
Rocky Enterprise Linux 9.2 Manual Pages on command 'sched.7'

$ man sched.7

SCHED(7) Linux Programmer's Manual SCHED(7)

NAME

 sched - overview of CPU scheduling

DESCRIPTION

 Since Linux 2.6.23, the default scheduler is CFS, the "Completely Fair Scheduler". The

 CFS scheduler replaced the earlier "O(1)" scheduler.

 API summary

 Linux provides the following system calls for controlling the CPU scheduling behavior,

 policy, and priority of processes (or, more precisely, threads).

 nice(2)

 Set a new nice value for the calling thread, and return the new nice value.

 getpriority(2)

 Return the nice value of a thread, a process group, or the set of threads owned by

 a specified user.

 setpriority(2)

 Set the nice value of a thread, a process group, or the set of threads owned by a

 specified user.

 sched_setscheduler(2)

 Set the scheduling policy and parameters of a specified thread.

 sched_getscheduler(2)

 Return the scheduling policy of a specified thread.

 sched_setparam(2)

 Set the scheduling parameters of a specified thread. Page 1/14

 sched_getparam(2)

 Fetch the scheduling parameters of a specified thread.

 sched_get_priority_max(2)

 Return the maximum priority available in a specified scheduling policy.

 sched_get_priority_min(2)

 Return the minimum priority available in a specified scheduling policy.

 sched_rr_get_interval(2)

 Fetch the quantum used for threads that are scheduled under the "round-robin"

 scheduling policy.

 sched_yield(2)

 Cause the caller to relinquish the CPU, so that some other thread be executed.

 sched_setaffinity(2)

 (Linux-specific) Set the CPU affinity of a specified thread.

 sched_getaffinity(2)

 (Linux-specific) Get the CPU affinity of a specified thread.

 sched_setattr(2)

 Set the scheduling policy and parameters of a specified thread. This (Linux-spe?

 cific) system call provides a superset of the functionality of sched_setsched?

 uler(2) and sched_setparam(2).

 sched_getattr(2)

 Fetch the scheduling policy and parameters of a specified thread. This (Linux-spe?

 cific) system call provides a superset of the functionality of sched_getsched?

 uler(2) and sched_getparam(2).

 Scheduling policies

 The scheduler is the kernel component that decides which runnable thread will be executed

 by the CPU next. Each thread has an associated scheduling policy and a static scheduling

 priority, sched_priority. The scheduler makes its decisions based on knowledge of the

 scheduling policy and static priority of all threads on the system.

 For threads scheduled under one of the normal scheduling policies (SCHED_OTHER,

 SCHED_IDLE, SCHED_BATCH), sched_priority is not used in scheduling decisions (it must be

 specified as 0).

 Processes scheduled under one of the real-time policies (SCHED_FIFO, SCHED_RR) have a

 sched_priority value in the range 1 (low) to 99 (high). (As the numbers imply, real-time Page 2/14

 threads always have higher priority than normal threads.) Note well: POSIX.1 requires an

 implementation to support only a minimum 32 distinct priority levels for the real-time

 policies, and some systems supply just this minimum. Portable programs should use

 sched_get_priority_min(2) and sched_get_priority_max(2) to find the range of priorities

 supported for a particular policy.

 Conceptually, the scheduler maintains a list of runnable threads for each possible

 sched_priority value. In order to determine which thread runs next, the scheduler looks

 for the nonempty list with the highest static priority and selects the thread at the head

 of this list.

 A thread's scheduling policy determines where it will be inserted into the list of threads

 with equal static priority and how it will move inside this list.

 All scheduling is preemptive: if a thread with a higher static priority becomes ready to

 run, the currently running thread will be preempted and returned to the wait list for its

 static priority level. The scheduling policy determines the ordering only within the list

 of runnable threads with equal static priority.

