
Rocky Enterprise Linux 9.2 Manual Pages on command 'setns.2'

$ man setns.2

SETNS(2) Linux Programmer's Manual SETNS(2)

NAME

 setns - reassociate thread with a namespace

SYNOPSIS

 #define _GNU_SOURCE /* See feature_test_macros(7) */

 #include <sched.h>

 int setns(int fd, int nstype);

DESCRIPTION

 The setns() system call allows the calling thread to move into different namespaces. The

 fd argument is one of the following:

 ? a file descriptor referring to one of the magic links in a /proc/[pid]/ns/ directory (or

 a bind mount to such a link);

 ? a PID file descriptor (see pidfd_open(2)).

 The nstype argument is interpreted differently in each case.

 fd refers to a /proc/[pid]/ns/ link

 If fd refers to a /proc/[pid]/ns/ link, then setns() reassociates the calling thread with

 the namespace associated with that link, subject to any constraints imposed by the nstype

 argument. In this usage, each call to setns() changes just one of the caller's namespace

 memberships.

 The nstype argument specifies which type of namespace the calling thread may be reassoci?

 ated with. This argument can have one of the following values:

 0 Allow any type of namespace to be joined.

 CLONE_NEWCGROUP (since Linux 4.6) Page 1/7

 fd must refer to a cgroup namespace.

 CLONE_NEWIPC (since Linux 3.0)

 fd must refer to an IPC namespace.

 CLONE_NEWNET (since Linux 3.0)

 fd must refer to a network namespace.

 CLONE_NEWNS (since Linux 3.8)

 fd must refer to a mount namespace.

 CLONE_NEWPID (since Linux 3.8)

 fd must refer to a descendant PID namespace.

 CLONE_NEWTIME (since Linux 5.8)

 fd must refer to a time namespace.

 CLONE_NEWUSER (since Linux 3.8)

 fd must refer to a user namespace.

 CLONE_NEWUTS (since Linux 3.0)

 fd must refer to a UTS namespace.

 Specifying nstype as 0 suffices if the caller knows (or does not care) what type of name?

 space is referred to by fd. Specifying a nonzero value for nstype is useful if the caller

 does not know what type of namespace is referred to by fd and wants to ensure that the

 namespace is of a particular type. (The caller might not know the type of the namespace

 referred to by fd if the file descriptor was opened by another process and, for example,

 passed to the caller via a UNIX domain socket.)

 fd is a PID file descriptor

 Since Linux 5.8, fd may refer to a PID file descriptor obtained from pidfd_open(2) or

 clone(3). In this usage, setns() atomically moves the calling thread into one or more of

 the same namespaces as the thread referred to by fd.

 The nstype argument is a bit mask specified by ORing together one or more of the

 CLONE_NEW* namespace constants listed above. The caller is moved into each of the target

 thread's namespaces that is specified in nstype; the caller's memberships in the remaining

 namespaces are left unchanged.

 For example, the following code would move the caller into the same user, network, and UTS

 namespaces as PID 1234, but would leave the caller's other namespace memberships un?

 changed:

 int fd = pidfd_open(1234, 0); Page 2/7

 setns(fd, CLONE_NEWUSER | CLONE_NEWNET | CLONE_NEWUTS);

 Details for specific namespace types

 Note the following details and restrictions when reassociating with specific namespace

 types:

 User namespaces

 A process reassociating itself with a user namespace must have the CAP_SYS_ADMIN

 capability in the target user namespace. (This necessarily implies that it is only

 possible to join a descendant user namespace.) Upon successfully joining a user

 namespace, a process is granted all capabilities in that namespace, regardless of

 its user and group IDs.

 A multithreaded process may not change user namespace with setns().

 It is not permitted to use setns() to reenter the caller's current user namespace.

 This prevents a caller that has dropped capabilities from regaining those capabili?

 ties via a call to setns().

 For security reasons, a process can't join a new user namespace if it is sharing

 filesystem-related attributes (the attributes whose sharing is controlled by the

 clone(2) CLONE_FS flag) with another process.

 For further details on user namespaces, see user_namespaces(7).

 Mount namespaces

 Changing the mount namespace requires that the caller possess both CAP_SYS_CHROOT

 and CAP_SYS_ADMIN capabilities in its own user namespace and CAP_SYS_ADMIN in the

 user namespace that owns the target mount namespace.

 A process can't join a new mount namespace if it is sharing filesystem-related at?

 tributes (the attributes whose sharing is controlled by the clone(2) CLONE_FS flag)

 with another process.

 See user_namespaces(7) for details on the interaction of user namespaces and mount

 namespaces.

 PID namespaces

 In order to reassociate itself with a new PID namespace, the caller must have the

 CAP_SYS_ADMIN capability both in its own user namespace and in the user namespace

 that owns the target PID namespace.

