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NAME

       sched - overview of CPU scheduling

DESCRIPTION

       Since  Linux  2.6.23,  the default scheduler is CFS, the "Completely Fair Scheduler".  The

       CFS scheduler replaced the earlier "O(1)" scheduler.

   API summary

       Linux provides the following system calls for controlling  the  CPU  scheduling  behavior,

       policy, and priority of processes (or, more precisely, threads).

       nice(2)

              Set a new nice value for the calling thread, and return the new nice value.

       getpriority(2)

              Return  the nice value of a thread, a process group, or the set of threads owned by

              a specified user.

       setpriority(2)

              Set the nice value of a thread, a process group, or the set of threads owned  by  a

              specified user.

       sched_setscheduler(2)

              Set the scheduling policy and parameters of a specified thread.

       sched_getscheduler(2)

              Return the scheduling policy of a specified thread.

       sched_setparam(2)

              Set the scheduling parameters of a specified thread. Page 1/14



       sched_getparam(2)

              Fetch the scheduling parameters of a specified thread.

       sched_get_priority_max(2)

              Return the maximum priority available in a specified scheduling policy.

       sched_get_priority_min(2)

              Return the minimum priority available in a specified scheduling policy.

       sched_rr_get_interval(2)

              Fetch  the  quantum  used  for  threads  that are scheduled under the "round-robin"

              scheduling policy.

       sched_yield(2)

              Cause the caller to relinquish the CPU, so that some other thread be executed.

       sched_setaffinity(2)

              (Linux-specific) Set the CPU affinity of a specified thread.

       sched_getaffinity(2)

              (Linux-specific) Get the CPU affinity of a specified thread.

       sched_setattr(2)

              Set the scheduling policy and parameters of a specified thread.   This  (Linux-spe?

              cific)  system  call  provides  a  superset of the functionality of sched_setsched?

              uler(2) and sched_setparam(2).

       sched_getattr(2)

              Fetch the scheduling policy and parameters of a specified thread.  This (Linux-spe?

              cific)  system  call  provides  a  superset of the functionality of sched_getsched?

              uler(2) and sched_getparam(2).

   Scheduling policies

       The scheduler is the kernel component that decides which runnable thread will be  executed

       by  the CPU next.  Each thread has an associated scheduling policy and a static scheduling

       priority, sched_priority.  The scheduler makes its decisions based  on  knowledge  of  the

       scheduling policy and static priority of all threads on the system.

       For   threads  scheduled  under  one  of  the  normal  scheduling  policies  (SCHED_OTHER,

       SCHED_IDLE, SCHED_BATCH), sched_priority is not used in scheduling decisions (it  must  be

       specified as 0).

       Processes  scheduled  under  one  of  the real-time policies (SCHED_FIFO, SCHED_RR) have a

       sched_priority value in the range 1 (low) to 99 (high).  (As the numbers imply,  real-time Page 2/14



       threads  always have higher priority than normal threads.)  Note well: POSIX.1 requires an

       implementation to support only a minimum 32 distinct priority  levels  for  the  real-time

       policies,  and  some  systems  supply  just  this  minimum.   Portable programs should use

       sched_get_priority_min(2) and sched_get_priority_max(2) to find the  range  of  priorities

       supported for a particular policy.

       Conceptually,  the  scheduler  maintains  a  list  of  runnable  threads for each possible

       sched_priority value.  In order to determine which thread runs next, the  scheduler  looks

       for  the nonempty list with the highest static priority and selects the thread at the head

       of this list.

       A thread's scheduling policy determines where it will be inserted into the list of threads

       with equal static priority and how it will move inside this list.

       All  scheduling  is preemptive: if a thread with a higher static priority becomes ready to

       run, the currently running thread will be preempted and returned to the wait list for  its

       static priority level.  The scheduling policy determines the ordering only within the list

       of runnable threads with equal static priority.

