PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'sched_getaffinity.2'
$ man sched_getaffinity.2
SCHED_SETAFFINITY(2) Linux Programmer's Manual SCHED_SETAFFINITY(2)
NAME
sched_setaffinity, sched_getaffinity - set and get a thread's CPU affinity mask
SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>
int sched_setaffinity(pid_t pid, size_t cpusetsize,
const cpu_set_t *mask);
int sched_getaffinity(pid_t pid, size_t cpusetsize,
cpu_set_t *mask);
DESCRIPTION
A thread's CPU affinity mask determines the set of CPUs on which it is eligible to run.
On a multiprocessor system, setting the CPU affinity mask can be used to obtain perfor?
mance benefits. For example, by dedicating one CPU to a particular thread (i.e., setting
the affinity mask of that thread to specify a single CPU, and setting the affinity mask of
all other threads to exclude that CPU), it is possible to ensure maximum execution speed
for that thread. Restricting a thread to run on a single CPU also avoids the performance
cost caused by the cache invalidation that occurs when a thread ceases to execute on one
CPU and then recommences execution on a different CPU.
A CPU affinity mask is represented by the cpu_set_t structure, a "CPU set", pointed to by
mask. A set of macros for manipulating CPU sets is described in CPU_SET(3).
sched_setaffinity() sets the CPU affinity mask of the thread whose ID is pid to the value

specified by mask. If pid is zero, then the calling thread is used. The argument cpuset? Page 1/7

size is the length (in bytes) of the data pointed to by mask. Normally this argument

would be specified as sizeof(cpu_set t).

If the thread specified by pid is not currently running on one of the CPUs specified in

mask, then that thread is migrated to one of the CPUs specified in mask.

sched_getaffinity() writes the affinity mask of the thread whose ID is pid into the
cpu_set_t structure pointed to by mask. The cpusetsize argument specifies the size (in
bytes) of mask. If pid is zero, then the mask of the calling thread is returned.

RETURN VALUE

On success, sched_setaffinity() and sched_getaffinity() return 0 (but see "C library/ker?

nel differences" below, which notes that the underlying sched_getaffinity() differs in its

return value). On error, -1 is returned, and errno is set appropriately.
ERRORS

EFAULT A supplied memory address was invalid.

EINVAL The affinity bit mask mask contains no processors that are currently physically on
the system and permitted to the thread according to any restrictions that may be
imposed by cpuset cgroups or the "cpuset" mechanism described in cpuset(7).

EINVAL (sched_getaffinity() and, in kernels before 2.6.9, sched_setaffinity()) cpusetsize
is smaller than the size of the affinity mask used by the kernel.

EPERM (sched_setaffinity()) The calling thread does not have appropriate privileges. The
caller needs an effective user ID equal to the real user ID or effective user ID of
the thread identified by pid, or it must possess the CAP_SYS_NICE capability in the
user namespace of the thread pid.

ESRCH The thread whose ID is pid could not be found.

VERSIONS
The CPU affinity system calls were introduced in Linux kernel 2.5.8. The system call
wrappers were introduced in glibc 2.3. Initially, the glibc interfaces included a cpuset?
size argument, typed as unsigned int. In glibc 2.3.3, the cpusetsize argument was re?
moved, but was then restored in glibc 2.3.4, with type size_t.
CONFORMING TO
These system calls are Linux-specific.
NOTES
After a call to sched_setaffinity(), the set of CPUs on which the thread will actually run

is the intersection of the set specified in the mask argument and the set of CPUs actually Page 2/7

present on the system. The system may further restrict the set of CPUs on which the
thread runs if the "cpuset" mechanism described in cpuset(7) is being used. These re?
strictions on the actual set of CPUs on which the thread will run are silently imposed by
the kernel.
There are various ways of determining the number of CPUs available on the system, includ?
ing: inspecting the contents of /proc/cpuinfo; using sysconf(3) to obtain the values of
the _SC_NPROCESSORS_CONF and _SC_NPROCESSORS_ONLN parameters; and inspecting the list of
CPU directories under /sys/devices/system/cpul.
sched(7) has a description of the Linux scheduling scheme.
The affinity mask is a per-thread attribute that can be adjusted independently for each of
the threads in a thread group. The value returned from a call to gettid(2) can be passed
in the argument pid. Specifying pid as 0 will set the attribute for the calling thread,
and passing the value returned from a call to getpid(2) will set the attribute for the
main thread of the thread group. (If you are using the POSIX threads API, then use
pthread_setaffinity np(3) instead of sched_setaffinity().)
The isolcpus boot option can be used to isolate one or more CPUs at boot time, so that no
processes are scheduled onto those CPUs. Following the use of this boot option, the only
way to schedule processes onto the isolated CPUs is via sched_setaffinity() or the
cpuset(7) mechanism. For further information, see the kernel source file Documenta?
tion/admin-guide/kernel-parameters.txt. As noted in that file, isolcpus is the preferred
mechanism of isolating CPUs (versus the alternative of manually setting the CPU affinity
of all processes on the system).
A child created via fork(2) inherits its parent's CPU affinity mask. The affinity mask is
preserved across an execve(2).