 SCHED_FIFO: First in-first out scheduling

 SCHED_FIFO can be used only with static priorities higher than 0, which means that when a

 SCHED_FIFO thread becomes runnable, it will always immediately preempt any currently run?

 ning SCHED_OTHER, SCHED_BATCH, or SCHED_IDLE thread. SCHED_FIFO is a simple scheduling

 algorithm without time slicing. For threads scheduled under the SCHED_FIFO policy, the

 following rules apply:

 1) A running SCHED_FIFO thread that has been preempted by another thread of higher prior?

 ity will stay at the head of the list for its priority and will resume execution as

 soon as all threads of higher priority are blocked again.

 2) When a blocked SCHED_FIFO thread becomes runnable, it will be inserted at the end of

 the list for its priority.

 3) If a call to sched_setscheduler(2), sched_setparam(2), sched_setattr(2),

 pthread_setschedparam(3), or pthread_setschedprio(3) changes the priority of the run?

 ning or runnable SCHED_FIFO thread identified by pid the effect on the thread's posi?

 tion in the list depends on the direction of the change to threads priority:

 ? If the thread's priority is raised, it is placed at the end of the list for its new

 priority. As a consequence, it may preempt a currently running thread with the same

 priority. Page 3/14

 ? If the thread's priority is unchanged, its position in the run list is unchanged.

 ? If the thread's priority is lowered, it is placed at the front of the list for its

 new priority.

 According to POSIX.1-2008, changes to a thread's priority (or policy) using any mecha?

 nism other than pthread_setschedprio(3) should result in the thread being placed at the

 end of the list for its priority.

 4) A thread calling sched_yield(2) will be put at the end of the list.

 No other events will move a thread scheduled under the SCHED_FIFO policy in the wait list

 of runnable threads with equal static priority.

 A SCHED_FIFO thread runs until either it is blocked by an I/O request, it is preempted by

 a higher priority thread, or it calls sched_yield(2).

 SCHED_RR: Round-robin scheduling

 SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above for SCHED_FIFO

 also applies to SCHED_RR, except that each thread is allowed to run only for a maximum

 time quantum. If a SCHED_RR thread has been running for a time period equal to or longer

 than the time quantum, it will be put at the end of the list for its priority. A SCHED_RR

 thread that has been preempted by a higher priority thread and subsequently resumes execu?

 tion as a running thread will complete the unexpired portion of its round-robin time quan?

 tum. The length of the time quantum can be retrieved using sched_rr_get_interval(2).

 SCHED_DEADLINE: Sporadic task model deadline scheduling

 Since version 3.14, Linux provides a deadline scheduling policy (SCHED_DEADLINE). This

 policy is currently implemented using GEDF (Global Earliest Deadline First) in conjunction

 with CBS (Constant Bandwidth Server). To set and fetch this policy and associated at?

 tributes, one must use the Linux-specific sched_setattr(2) and sched_getattr(2) system

 calls.

 A sporadic task is one that has a sequence of jobs, where each job is activated at most

 once per period. Each job also has a relative deadline, before which it should finish ex?

 ecution, and a computation time, which is the CPU time necessary for executing the job.

 The moment when a task wakes up because a new job has to be executed is called the arrival

 time (also referred to as the request time or release time). The start time is the time

 at which a task starts its execution. The absolute deadline is thus obtained by adding

 the relative deadline to the arrival time.

 The following diagram clarifies these terms: Page 4/14

 arrival/wakeup absolute deadline

 | start time |

 | | |

 v v v

 -----x--------xooooooooooooooooo--------x--------x---

 |<- comp. time ->|

 |<------- relative deadline ------>|

 |<-------------- period ------------------->|

 When setting a SCHED_DEADLINE policy for a thread using sched_setattr(2), one can specify

 three parameters: Runtime, Deadline, and Period. These parameters do not necessarily cor?

 respond to the aforementioned terms: usual practice is to set Runtime to something bigger

 than the average computation time (or worst-case execution time for hard real-time tasks),

 Deadline to the relative deadline, and Period to the period of the task. Thus, for

 SCHED_DEADLINE scheduling, we have:

 arrival/wakeup absolute deadline

 | start time |

 | | |

 v v v

 -----x--------xooooooooooooooooo--------x--------x---

 |<-- Runtime ------->|

 |<----------- Deadline ----------->|

 |<-------------- Period ------------------->|

 The three deadline-scheduling parameters correspond to the sched_runtime, sched_deadline,

 and sched_period fields of the sched_attr structure; see sched_setattr(2). These fields

 express values in nanoseconds. If sched_period is specified as 0, then it is made the

 same as sched_deadline.