   SCHED_FIFO: First in-first out scheduling

       SCHED_FIFO can be used only with static priorities higher than 0, which means that when  a

       SCHED_FIFO  thread becomes runnable, it will always immediately preempt any currently run?

       ning SCHED_OTHER, SCHED_BATCH, or SCHED_IDLE thread.  SCHED_FIFO is  a  simple  scheduling

       algorithm  without  time  slicing.  For threads scheduled under the SCHED_FIFO policy, the

       following rules apply:

       1) A running SCHED_FIFO thread that has been preempted by another thread of higher  prior?

          ity  will  stay  at  the head of the list for its priority and will resume execution as

          soon as all threads of higher priority are blocked again.

       2) When a blocked SCHED_FIFO thread becomes runnable, it will be inserted at  the  end  of

          the list for its priority.

       3) If    a    call    to   sched_setscheduler(2),   sched_setparam(2),   sched_setattr(2),

          pthread_setschedparam(3), or pthread_setschedprio(3) changes the priority of  the  run?

          ning  or  runnable SCHED_FIFO thread identified by pid the effect on the thread's posi?

          tion in the list depends on the direction of the change to threads priority:

          ?  If the thread's priority is raised, it is placed at the end of the list for its  new

             priority.  As a consequence, it may preempt a currently running thread with the same

             priority. Page 3/14



          ?  If the thread's priority is unchanged, its position in the run list is unchanged.

          ?  If the thread's priority is lowered, it is placed at the front of the list  for  its

             new priority.

          According  to POSIX.1-2008, changes to a thread's priority (or policy) using any mecha?

          nism other than pthread_setschedprio(3) should result in the thread being placed at the

          end of the list for its priority.

       4) A thread calling sched_yield(2) will be put at the end of the list.

       No  other events will move a thread scheduled under the SCHED_FIFO policy in the wait list

       of runnable threads with equal static priority.

       A SCHED_FIFO thread runs until either it is blocked by an I/O request, it is preempted  by

       a higher priority thread, or it calls sched_yield(2).

   SCHED_RR: Round-robin scheduling

       SCHED_RR is a simple enhancement of SCHED_FIFO.  Everything described above for SCHED_FIFO

       also applies to SCHED_RR, except that each thread is allowed to run  only  for  a  maximum

       time  quantum.  If a SCHED_RR thread has been running for a time period equal to or longer

       than the time quantum, it will be put at the end of the list for its priority.  A SCHED_RR

       thread that has been preempted by a higher priority thread and subsequently resumes execu?

       tion as a running thread will complete the unexpired portion of its round-robin time quan?

       tum.  The length of the time quantum can be retrieved using sched_rr_get_interval(2).

   SCHED_DEADLINE: Sporadic task model deadline scheduling

       Since  version  3.14,  Linux provides a deadline scheduling policy (SCHED_DEADLINE).  This

       policy is currently implemented using GEDF (Global Earliest Deadline First) in conjunction

       with  CBS  (Constant  Bandwidth  Server).  To set and fetch this policy and associated at?

       tributes, one must use the Linux-specific  sched_setattr(2)  and  sched_getattr(2)  system

       calls.

       A  sporadic  task  is one that has a sequence of jobs, where each job is activated at most

       once per period.  Each job also has a relative deadline, before which it should finish ex?

       ecution,  and  a  computation time, which is the CPU time necessary for executing the job.

       The moment when a task wakes up because a new job has to be executed is called the arrival

       time  (also  referred to as the request time or release time).  The start time is the time

       at which a task starts its execution.  The absolute deadline is thus  obtained  by  adding

       the relative deadline to the arrival time.

       The following diagram clarifies these terms: Page 4/14



           arrival/wakeup                    absolute deadline

                |    start time                    |

                |        |                         |

                v        v                         v

           -----x--------xooooooooooooooooo--------x--------x---

                         |<- comp. time ->|

                |<------- relative deadline ------>|

                |<-------------- period ------------------->|

       When  setting a SCHED_DEADLINE policy for a thread using sched_setattr(2), one can specify

       three parameters: Runtime, Deadline, and Period.  These parameters do not necessarily cor?

       respond  to the aforementioned terms: usual practice is to set Runtime to something bigger

       than the average computation time (or worst-case execution time for hard real-time tasks),

       Deadline  to  the  relative  deadline,  and  Period  to the period of the task.  Thus, for

       SCHED_DEADLINE scheduling, we have:

           arrival/wakeup                    absolute deadline

                |    start time                    |

                |        |                         |

                v        v                         v

           -----x--------xooooooooooooooooo--------x--------x---

                         |<-- Runtime ------->|

                |<----------- Deadline ----------->|

                |<-------------- Period ------------------->|

       The three deadline-scheduling parameters correspond to the sched_runtime,  sched_deadline,

       and  sched_period  fields of the sched_attr structure; see sched_setattr(2).  These fields

       express values in nanoseconds.  If sched_period is specified as 0, then  it  is  made  the

       same as sched_deadline.

