
Rocky Enterprise Linux 9.2 Manual Pages on command 'sem_trywait.3'

$ man sem_trywait.3

SEM_WAIT(3) Linux Programmer's Manual SEM_WAIT(3)

NAME

 sem_wait, sem_timedwait, sem_trywait - lock a semaphore

SYNOPSIS

 #include <semaphore.h>

 int sem_wait(sem_t *sem);

 int sem_trywait(sem_t *sem);

 int sem_timedwait(sem_t *sem, const struct timespec *abs_timeout);

 Link with -pthread.

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sem_timedwait(): _POSIX_C_SOURCE >= 200112L

DESCRIPTION

 sem_wait() decrements (locks) the semaphore pointed to by sem. If the semaphore's value

 is greater than zero, then the decrement proceeds, and the function returns, immediately.

 If the semaphore currently has the value zero, then the call blocks until either it be?

 comes possible to perform the decrement (i.e., the semaphore value rises above zero), or a

 signal handler interrupts the call.

 sem_trywait() is the same as sem_wait(), except that if the decrement cannot be immedi?

 ately performed, then call returns an error (errno set to EAGAIN) instead of blocking.

 sem_timedwait() is the same as sem_wait(), except that abs_timeout specifies a limit on

 the amount of time that the call should block if the decrement cannot be immediately per?

 formed. The abs_timeout argument points to a structure that specifies an absolute timeout

 in seconds and nanoseconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). This struc? Page 1/5

 ture is defined as follows:

 struct timespec {

 time_t tv_sec; /* Seconds */

 long tv_nsec; /* Nanoseconds [0 .. 999999999] */

 };

 If the timeout has already expired by the time of the call, and the semaphore could not be

 locked immediately, then sem_timedwait() fails with a timeout error (errno set to ETIMED?

 OUT).

 If the operation can be performed immediately, then sem_timedwait() never fails with a

 timeout error, regardless of the value of abs_timeout. Furthermore, the validity of

 abs_timeout is not checked in this case.

RETURN VALUE

 All of these functions return 0 on success; on error, the value of the semaphore is left

 unchanged, -1 is returned, and errno is set to indicate the error.

ERRORS

 EINTR The call was interrupted by a signal handler; see signal(7).

 EINVAL sem is not a valid semaphore.

 The following additional error can occur for sem_trywait():

 EAGAIN The operation could not be performed without blocking (i.e., the semaphore cur?

 rently has the value zero).

 The following additional errors can occur for sem_timedwait():

 EINVAL The value of abs_timeout.tv_nsecs is less than 0, or greater than or equal to 1000

 million.

 ETIMEDOUT

 The call timed out before the semaphore could be locked.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ???

 ?Interface ? Attribute ? Value ?

 ???

 ?sem_wait(), sem_trywait(), ? Thread safety ? MT-Safe ?

 ?sem_timedwait() ? ? ?

 ??? Page 2/5

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

EXAMPLES

 The (somewhat trivial) program shown below operates on an unnamed semaphore. The program

 expects two command-line arguments. The first argument specifies a seconds value that is

 used to set an alarm timer to generate a SIGALRM signal. This handler performs a

 sem_post(3) to increment the semaphore that is being waited on in main() using sem_timed?

 wait(). The second command-line argument specifies the length of the timeout, in seconds,

 for sem_timedwait(). The following shows what happens on two different runs of the pro?

 gram:

 $./a.out 2 3

 About to call sem_timedwait()

 sem_post() from handler

 sem_timedwait() succeeded

 $./a.out 2 1

 About to call sem_timedwait()

 sem_timedwait() timed out

 Program source

 #include <unistd.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <semaphore.h>

 #include <time.h>

 #include <assert.h>

 #include <errno.h>

 #include <signal.h>

 sem_t sem;

 #define handle_error(msg) \

 do { perror(msg); exit(EXIT_FAILURE); } while (0)

 static void

 handler(int sig)

 {

 write(STDOUT_FILENO, "sem_post() from handler\n", 24); Page 3/5

 if (sem_post(&sem) == -1) {

 write(STDERR_FILENO, "sem_post() failed\n", 18);

 _exit(EXIT_FAILURE);

 }

 }

 int

 main(int argc, char *argv[])

 {

 struct sigaction sa;

 struct timespec ts;

 int s;

 if (argc != 3) {

 fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

 argv[0]);

 exit(EXIT_FAILURE);

 }

 if (sem_init(&sem, 0, 0) == -1)

 handle_error("sem_init");

 /* Establish SIGALRM handler; set alarm timer using argv[1] */

 sa.sa_handler = handler;

 sigemptyset(&sa.sa_mask);

 sa.sa_flags = 0;

 if (sigaction(SIGALRM, &sa, NULL) == -1)

 handle_error("sigaction");

 alarm(atoi(argv[1]));

 /* Calculate relative interval as current time plus

 number of seconds given argv[2] */

 if (clock_gettime(CLOCK_REALTIME, &ts) == -1)

 handle_error("clock_gettime");

 ts.tv_sec += atoi(argv[2]);

 printf("main() about to call sem_timedwait()\n");

 while ((s = sem_timedwait(&sem, &ts)) == -1 && errno == EINTR)

 continue; /* Restart if interrupted by handler */ Page 4/5

 /* Check what happened */

 if (s == -1) {

 if (errno == ETIMEDOUT)

 printf("sem_timedwait() timed out\n");

 else

 perror("sem_timedwait");

 } else

 printf("sem_timedwait() succeeded\n");

 exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);

 }

SEE ALSO

 clock_gettime(2), sem_getvalue(3), sem_post(3), sem_overview(7), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SEM_WAIT(3)

Page 5/5