 The kernel requires that:

 sched_runtime <= sched_deadline <= sched_period

 In addition, under the current implementation, all of the parameter values must be at

 least 1024 (i.e., just over one microsecond, which is the resolution of the implementa?

 tion), and less than 2^63. If any of these checks fails, sched_setattr(2) fails with the

 error EINVAL.

 The CBS guarantees non-interference between tasks, by throttling threads that attempt to Page 5/14

 over-run their specified Runtime.

 To ensure deadline scheduling guarantees, the kernel must prevent situations where the set

 of SCHED_DEADLINE threads is not feasible (schedulable) within the given constraints. The

 kernel thus performs an admittance test when setting or changing SCHED_DEADLINE policy and

 attributes. This admission test calculates whether the change is feasible; if it is not,

 sched_setattr(2) fails with the error EBUSY.

 For example, it is required (but not necessarily sufficient) for the total utilization to

 be less than or equal to the total number of CPUs available, where, since each thread can

 maximally run for Runtime per Period, that thread's utilization is its Runtime divided by

 its Period.

 In order to fulfill the guarantees that are made when a thread is admitted to the

 SCHED_DEADLINE policy, SCHED_DEADLINE threads are the highest priority (user controllable)

 threads in the system; if any SCHED_DEADLINE thread is runnable, it will preempt any

 thread scheduled under one of the other policies.

 A call to fork(2) by a thread scheduled under the SCHED_DEADLINE policy fails with the er?

 ror EAGAIN, unless the thread has its reset-on-fork flag set (see below).

 A SCHED_DEADLINE thread that calls sched_yield(2) will yield the current job and wait for

 a new period to begin.

 SCHED_OTHER: Default Linux time-sharing scheduling

 SCHED_OTHER can be used at only static priority 0 (i.e., threads under real-time policies

 always have priority over SCHED_OTHER processes). SCHED_OTHER is the standard Linux time-

 sharing scheduler that is intended for all threads that do not require the special real-

 time mechanisms.

 The thread to run is chosen from the static priority 0 list based on a dynamic priority

 that is determined only inside this list. The dynamic priority is based on the nice value

 (see below) and is increased for each time quantum the thread is ready to run, but denied

 to run by the scheduler. This ensures fair progress among all SCHED_OTHER threads.

 In the Linux kernel source code, the SCHED_OTHER policy is actually named SCHED_NORMAL.

 The nice value

 The nice value is an attribute that can be used to influence the CPU scheduler to favor or

 disfavor a process in scheduling decisions. It affects the scheduling of SCHED_OTHER and

 SCHED_BATCH (see below) processes. The nice value can be modified using nice(2), setpri?

 ority(2), or sched_setattr(2). Page 6/14

 According to POSIX.1, the nice value is a per-process attribute; that is, the threads in a

 process should share a nice value. However, on Linux, the nice value is a per-thread at?

 tribute: different threads in the same process may have different nice values.

 The range of the nice value varies across UNIX systems. On modern Linux, the range is -20

 (high priority) to +19 (low priority). On some other systems, the range is -20..20. Very

 early Linux kernels (Before Linux 2.0) had the range -infinity..15.

 The degree to which the nice value affects the relative scheduling of SCHED_OTHER pro?

 cesses likewise varies across UNIX systems and across Linux kernel versions.

