to a SA_SIGINFO handler

 When the SA_SIGINFO flag is specified in act.sa_flags, the signal handler address is

 passed via the act.sa_sigaction field. This handler takes three arguments, as follows:

 void

 handler(int sig, siginfo_t *info, void *ucontext)

 { Page 3/13

 ...

 }

 These three arguments are as follows

 sig The number of the signal that caused invocation of the handler.

 info A pointer to a siginfo_t, which is a structure containing further information about

 the signal, as described below.

 ucontext

 This is a pointer to a ucontext_t structure, cast to void *. The structure pointed

 to by this field contains signal context information that was saved on the user-

 space stack by the kernel; for details, see sigreturn(2). Further information

 about the ucontext_t structure can be found in getcontext(3) and signal(7). Com?

 monly, the handler function doesn't make any use of the third argument.

 The siginfo_t data type is a structure with the following fields:

 siginfo_t {

 int si_signo; /* Signal number */

 int si_errno; /* An errno value */

 int si_code; /* Signal code */

 int si_trapno; /* Trap number that caused

 hardware-generated signal

 (unused on most architectures) */

 pid_t si_pid; /* Sending process ID */

 uid_t si_uid; /* Real user ID of sending process */

 int si_status; /* Exit value or signal */

 clock_t si_utime; /* User time consumed */

 clock_t si_stime; /* System time consumed */

 union sigval si_value; /* Signal value */

 int si_int; /* POSIX.1b signal */

 void *si_ptr; /* POSIX.1b signal */

 int si_overrun; /* Timer overrun count;

 POSIX.1b timers */

 int si_timerid; /* Timer ID; POSIX.1b timers */

 void *si_addr; /* Memory location which caused fault */

 long si_band; /* Band event (was int in Page 4/13

 glibc 2.3.2 and earlier) */

 int si_fd; /* File descriptor */

 short si_addr_lsb; /* Least significant bit of address

 (since Linux 2.6.32) */

 void *si_lower; /* Lower bound when address violation

 occurred (since Linux 3.19) */

 void *si_upper; /* Upper bound when address violation

 occurred (since Linux 3.19) */

 int si_pkey; /* Protection key on PTE that caused

 fault (since Linux 4.6) */

 void *si_call_addr; /* Address of system call instruction

 (since Linux 3.5) */

 int si_syscall; /* Number of attempted system call

 (since Linux 3.5) */

 unsigned int si_arch; /* Architecture of attempted system call

 (since Linux 3.5) */

 }

 si_signo, si_errno and si_code are defined for all signals. (si_errno is generally unused

 on Linux.) The rest of the struct may be a union, so that one should read only the fields

 that are meaningful for the given signal:

 * Signals sent with kill(2) and sigqueue(3) fill in si_pid and si_uid. In addition, sig?

 nals sent with sigqueue(3) fill in si_int and si_ptr with the values specified by the

 sender of the signal; see sigqueue(3) for more details.

 * Signals sent by POSIX.1b timers (since Linux 2.6) fill in si_overrun and si_timerid.

 The si_timerid field is an internal ID used by the kernel to identify the timer; it is

 not the same as the timer ID returned by timer_create(2). The si_overrun field is the

 timer overrun count; this is the same information as is obtained by a call to

 timer_getoverrun(2). These fields are nonstandard Linux extensions.

 * Signals sent for message queue notification (see the description of SIGEV_SIGNAL in

 mq_notify(3)) fill in si_int/si_ptr, with the sigev_value supplied to mq_notify(3);

 si_pid, with the process ID of the message sender; and si_uid, with the real user ID of

 the message sender.

 * SIGCHLD fills in si_pid, si_uid, si_status, si_utime, and si_stime, providing informa? Page 5/13

 tion about the child. The si_pid field is the process ID of the child; si_uid is the

 child's real user ID. The si_status field contains the exit status of the child (if

 si_code is CLD_EXITED), or the signal number that caused the process to change state.