       The kernel requires that:

           sched_runtime <= sched_deadline <= sched_period

       In  addition,  under  the  current  implementation, all of the parameter values must be at

       least 1024 (i.e., just over one microsecond, which is the resolution  of  the  implementa?

       tion),  and less than 2^63.  If any of these checks fails, sched_setattr(2) fails with the

       error EINVAL.

       The CBS guarantees non-interference between tasks, by throttling threads that  attempt  to Page 5/14



       over-run their specified Runtime.

       To ensure deadline scheduling guarantees, the kernel must prevent situations where the set

       of SCHED_DEADLINE threads is not feasible (schedulable) within the given constraints.  The

       kernel thus performs an admittance test when setting or changing SCHED_DEADLINE policy and

       attributes.  This admission test calculates whether the change is feasible; if it is  not,

       sched_setattr(2) fails with the error EBUSY.

       For  example, it is required (but not necessarily sufficient) for the total utilization to

       be less than or equal to the total number of CPUs available, where, since each thread  can

       maximally  run for Runtime per Period, that thread's utilization is its Runtime divided by

       its Period.

       In order to fulfill the guarantees that  are  made  when  a  thread  is  admitted  to  the

       SCHED_DEADLINE policy, SCHED_DEADLINE threads are the highest priority (user controllable)

       threads in the system; if any SCHED_DEADLINE thread  is  runnable,  it  will  preempt  any

       thread scheduled under one of the other policies.

       A call to fork(2) by a thread scheduled under the SCHED_DEADLINE policy fails with the er?

       ror EAGAIN, unless the thread has its reset-on-fork flag set (see below).

       A SCHED_DEADLINE thread that calls sched_yield(2) will yield the current job and wait  for

       a new period to begin.

   SCHED_OTHER: Default Linux time-sharing scheduling

       SCHED_OTHER  can be used at only static priority 0 (i.e., threads under real-time policies

       always have priority over SCHED_OTHER processes).  SCHED_OTHER is the standard Linux time-

       sharing  scheduler  that is intended for all threads that do not require the special real-

       time mechanisms.

       The thread to run is chosen from the static priority 0 list based on  a  dynamic  priority

       that is determined only inside this list.  The dynamic priority is based on the nice value

       (see below) and is increased for each time quantum the thread is ready to run, but  denied

       to run by the scheduler.  This ensures fair progress among all SCHED_OTHER threads.

       In the Linux kernel source code, the SCHED_OTHER policy is actually named SCHED_NORMAL.

   The nice value

       The nice value is an attribute that can be used to influence the CPU scheduler to favor or

       disfavor a process in scheduling decisions.  It affects the scheduling of SCHED_OTHER  and

       SCHED_BATCH  (see below) processes.  The nice value can be modified using nice(2), setpri?

       ority(2), or sched_setattr(2). Page 6/14



       According to POSIX.1, the nice value is a per-process attribute; that is, the threads in a

       process  should share a nice value.  However, on Linux, the nice value is a per-thread at?

       tribute: different threads in the same process may have different nice values.

       The range of the nice value varies across UNIX systems.  On modern Linux, the range is -20

       (high priority) to +19 (low priority).  On some other systems, the range is -20..20.  Very

       early Linux kernels (Before Linux 2.0) had the range -infinity..15.

       The degree to which the nice value affects the relative  scheduling  of  SCHED_OTHER  pro?

       cesses likewise varies across UNIX systems and across Linux kernel versions.

       With  the  advent  of  the CFS scheduler in kernel 2.6.23, Linux adopted an algorithm that

       causes relative differences in nice values to have a much stronger effect.  In the current

       implementation,  each  unit of difference in the nice values of two processes results in a

       factor of 1.25 in the degree to which the scheduler favors the  higher  priority  process.