 With the advent of the CFS scheduler in kernel 2.6.23, Linux adopted an algorithm that

 causes relative differences in nice values to have a much stronger effect. In the current

 implementation, each unit of difference in the nice values of two processes results in a

 factor of 1.25 in the degree to which the scheduler favors the higher priority process.

 This causes very low nice values (+19) to truly provide little CPU to a process whenever

 there is any other higher priority load on the system, and makes high nice values (-20)

 deliver most of the CPU to applications that require it (e.g., some audio applications).

 On Linux, the RLIMIT_NICE resource limit can be used to define a limit to which an unpriv?

 ileged process's nice value can be raised; see setrlimit(2) for details.

 For further details on the nice value, see the subsections on the autogroup feature and

 group scheduling, below.

 SCHED_BATCH: Scheduling batch processes

 (Since Linux 2.6.16.) SCHED_BATCH can be used only at static priority 0. This policy is

 similar to SCHED_OTHER in that it schedules the thread according to its dynamic priority

 (based on the nice value). The difference is that this policy will cause the scheduler to

 always assume that the thread is CPU-intensive. Consequently, the scheduler will apply a

 small scheduling penalty with respect to wakeup behavior, so that this thread is mildly

 disfavored in scheduling decisions.

 This policy is useful for workloads that are noninteractive, but do not want to lower

 their nice value, and for workloads that want a deterministic scheduling policy without

 interactivity causing extra preemptions (between the workload's tasks).

 SCHED_IDLE: Scheduling very low priority jobs

 (Since Linux 2.6.23.) SCHED_IDLE can be used only at static priority 0; the process nice

 value has no influence for this policy.

 This policy is intended for running jobs at extremely low priority (lower even than a +19 Page 7/14

 nice value with the SCHED_OTHER or SCHED_BATCH policies).

 Resetting scheduling policy for child processes

 Each thread has a reset-on-fork scheduling flag. When this flag is set, children created

 by fork(2) do not inherit privileged scheduling policies. The reset-on-fork flag can be

 set by either:

 * ORing the SCHED_RESET_ON_FORK flag into the policy argument when calling

 sched_setscheduler(2) (since Linux 2.6.32); or

 * specifying the SCHED_FLAG_RESET_ON_FORK flag in attr.sched_flags when calling sched_se?

 tattr(2).

 Note that the constants used with these two APIs have different names. The state of the

 reset-on-fork flag can analogously be retrieved using sched_getscheduler(2) and

 sched_getattr(2).

 The reset-on-fork feature is intended for media-playback applications, and can be used to

 prevent applications evading the RLIMIT_RTTIME resource limit (see getrlimit(2)) by creat?

 ing multiple child processes.

 More precisely, if the reset-on-fork flag is set, the following rules apply for subse?

 quently created children:

 * If the calling thread has a scheduling policy of SCHED_FIFO or SCHED_RR, the policy is

 reset to SCHED_OTHER in child processes.

 * If the calling process has a negative nice value, the nice value is reset to zero in

 child processes.

 After the reset-on-fork flag has been enabled, it can be reset only if the thread has the

 CAP_SYS_NICE capability. This flag is disabled in child processes created by fork(2).

 Privileges and resource limits

 In Linux kernels before 2.6.12, only privileged (CAP_SYS_NICE) threads can set a nonzero

 static priority (i.e., set a real-time scheduling policy). The only change that an un?

 privileged thread can make is to set the SCHED_OTHER policy, and this can be done only if

 the effective user ID of the caller matches the real or effective user ID of the target

 thread (i.e., the thread specified by pid) whose policy is being changed.

 A thread must be privileged (CAP_SYS_NICE) in order to set or modify a SCHED_DEADLINE pol?

 icy.

 Since Linux 2.6.12, the RLIMIT_RTPRIO resource limit defines a ceiling on an unprivileged

 thread's static priority for the SCHED_RR and SCHED_FIFO policies. The rules for changing Page 8/14

 scheduling policy and priority are as follows:

 * If an unprivileged thread has a nonzero RLIMIT_RTPRIO soft limit, then it can change

 its scheduling policy and priority, subject to the restriction that the priority cannot

 be set to a value higher than the maximum of its current priority and its RLIMIT_RTPRIO

 soft limit.