 The si_utime and si_stime contain the user and system CPU time used by the child

 process; these fields do not include the times used by waited-for children (unlike

 getrusage(2) and times(2)). In kernels up to 2.6, and since 2.6.27, these fields report

 CPU time in units of sysconf(_SC_CLK_TCK). In 2.6 kernels before 2.6.27, a bug meant

 that these fields reported time in units of the (configurable) system jiffy (see

 time(7)).

 * SIGILL, SIGFPE, SIGSEGV, SIGBUS, and SIGTRAP fill in si_addr with the address of the

 fault. On some architectures, these signals also fill in the si_trapno field.

 Some suberrors of SIGBUS, in particular BUS_MCEERR_AO and BUS_MCEERR_AR, also fill in

 si_addr_lsb. This field indicates the least significant bit of the reported address and

 therefore the extent of the corruption. For example, if a full page was corrupted,

 si_addr_lsb contains log2(sysconf(_SC_PAGESIZE)). When SIGTRAP is delivered in response

 to a ptrace(2) event (PTRACE_EVENT_foo), si_addr is not populated, but si_pid and si_uid

 are populated with the respective process ID and user ID responsible for delivering the

 trap. In the case of seccomp(2), the tracee will be shown as delivering the event.

 BUS_MCEERR_* and si_addr_lsb are Linux-specific extensions.

 The SEGV_BNDERR suberror of SIGSEGV populates si_lower and si_upper.

 The SEGV_PKUERR suberror of SIGSEGV populates si_pkey.

 * SIGIO/SIGPOLL (the two names are synonyms on Linux) fills in si_band and si_fd. The

 si_band event is a bit mask containing the same values as are filled in the revents

 field by poll(2). The si_fd field indicates the file descriptor for which the I/O event

 occurred; for further details, see the description of F_SETSIG in fcntl(2).

 * SIGSYS, generated (since Linux 3.5) when a seccomp filter returns SECCOMP_RET_TRAP,

 fills in si_call_addr, si_syscall, si_arch, si_errno, and other fields as described in

 seccomp(2).

 The si_code field

 The si_code field inside the siginfo_t argument that is passed to a SA_SIGINFO signal han?

 dler is a value (not a bit mask) indicating why this signal was sent. For a ptrace(2)

 event, si_code will contain SIGTRAP and have the ptrace event in the high byte:

 (SIGTRAP | PTRACE_EVENT_foo << 8). Page 6/13

 For a non-ptrace(2) event, the values that can appear in si_code are described in the re?

 mainder of this section. Since glibc 2.20, the definitions of most of these symbols are

 obtained from <signal.h> by defining feature test macros (before including any header

 file) as follows:

 * _XOPEN_SOURCE with the value 500 or greater;

 * _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED; or

 * _POSIX_C_SOURCE with the value 200809L or greater.

 For the TRAP_* constants, the symbol definitions are provided only in the first two cases.

 Before glibc 2.20, no feature test macros were required to obtain these symbols.

 For a regular signal, the following list shows the values which can be placed in si_code

 for any signal, along with the reason that the signal was generated.

 SI_USER

 kill(2).

 SI_KERNEL

 Sent by the kernel.

 SI_QUEUE

 sigqueue(3).

 SI_TIMER

 POSIX timer expired.

 SI_MESGQ (since Linux 2.6.6)

 POSIX message queue state changed; see mq_notify(3).

 SI_ASYNCIO

 AIO completed.

 SI_SIGIO

 Queued SIGIO (only in kernels up to Linux 2.2; from Linux 2.4 onward SIGIO/SIG?

 POLL fills in si_code as described below).

 SI_TKILL (since Linux 2.4.19)

 tkill(2) or tgkill(2).

 The following values can be placed in si_code for a SIGILL signal:

 ILL_ILLOPC

 Illegal opcode.

 ILL_ILLOPN

 Illegal operand. Page 7/13

 ILL_ILLADR

 Illegal addressing mode.

 ILL_ILLTRP

 Illegal trap.

 ILL_PRVOPC

 Privileged opcode.