       This  causes  very low nice values (+19) to truly provide little CPU to a process whenever

       there is any other higher priority load on the system, and makes high  nice  values  (-20)

       deliver most of the CPU to applications that require it (e.g., some audio applications).

       On Linux, the RLIMIT_NICE resource limit can be used to define a limit to which an unpriv?

       ileged process's nice value can be raised; see setrlimit(2) for details.

       For further details on the nice value, see the subsections on the  autogroup  feature  and

       group scheduling, below.

   SCHED_BATCH: Scheduling batch processes

       (Since  Linux 2.6.16.)  SCHED_BATCH can be used only at static priority 0.  This policy is

       similar to SCHED_OTHER in that it schedules the thread according to its  dynamic  priority

       (based on the nice value).  The difference is that this policy will cause the scheduler to

       always assume that the thread is CPU-intensive.  Consequently, the scheduler will apply  a

       small  scheduling  penalty  with respect to wakeup behavior, so that this thread is mildly

       disfavored in scheduling decisions.

       This policy is useful for workloads that are noninteractive, but  do  not  want  to  lower

       their  nice  value,  and for workloads that want a deterministic scheduling policy without

       interactivity causing extra preemptions (between the workload's tasks).

   SCHED_IDLE: Scheduling very low priority jobs

       (Since Linux 2.6.23.)  SCHED_IDLE can be used only at static priority 0; the process  nice

       value has no influence for this policy.

       This  policy is intended for running jobs at extremely low priority (lower even than a +19 Page 7/14



       nice value with the SCHED_OTHER or SCHED_BATCH policies).

   Resetting scheduling policy for child processes

       Each thread has a reset-on-fork scheduling flag.  When this flag is set, children  created

       by  fork(2)  do not inherit privileged scheduling policies.  The reset-on-fork flag can be

       set by either:

       *  ORing  the  SCHED_RESET_ON_FORK  flag   into   the   policy   argument   when   calling

          sched_setscheduler(2) (since Linux 2.6.32); or

       *  specifying the SCHED_FLAG_RESET_ON_FORK flag in attr.sched_flags when calling sched_se?

          tattr(2).

       Note that the constants used with these two APIs have different names.  The state  of  the

       reset-on-fork   flag   can   analogously  be  retrieved  using  sched_getscheduler(2)  and

       sched_getattr(2).

       The reset-on-fork feature is intended for media-playback applications, and can be used  to

       prevent applications evading the RLIMIT_RTTIME resource limit (see getrlimit(2)) by creat?

       ing multiple child processes.

       More precisely, if the reset-on-fork flag is set, the following  rules  apply  for  subse?

       quently created children:

       *  If  the calling thread has a scheduling policy of SCHED_FIFO or SCHED_RR, the policy is

          reset to SCHED_OTHER in child processes.

       *  If the calling process has a negative nice value, the nice value is reset  to  zero  in

          child processes.

       After  the reset-on-fork flag has been enabled, it can be reset only if the thread has the

       CAP_SYS_NICE capability.  This flag is disabled in child processes created by fork(2).

   Privileges and resource limits

       In Linux kernels before 2.6.12, only privileged (CAP_SYS_NICE) threads can set  a  nonzero

       static  priority  (i.e.,  set a real-time scheduling policy).  The only change that an un?

       privileged thread can make is to set the SCHED_OTHER policy, and this can be done only  if

       the  effective  user  ID of the caller matches the real or effective user ID of the target

       thread (i.e., the thread specified by pid) whose policy is being changed.

       A thread must be privileged (CAP_SYS_NICE) in order to set or modify a SCHED_DEADLINE pol?

       icy.

       Since  Linux 2.6.12, the RLIMIT_RTPRIO resource limit defines a ceiling on an unprivileged

       thread's static priority for the SCHED_RR and SCHED_FIFO policies.  The rules for changing Page 8/14



       scheduling policy and priority are as follows:

       *  If  an  unprivileged  thread has a nonzero RLIMIT_RTPRIO soft limit, then it can change

          its scheduling policy and priority, subject to the restriction that the priority cannot

          be set to a value higher than the maximum of its current priority and its RLIMIT_RTPRIO

          soft limit.