 * If the RLIMIT_RTPRIO soft limit is 0, then the only permitted changes are to lower the

 priority, or to switch to a non-real-time policy.

 * Subject to the same rules, another unprivileged thread can also make these changes, as

 long as the effective user ID of the thread making the change matches the real or ef?

 fective user ID of the target thread.

 * Special rules apply for the SCHED_IDLE policy. In Linux kernels before 2.6.39, an un?

 privileged thread operating under this policy cannot change its policy, regardless of

 the value of its RLIMIT_RTPRIO resource limit. In Linux kernels since 2.6.39, an un?

 privileged thread can switch to either the SCHED_BATCH or the SCHED_OTHER policy so

 long as its nice value falls within the range permitted by its RLIMIT_NICE resource

 limit (see getrlimit(2)).

 Privileged (CAP_SYS_NICE) threads ignore the RLIMIT_RTPRIO limit; as with older kernels,

 they can make arbitrary changes to scheduling policy and priority. See getrlimit(2) for

 further information on RLIMIT_RTPRIO.

 Limiting the CPU usage of real-time and deadline processes

 A nonblocking infinite loop in a thread scheduled under the SCHED_FIFO, SCHED_RR, or

 SCHED_DEADLINE policy can potentially block all other threads from accessing the CPU for?

 ever. Prior to Linux 2.6.25, the only way of preventing a runaway real-time process from

 freezing the system was to run (at the console) a shell scheduled under a higher static

 priority than the tested application. This allows an emergency kill of tested real-time

 applications that do not block or terminate as expected.

 Since Linux 2.6.25, there are other techniques for dealing with runaway real-time and

 deadline processes. One of these is to use the RLIMIT_RTTIME resource limit to set a

 ceiling on the CPU time that a real-time process may consume. See getrlimit(2) for de?

 tails.

 Since version 2.6.25, Linux also provides two /proc files that can be used to reserve a

 certain amount of CPU time to be used by non-real-time processes. Reserving CPU time in

 this fashion allows some CPU time to be allocated to (say) a root shell that can be used Page 9/14

 to kill a runaway process. Both of these files specify time values in microseconds:

 /proc/sys/kernel/sched_rt_period_us

 This file specifies a scheduling period that is equivalent to 100% CPU bandwidth.

 The value in this file can range from 1 to INT_MAX, giving an operating range of 1

 microsecond to around 35 minutes. The default value in this file is 1,000,000 (1

 second).

 /proc/sys/kernel/sched_rt_runtime_us

 The value in this file specifies how much of the "period" time can be used by all

 real-time and deadline scheduled processes on the system. The value in this file

 can range from -1 to INT_MAX-1. Specifying -1 makes the run time the same as the

 period; that is, no CPU time is set aside for non-real-time processes (which was

 the Linux behavior before kernel 2.6.25). The default value in this file is

 950,000 (0.95 seconds), meaning that 5% of the CPU time is reserved for processes

 that don't run under a real-time or deadline scheduling policy.

 Response time

 A blocked high priority thread waiting for I/O has a certain response time before it is

 scheduled again. The device driver writer can greatly reduce this response time by using

 a "slow interrupt" interrupt handler.

 Miscellaneous

 Child processes inherit the scheduling policy and parameters across a fork(2). The sched?

 uling policy and parameters are preserved across execve(2).

 Memory locking is usually needed for real-time processes to avoid paging delays; this can

 be done with mlock(2) or mlockall(2).

 The autogroup feature

 Since Linux 2.6.38, the kernel provides a feature known as autogrouping to improve inter?

 active desktop performance in the face of multiprocess, CPU-intensive workloads such as

 building the Linux kernel with large numbers of parallel build processes (i.e., the

 make(1) -j flag).