 ILL_PRVREG

 Privileged register.

 ILL_COPROC

 Coprocessor error.

 ILL_BADSTK

 Internal stack error.

 The following values can be placed in si_code for a SIGFPE signal:

 FPE_INTDIV

 Integer divide by zero.

 FPE_INTOVF

 Integer overflow.

 FPE_FLTDIV

 Floating-point divide by zero.

 FPE_FLTOVF

 Floating-point overflow.

 FPE_FLTUND

 Floating-point underflow.

 FPE_FLTRES

 Floating-point inexact result.

 FPE_FLTINV

 Floating-point invalid operation.

 FPE_FLTSUB

 Subscript out of range.

 The following values can be placed in si_code for a SIGSEGV signal:

 SEGV_MAPERR

 Address not mapped to object.

 SEGV_ACCERR Page 8/13

 Invalid permissions for mapped object.

 SEGV_BNDERR (since Linux 3.19)

 Failed address bound checks.

 SEGV_PKUERR (since Linux 4.6)

 Access was denied by memory protection keys. See pkeys(7). The protection key

 which applied to this access is available via si_pkey.

 The following values can be placed in si_code for a SIGBUS signal:

 BUS_ADRALN

 Invalid address alignment.

 BUS_ADRERR

 Nonexistent physical address.

 BUS_OBJERR

 Object-specific hardware error.

 BUS_MCEERR_AR (since Linux 2.6.32)

 Hardware memory error consumed on a machine check; action required.

 BUS_MCEERR_AO (since Linux 2.6.32)

 Hardware memory error detected in process but not consumed; action optional.

 The following values can be placed in si_code for a SIGTRAP signal:

 TRAP_BRKPT

 Process breakpoint.

 TRAP_TRACE

 Process trace trap.

 TRAP_BRANCH (since Linux 2.4, IA64 only)

 Process taken branch trap.

 TRAP_HWBKPT (since Linux 2.4, IA64 only)

 Hardware breakpoint/watchpoint.

 The following values can be placed in si_code for a SIGCHLD signal:

 CLD_EXITED

 Child has exited.

 CLD_KILLED

 Child was killed.

 CLD_DUMPED

 Child terminated abnormally. Page 9/13

 CLD_TRAPPED

 Traced child has trapped.

 CLD_STOPPED

 Child has stopped.

 CLD_CONTINUED (since Linux 2.6.9)

 Stopped child has continued.

 The following values can be placed in si_code for a SIGIO/SIGPOLL signal:

 POLL_IN

 Data input available.

 POLL_OUT

 Output buffers available.

 POLL_MSG

 Input message available.

 POLL_ERR

 I/O error.

 POLL_PRI

 High priority input available.

 POLL_HUP

 Device disconnected.

 The following value can be placed in si_code for a SIGSYS signal:

 SYS_SECCOMP (since Linux 3.5)

 Triggered by a seccomp(2) filter rule.

RETURN VALUE

 sigaction() returns 0 on success; on error, -1 is returned, and errno is set to indicate

 the error.

ERRORS

 EFAULT act or oldact points to memory which is not a valid part of the process address

 space.

 EINVAL An invalid signal was specified. This will also be generated if an attempt is made

 to change the action for SIGKILL or SIGSTOP, which cannot be caught or ignored.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, SVr4.

NOTES Page 10/13

 A child created via fork(2) inherits a copy of its parent's signal dispositions. During

 an execve(2), the dispositions of handled signals are reset to the default; the disposi?

 tions of ignored signals are left unchanged.

 According to POSIX, the behavior of a process is undefined after it ignores a SIGFPE, SIG?

 ILL, or SIGSEGV signal that was not generated by kill(2) or raise(3). Integer division by

 zero has undefined result. On some architectures it will generate a SIGFPE signal. (Also

 dividing the most negative integer by -1 may generate SIGFPE.) Ignoring this signal might

 lead to an endless loop.