       *  If the RLIMIT_RTPRIO soft limit is 0, then the only permitted changes are to lower  the

          priority, or to switch to a non-real-time policy.

       *  Subject  to the same rules, another unprivileged thread can also make these changes, as

          long as the effective user ID of the thread making the change matches the real  or  ef?

          fective user ID of the target thread.

       *  Special  rules apply for the SCHED_IDLE policy.  In Linux kernels before 2.6.39, an un?

          privileged thread operating under this policy cannot change its policy,  regardless  of

          the  value  of its RLIMIT_RTPRIO resource limit.  In Linux kernels since 2.6.39, an un?

          privileged thread can switch to either the SCHED_BATCH or  the  SCHED_OTHER  policy  so

          long  as  its  nice  value falls within the range permitted by its RLIMIT_NICE resource

          limit (see getrlimit(2)).

       Privileged (CAP_SYS_NICE) threads ignore the RLIMIT_RTPRIO limit; as with  older  kernels,

       they  can  make arbitrary changes to scheduling policy and priority.  See getrlimit(2) for

       further information on RLIMIT_RTPRIO.

   Limiting the CPU usage of real-time and deadline processes

       A nonblocking infinite loop in a thread  scheduled  under  the  SCHED_FIFO,  SCHED_RR,  or

       SCHED_DEADLINE  policy can potentially block all other threads from accessing the CPU for?

       ever.  Prior to Linux 2.6.25, the only way of preventing a runaway real-time process  from

       freezing  the  system  was to run (at the console) a shell scheduled under a higher static

       priority than the tested application.  This allows an emergency kill of  tested  real-time

       applications that do not block or terminate as expected.

       Since  Linux  2.6.25,  there  are  other techniques for dealing with runaway real-time and

       deadline processes.  One of these is to use the RLIMIT_RTTIME  resource  limit  to  set  a

       ceiling  on  the  CPU time that a real-time process may consume.  See getrlimit(2) for de?

       tails.

       Since version 2.6.25, Linux also provides two /proc files that can be used  to  reserve  a

       certain  amount  of CPU time to be used by non-real-time processes.  Reserving CPU time in

       this fashion allows some CPU time to be allocated to (say) a root shell that can  be  used Page 9/14



       to kill a runaway process.  Both of these files specify time values in microseconds:

       /proc/sys/kernel/sched_rt_period_us

              This  file  specifies a scheduling period that is equivalent to 100% CPU bandwidth.

              The value in this file can range from 1 to INT_MAX, giving an operating range of  1

              microsecond  to  around 35 minutes.  The default value in this file is 1,000,000 (1

              second).

       /proc/sys/kernel/sched_rt_runtime_us

              The value in this file specifies how much of the "period" time can be used  by  all

              real-time  and  deadline scheduled processes on the system.  The value in this file

              can range from -1 to INT_MAX-1.  Specifying -1 makes the run time the same  as  the

              period;  that  is,  no CPU time is set aside for non-real-time processes (which was

              the Linux behavior before kernel 2.6.25).   The  default  value  in  this  file  is

              950,000  (0.95  seconds), meaning that 5% of the CPU time is reserved for processes

              that don't run under a real-time or deadline scheduling policy.

   Response time

       A blocked high priority thread waiting for I/O has a certain response time  before  it  is

       scheduled  again.  The device driver writer can greatly reduce this response time by using

       a "slow interrupt" interrupt handler.

   Miscellaneous

       Child processes inherit the scheduling policy and parameters across a fork(2).  The sched?

       uling policy and parameters are preserved across execve(2).

       Memory  locking is usually needed for real-time processes to avoid paging delays; this can

       be done with mlock(2) or mlockall(2).

   The autogroup feature

       Since Linux 2.6.38, the kernel provides a feature known as autogrouping to improve  inter?

       active  desktop  performance  in the face of multiprocess, CPU-intensive workloads such as

       building the Linux kernel with large  numbers  of  parallel  build  processes  (i.e.,  the

       make(1) -j flag).