 This feature operates in conjunction with the CFS scheduler and requires a kernel that is

 configured with CONFIG_SCHED_AUTOGROUP. On a running system, this feature is enabled or

 disabled via the file /proc/sys/kernel/sched_autogroup_enabled; a value of 0 disables the

 feature, while a value of 1 enables it. The default value in this file is 1, unless the

 kernel was booted with the noautogroup parameter. Page 10/14

 A new autogroup is created when a new session is created via setsid(2); this happens, for

 example, when a new terminal window is started. A new process created by fork(2) inherits

 its parent's autogroup membership. Thus, all of the processes in a session are members of

 the same autogroup. An autogroup is automatically destroyed when the last process in the

 group terminates.

 When autogrouping is enabled, all of the members of an autogroup are placed in the same

 kernel scheduler "task group". The CFS scheduler employs an algorithm that equalizes the

 distribution of CPU cycles across task groups. The benefits of this for interactive desk?

 top performance can be described via the following example.

 Suppose that there are two autogroups competing for the same CPU (i.e., presume either a

 single CPU system or the use of taskset(1) to confine all the processes to the same CPU on

 an SMP system). The first group contains ten CPU-bound processes from a kernel build

 started with make -j10. The other contains a single CPU-bound process: a video player.

 The effect of autogrouping is that the two groups will each receive half of the CPU cy?

 cles. That is, the video player will receive 50% of the CPU cycles, rather than just 9%

 of the cycles, which would likely lead to degraded video playback. The situation on an

 SMP system is more complex, but the general effect is the same: the scheduler distributes

 CPU cycles across task groups such that an autogroup that contains a large number of CPU-

 bound processes does not end up hogging CPU cycles at the expense of the other jobs on the

 system.

 A process's autogroup (task group) membership can be viewed via the file /proc/[pid]/auto?

 group:

 $ cat /proc/1/autogroup

 /autogroup-1 nice 0

 This file can also be used to modify the CPU bandwidth allocated to an autogroup. This is

 done by writing a number in the "nice" range to the file to set the autogroup's nice

 value. The allowed range is from +19 (low priority) to -20 (high priority). (Writing

 values outside of this range causes write(2) to fail with the error EINVAL.)

 The autogroup nice setting has the same meaning as the process nice value, but applies to

 distribution of CPU cycles to the autogroup as a whole, based on the relative nice values

 of other autogroups. For a process inside an autogroup, the CPU cycles that it receives

 will be a product of the autogroup's nice value (compared to other autogroups) and the

 process's nice value (compared to other processes in the same autogroup. Page 11/14

 The use of the cgroups(7) CPU controller to place processes in cgroups other than the root

 CPU cgroup overrides the effect of autogrouping.

 The autogroup feature groups only processes scheduled under non-real-time policies

 (SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE). It does not group processes scheduled under

 real-time and deadline policies. Those processes are scheduled according to the rules de?

 scribed earlier.

 The nice value and group scheduling

 When scheduling non-real-time processes (i.e., those scheduled under the SCHED_OTHER,

 SCHED_BATCH, and SCHED_IDLE policies), the CFS scheduler employs a technique known as

 "group scheduling", if the kernel was configured with the CONFIG_FAIR_GROUP_SCHED option

 (which is typical).

 Under group scheduling, threads are scheduled in "task groups". Task groups have a hier?

 archical relationship, rooted under the initial task group on the system, known as the

 "root task group". Task groups are formed in the following circumstances:

 * All of the threads in a CPU cgroup form a task group. The parent of this task group is

 the task group of the corresponding parent cgroup.

 * If autogrouping is enabled, then all of the threads that are (implicitly) placed in an

 autogroup (i.e., the same session, as created by setsid(2)) form a task group. Each

 new autogroup is thus a separate task group. The root task group is the parent of all

 such autogroups.

 * If autogrouping is enabled, then the root task group consists of all processes in the

 root CPU cgroup that were not otherwise implicitly placed into a new autogroup.