C library/kernel differences
This manual page describes the glibc interface for the CPU affinity calls. The actual
system call interface is slightly different, with the mask being typed as unsigned long *,
reflecting the fact that the underlying implementation of CPU sets is a simple bit mask.
On success, the raw sched_getaffinity() system call returns the number of bytes placed
copied into the mask buffer; this will be the minimum of cpusetsize and the size (in
bytes) of the cpumask_t data type that is used internally by the kernel to represent the
CPU set bit mask.

Handling systems with large CPU affinity masks Page 3/7

The underlying system calls (which represent CPU masks as bit masks of type unsigned
long *) impose no restriction on the size of the CPU mask. However, the cpu_set t data
type used by glibc has a fixed size of 128 bytes, meaning that the maximum CPU number that
can be represented is 1023. If the kernel CPU affinity mask is larger than 1024, then
calls of the form:

sched_getaffinity(pid, sizeof(cpu_set_t), &mask);
fail with the error EINVAL, the error produced by the underlying system call for the case
where the mask size specified in cpusetsize is smaller than the size of the affinity mask
used by the kernel. (Depending on the system CPU topology, the kernel affinity mask can
be substantially larger than the number of active CPUs in the system.)
When working on systems with large kernel CPU affinity masks, one must dynamically allo?
cate the mask argument (see CPU_ALLOC(3)). Currently, the only way to do this is by prob?
ing for the size of the required mask using sched_getaffinity() calls with increasing mask
sizes (until the call does not fail with the error EINVAL).
Be aware that CPU_ALLOC(3) may allocate a slightly larger CPU set than requested (because
CPU sets are implemented as bit masks allocated in units of sizeof(long)). Consequently,
sched_getaffinity() can set bits beyond the requested allocation size, because the kernel
sees a few additional bits. Therefore, the caller should iterate over the bits in the re?
turned set, counting those which are set, and stop upon reaching the value returned by
CPU_COUNT(3) (rather than iterating over the number of bits requested to be allocated).

EXAMPLES

The program below creates a child process. The parent and child then each assign them?
selves to a specified CPU and execute identical loops that consume some CPU time. Before
terminating, the parent waits for the child to complete. The program takes three command-
line arguments: the CPU number for the parent, the CPU number for the child, and the num?
ber of loop iterations that both processes should perform.
As the sample runs below demonstrate, the amount of real and CPU time consumed when run?
ning the program will depend on intra-core caching effects and whether the processes are
using the same CPU.
We first employ Iscpu(1) to determine that this (x86) system has two cores, each with two
CPUs:

$ Iscpu | egrep -i 'core.*:|socket’

Thread(s) per core: 2 Page 4/7

Core(s) per socket: 2
Socket(s): 1
We then time the operation of the example program for three cases: both processes running
on the same CPU; both processes running on different CPUs on the same core; and both pro?
cesses running on different CPUs on different cores.
$ time -p ./a.out 0 0 200000000
real 14.75
user 3.02
sys 11.73
$ time -p ./a.out 0 1 100000000
real 11.52
user 3.98
sys 19.06
$ time -p ./a.out 0 3 200000000
real 7.89
user 3.29
sys 12.07
Program source
#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/wait.h>
#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \
} while (0)
int
main(int argc, char *argv[])
{
cpu_set_t set;
int parentCPU, childCPU;
int nloops;

if (argc !=4) { Page 5/7

fprintf(stderr, "Usage: %s parent-cpu child-cpu num-loops\n“,
argv[0]);
exit(EXIT_FAILURE);
}
parentCPU = atoi(argv[1]);
childCPU = atoi(argv[2]);
nloops = atoi(argv[3]);
CPU_ZERO(&set);
switch (fork()) {
case -1: I* Error */
errExit("fork");
case O: * Child */
CPU_SET(childCPU, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
errExit("sched_setaffinity");
for (intj = 0; j < nloops; j++)
getppid();
exit(EXIT_SUCCESS);
default: [* Parent */
CPU_SET(parentCPU, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)
errExit("sched_setaffinity");
for (intj = 0; j < nloops; j++)
getppid();
wait(NULL); /* Wait for child to terminate */

exit(EXIT_SUCCESS);

}
SEE ALSO

Iscpu(l), nproc(1), taskset(1), clone(2), getcpu(2), getpriority(2), gettid(2), nice(2),
sched_get priority_max(2), sched_get_priority_min(2), sched_getscheduler(2),
sched_setscheduler(2), setpriority(2), CPU_SET(3), get_nprocs(3),

pthread_setaffinity np(3), sched_getcpu(3), capabilities(7), cpuset(7), sched(7),

Page 6/7

numactl(8)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SCHED_SETAFFINITY(2)

Page 7/7