       This  feature operates in conjunction with the CFS scheduler and requires a kernel that is

       configured with CONFIG_SCHED_AUTOGROUP.  On a running system, this feature is  enabled  or

       disabled  via the file /proc/sys/kernel/sched_autogroup_enabled; a value of 0 disables the

       feature, while a value of 1 enables it.  The default value in this file is 1,  unless  the

       kernel was booted with the noautogroup parameter. Page 10/14



       A  new autogroup is created when a new session is created via setsid(2); this happens, for

       example, when a new terminal window is started.  A new process created by fork(2) inherits

       its parent's autogroup membership.  Thus, all of the processes in a session are members of

       the same autogroup.  An autogroup is automatically destroyed when the last process in  the

       group terminates.

       When  autogrouping  is  enabled, all of the members of an autogroup are placed in the same

       kernel scheduler "task group".  The CFS scheduler employs an algorithm that equalizes  the

       distribution of CPU cycles across task groups.  The benefits of this for interactive desk?

       top performance can be described via the following example.

       Suppose that there are two autogroups competing for the same CPU (i.e., presume  either  a

       single CPU system or the use of taskset(1) to confine all the processes to the same CPU on

       an SMP system).  The first group contains ten CPU-bound  processes  from  a  kernel  build

       started  with  make -j10.   The other contains a single CPU-bound process: a video player.

       The effect of autogrouping is that the two groups will each receive half of  the  CPU  cy?

       cles.   That  is, the video player will receive 50% of the CPU cycles, rather than just 9%

       of the cycles, which would likely lead to degraded video playback.  The  situation  on  an

       SMP  system is more complex, but the general effect is the same: the scheduler distributes

       CPU cycles across task groups such that an autogroup that contains a large number of  CPU-

       bound processes does not end up hogging CPU cycles at the expense of the other jobs on the

       system.

       A process's autogroup (task group) membership can be viewed via the file /proc/[pid]/auto?

       group:

           $ cat /proc/1/autogroup

           /autogroup-1 nice 0

       This file can also be used to modify the CPU bandwidth allocated to an autogroup.  This is

       done by writing a number in the "nice" range to the  file  to  set  the  autogroup's  nice

       value.   The  allowed  range  is from +19 (low priority) to -20 (high priority).  (Writing

       values outside of this range causes write(2) to fail with the error EINVAL.)

       The autogroup nice setting has the same meaning as the process nice value, but applies  to

       distribution  of CPU cycles to the autogroup as a whole, based on the relative nice values

       of other autogroups.  For a process inside an autogroup, the CPU cycles that  it  receives

       will  be  a  product  of the autogroup's nice value (compared to other autogroups) and the
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       The use of the cgroups(7) CPU controller to place processes in cgroups other than the root

       CPU cgroup overrides the effect of autogrouping.

       The  autogroup  feature  groups  only  processes  scheduled  under  non-real-time policies

       (SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE).  It does not group processes  scheduled  under

       real-time and deadline policies.  Those processes are scheduled according to the rules de?

       scribed earlier.

   The nice value and group scheduling

       When scheduling non-real-time processes (i.e.,  those  scheduled  under  the  SCHED_OTHER,

       SCHED_BATCH,  and  SCHED_IDLE  policies),  the  CFS scheduler employs a technique known as

       "group scheduling", if the kernel was configured with the  CONFIG_FAIR_GROUP_SCHED  option

       (which is typical).

       Under  group scheduling, threads are scheduled in "task groups".  Task groups have a hier?

       archical relationship, rooted under the initial task group on the  system,  known  as  the

       "root task group".  Task groups are formed in the following circumstances:

       *  All of the threads in a CPU cgroup form a task group.  The parent of this task group is

          the task group of the corresponding parent cgroup.

       *  If autogrouping is enabled, then all of the threads that are (implicitly) placed in  an

          autogroup  (i.e.,  the  same session, as created by setsid(2)) form a task group.  Each

          new autogroup is thus a separate task group.  The root task group is the parent of  all

          such autogroups.

       *  If  autogrouping  is enabled, then the root task group consists of all processes in the

          root CPU cgroup that were not otherwise implicitly placed into a new autogroup.