 Reassociating the PID namespace has somewhat different from other namespace types.

 Reassociating the calling thread with a PID namespace changes only the PID name? Page 3/7

 space that subsequently created child processes of the caller will be placed in; it

 does not change the PID namespace of the caller itself.

 Reassociating with a PID namespace is allowed only if the target PID namespace is a

 descendant (child, grandchild, etc.) of, or is the same as, the current PID name?

 space of the caller.

 For further details on PID namespaces, see pid_namespaces(7).

 Cgroup namespaces

 In order to reassociate itself with a new cgroup namespace, the caller must have

 the CAP_SYS_ADMIN capability both in its own user namespace and in the user name?

 space that owns the target cgroup namespace.

 Using setns() to change the caller's cgroup namespace does not change the caller's

 cgroup memberships.

 Network, IPC, time, and UTS namespaces

 In order to reassociate itself with a new network, IPC, time, or UTS namespace, the

 caller must have the CAP_SYS_ADMIN capability both in its own user namespace and in

 the user namespace that owns the target namespace.

RETURN VALUE

 On success, setns() returns 0. On failure, -1 is returned and errno is set to indicate

 the error.

ERRORS

 EBADF fd is not a valid file descriptor.

 EINVAL fd refers to a namespace whose type does not match that specified in nstype.

 EINVAL There is problem with reassociating the thread with the specified namespace.

 EINVAL The caller tried to join an ancestor (parent, grandparent, and so on) PID name?

 space.

 EINVAL The caller attempted to join the user namespace in which it is already a member.

 EINVAL The caller shares filesystem (CLONE_FS) state (in particular, the root directory)

 with other processes and tried to join a new user namespace.

 EINVAL The caller is multithreaded and tried to join a new user namespace.

 EINVAL fd is a PID file descriptor and nstype is invalid (e.g., it is 0).

 ENOMEM Cannot allocate sufficient memory to change the specified namespace.

 EPERM The calling thread did not have the required capability for this operation.

 ESRCH fd is a PID file descriptor but the process it refers to no longer exists (i.e., it Page 4/7

 has terminated and been waited on).

VERSIONS

 The setns() system call first appeared in Linux in kernel 3.0; library support was added

 to glibc in version 2.14.

CONFORMING TO

 The setns() system call is Linux-specific.

NOTES

 For further information on the /proc/[pid]/ns/ magic links, see namespaces(7).

 Not all of the attributes that can be shared when a new thread is created using clone(2)

 can be changed using setns().

EXAMPLES

 The program below takes two or more arguments. The first argument specifies the pathname

 of a namespace file in an existing /proc/[pid]/ns/ directory. The remaining arguments

 specify a command and its arguments. The program opens the namespace file, joins that

 namespace using setns(), and executes the specified command inside that namespace.

 The following shell session demonstrates the use of this program (compiled as a binary

 named ns_exec) in conjunction with the CLONE_NEWUTS example program in the clone(2) man

 page (complied as a binary named newuts).

 We begin by executing the example program in clone(2) in the background. That program

 creates a child in a separate UTS namespace. The child changes the hostname in its name?

 space, and then both processes display the hostnames in their UTS namespaces, so that we

 can see that they are different.

 $ su # Need privilege for namespace operations

 Password:

 # ./newuts bizarro &

 [1] 3549

 clone() returned 3550

 uts.nodename in child: bizarro

 uts.nodename in parent: antero

 # uname -n # Verify hostname in the shell

 antero

 We then run the program shown below, using it to execute a shell. Inside that shell, we

 verify that the hostname is the one set by the child created by the first program: Page 5/7

 # ./ns_exec /proc/3550/ns/uts /bin/bash

 # uname -n # Executed in shell started by ns_exec

 bizarro

 Program source

 #define _GNU_SOURCE

 #include <fcntl.h>

 #include <sched.h>

 #include <unistd.h>

 #include <stdlib.h>

 #include <stdio.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 {

 int fd;

 if (argc < 3) {

 fprintf(stderr, "%s /proc/PID/ns/FILE cmd args...\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 /* Get file descriptor for namespace; the file descriptor is opened

 with O_CLOEXEC so as to ensure that it is not inherited by the

 program that is later executed. */

 fd = open(argv[1], O_RDONLY | O_CLOEXEC);

 if (fd == -1)

 errExit("open");

 if (setns(fd, 0) == -1) /* Join that namespace */

 errExit("setns");

 execvp(argv[2], &argv[2]); /* Execute a command in namespace */

 errExit("execvp");

 }

SEE ALSO

 nsenter(1), clone(2), fork(2), unshare(2), vfork(2), namespaces(7), unix(7) Page 6/7

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-08-13 SETNS(2)

Page 7/7