 * If autogrouping is disabled, then the root task group consists of all processes in the

 root CPU cgroup.

 * If group scheduling was disabled (i.e., the kernel was configured without CON?

 FIG_FAIR_GROUP_SCHED), then all of the processes on the system are notionally placed in

 a single task group.

 Under group scheduling, a thread's nice value has an effect for scheduling decisions only

 relative to other threads in the same task group. This has some surprising consequences

 in terms of the traditional semantics of the nice value on UNIX systems. In particular,

 if autogrouping is enabled (which is the default in various distributions), then employing

 setpriority(2) or nice(1) on a process has an effect only for scheduling relative to other

 processes executed in the same session (typically: the same terminal window). Page 12/14

 Conversely, for two processes that are (for example) the sole CPU-bound processes in dif?

 ferent sessions (e.g., different terminal windows, each of whose jobs are tied to differ?

 ent autogroups), modifying the nice value of the process in one of the sessions has no ef?

 fect in terms of the scheduler's decisions relative to the process in the other session.

 A possibly useful workaround here is to use a command such as the following to modify the

 autogroup nice value for all of the processes in a terminal session:

 $ echo 10 > /proc/self/autogroup

 Real-time features in the mainline Linux kernel

 Since kernel version 2.6.18, Linux is gradually becoming equipped with real-time capabili?

 ties, most of which are derived from the former realtime-preempt patch set. Until the

 patches have been completely merged into the mainline kernel, they must be installed to

 achieve the best real-time performance. These patches are named:

 patch-kernelversion-rtpatchversion

 and can be downloaded from ?http://www.kernel.org/pub/linux/kernel/projects/rt/?.

 Without the patches and prior to their full inclusion into the mainline kernel, the kernel

 configuration offers only the three preemption classes CONFIG_PREEMPT_NONE, CONFIG_PRE?

 EMPT_VOLUNTARY, and CONFIG_PREEMPT_DESKTOP which respectively provide no, some, and con?

 siderable reduction of the worst-case scheduling latency.

 With the patches applied or after their full inclusion into the mainline kernel, the addi?

 tional configuration item CONFIG_PREEMPT_RT becomes available. If this is selected, Linux

 is transformed into a regular real-time operating system. The FIFO and RR scheduling

 policies are then used to run a thread with true real-time priority and a minimum worst-

 case scheduling latency.

NOTES

 The cgroups(7) CPU controller can be used to limit the CPU consumption of groups of pro?

 cesses.

 Originally, Standard Linux was intended as a general-purpose operating system being able

 to handle background processes, interactive applications, and less demanding real-time ap?

 plications (applications that need to usually meet timing deadlines). Although the Linux

 kernel 2.6 allowed for kernel preemption and the newly introduced O(1) scheduler ensures

 that the time needed to schedule is fixed and deterministic irrespective of the number of

 active tasks, true real-time computing was not possible up to kernel version 2.6.17.

SEE ALSO Page 13/14

 chcpu(1), chrt(1), lscpu(1), ps(1), taskset(1), top(1), getpriority(2), mlock(2),

 mlockall(2), munlock(2), munlockall(2), nice(2), sched_get_priority_max(2),

 sched_get_priority_min(2), sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2),

 sched_rr_get_interval(2), sched_setaffinity(2), sched_setparam(2), sched_setscheduler(2),

 sched_yield(2), setpriority(2), pthread_getaffinity_np(3), pthread_getschedparam(3),

 pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7), cpuset(7)

 Programming for the real world - POSIX.4 by Bill O. Gallmeister, O'Reilly & Associates,

 Inc., ISBN 1-56592-074-0.

 The Linux kernel source files Documentation/scheduler/sched-deadline.txt,

 Documentation/scheduler/sched-rt-group.txt, Documentation/scheduler/sched-design-CFS.txt,

 and Documentation/scheduler/sched-nice-design.txt

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2019-08-02 SCHED(7)

Page 14/14