       *  If autogrouping is disabled, then the root task group consists of all processes in  the

          root CPU cgroup.

       *  If  group  scheduling  was  disabled  (i.e.,  the  kernel  was  configured without CON?

          FIG_FAIR_GROUP_SCHED), then all of the processes on the system are notionally placed in

          a single task group.

       Under  group scheduling, a thread's nice value has an effect for scheduling decisions only

       relative to other threads in the same task group.  This has some  surprising  consequences

       in  terms  of the traditional semantics of the nice value on UNIX systems.  In particular,

       if autogrouping is enabled (which is the default in various distributions), then employing

       setpriority(2) or nice(1) on a process has an effect only for scheduling relative to other
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       Conversely, for two processes that are (for example) the sole CPU-bound processes in  dif?

       ferent  sessions (e.g., different terminal windows, each of whose jobs are tied to differ?

       ent autogroups), modifying the nice value of the process in one of the sessions has no ef?

       fect  in  terms of the scheduler's decisions relative to the process in the other session.

       A possibly useful workaround here is to use a command such as the following to modify  the

       autogroup nice value for all of the processes in a terminal session:

           $ echo 10 > /proc/self/autogroup

   Real-time features in the mainline Linux kernel

       Since kernel version 2.6.18, Linux is gradually becoming equipped with real-time capabili?

       ties, most of which are derived from the former realtime-preempt  patch  set.   Until  the

       patches  have  been  completely merged into the mainline kernel, they must be installed to

       achieve the best real-time performance.  These patches are named:

           patch-kernelversion-rtpatchversion

       and can be downloaded from ?http://www.kernel.org/pub/linux/kernel/projects/rt/?.

       Without the patches and prior to their full inclusion into the mainline kernel, the kernel

       configuration  offers  only  the three preemption classes CONFIG_PREEMPT_NONE, CONFIG_PRE?

       EMPT_VOLUNTARY, and CONFIG_PREEMPT_DESKTOP which respectively provide no, some,  and  con?

       siderable reduction of the worst-case scheduling latency.

       With the patches applied or after their full inclusion into the mainline kernel, the addi?

       tional configuration item CONFIG_PREEMPT_RT becomes available.  If this is selected, Linux

       is  transformed  into  a  regular  real-time operating system.  The FIFO and RR scheduling

       policies are then used to run a thread with true real-time priority and a  minimum  worst-

       case scheduling latency.

NOTES

       The  cgroups(7)  CPU controller can be used to limit the CPU consumption of groups of pro?

       cesses.

       Originally, Standard Linux was intended as a general-purpose operating system  being  able

       to handle background processes, interactive applications, and less demanding real-time ap?

       plications (applications that need to usually meet timing deadlines).  Although the  Linux

       kernel  2.6  allowed for kernel preemption and the newly introduced O(1) scheduler ensures

       that the time needed to schedule is fixed and deterministic irrespective of the number  of

       active tasks, true real-time computing was not possible up to kernel version 2.6.17.
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       chcpu(1), chrt(1), lscpu(1), ps(1), taskset(1), top(1), getpriority(2), mlock(2),

       mlockall(2), munlock(2), munlockall(2), nice(2), sched_get_priority_max(2),

       sched_get_priority_min(2), sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2),

       sched_rr_get_interval(2), sched_setaffinity(2), sched_setparam(2), sched_setscheduler(2),

       sched_yield(2), setpriority(2), pthread_getaffinity_np(3), pthread_getschedparam(3),

       pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7), cpuset(7)

       Programming for the real world - POSIX.4 by Bill O. Gallmeister,  O'Reilly  &  Associates,

       Inc., ISBN 1-56592-074-0.

       The     Linux     kernel    source    files    Documentation/scheduler/sched-deadline.txt,

       Documentation/scheduler/sched-rt-group.txt,  Documentation/scheduler/sched-design-CFS.txt,

       and Documentation/scheduler/sched-nice-design.txt

COLOPHON

       This  page  is  part of release 5.10 of the Linux man-pages project.  A description of the

       project, information about reporting bugs, and the latest version of  this  page,  can  be

       found at https://www.kernel.org/doc/man-pages/.
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