 POSIX.1-1990 disallowed setting the action for SIGCHLD to SIG_IGN. POSIX.1-2001 and later

 allow this possibility, so that ignoring SIGCHLD can be used to prevent the creation of

 zombies (see wait(2)). Nevertheless, the historical BSD and System V behaviors for ignor?

 ing SIGCHLD differ, so that the only completely portable method of ensuring that termi?

 nated children do not become zombies is to catch the SIGCHLD signal and perform a wait(2)

 or similar.

 POSIX.1-1990 specified only SA_NOCLDSTOP. POSIX.1-2001 added SA_NOCLDSTOP, SA_NOCLDWAIT,

 SA_NODEFER, SA_ONSTACK, SA_RESETHAND, SA_RESTART, and SA_SIGINFO. Use of these latter

 values in sa_flags may be less portable in applications intended for older UNIX implemen?

 tations.

 The SA_RESETHAND flag is compatible with the SVr4 flag of the same name.

 The SA_NODEFER flag is compatible with the SVr4 flag of the same name under kernels 1.3.9

 and later. On older kernels the Linux implementation allowed the receipt of any signal,

 not just the one we are installing (effectively overriding any sa_mask settings).

 sigaction() can be called with a NULL second argument to query the current signal handler.

 It can also be used to check whether a given signal is valid for the current machine by

 calling it with NULL second and third arguments.

 It is not possible to block SIGKILL or SIGSTOP (by specifying them in sa_mask). Attempts

 to do so are silently ignored.

 See sigsetops(3) for details on manipulating signal sets.

 See signal-safety(7) for a list of the async-signal-safe functions that can be safely

 called inside from inside a signal handler.

 C library/kernel differences

 The glibc wrapper function for sigaction() gives an error (EINVAL) on attempts to change

 the disposition of the two real-time signals used internally by the NPTL threading imple? Page 11/13

 mentation. See nptl(7) for details.

 On architectures where the signal trampoline resides in the C library, the glibc wrapper

 function for sigaction() places the address of the trampoline code in the act.sa_restorer

 field and sets the SA_RESTORER flag in the act.sa_flags field. See sigreturn(2).

 The original Linux system call was named sigaction(). However, with the addition of real-

 time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that system

 call was no longer fit for purpose. Consequently, a new system call, rt_sigaction(), was

 added to support an enlarged sigset_t type. The new system call takes a fourth argument,

 size_t sigsetsize, which specifies the size in bytes of the signal sets in act.sa_mask and

 oldact.sa_mask. This argument is currently required to have the value sizeof(sigset_t)

 (or the error EINVAL results). The glibc sigaction() wrapper function hides these details

 from us, transparently calling rt_sigaction() when the kernel provides it.

 Undocumented

 Before the introduction of SA_SIGINFO, it was also possible to get some additional infor?

 mation about the signal. This was done by providing an sa_handler signal handler with a

 second argument of type struct sigcontext, which is the same structure as the one that is

 passed in the uc_mcontext field of the ucontext structure that is passed (via a pointer)

 in the third argument of the sa_sigaction handler. See the relevant Linux kernel sources

 for details. This use is obsolete now.

BUGS

 When delivering a signal with a SA_SIGINFO handler, the kernel does not always provide

 meaningful values for all of the fields of the siginfo_t that are relevant for that sig?

 nal.

 In kernels up to and including 2.6.13, specifying SA_NODEFER in sa_flags prevents not only

 the delivered signal from being masked during execution of the handler, but also the sig?

 nals specified in sa_mask. This bug was fixed in kernel 2.6.14.

EXAMPLES

 See mprotect(2).

SEE ALSO

 kill(1), kill(2), pause(2), pidfd_send_signal(2), restart_syscall(2), seccomp(2), sigalt?

 stack(2), signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigreturn(2), sigsus?

 pend(2), wait(2), killpg(3), raise(3), siginterrupt(3), sigqueue(3), sigsetops(3),

 sigvec(3), core(5), signal(7) Page 12/13

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-12-21 SIGACTION(2)

Page 13/13

