
Rocky Enterprise Linux 9.2 Manual Pages on command 'setreuid.2'

$ man setreuid.2

SETREUID(2) Linux Programmer's Manual SETREUID(2)

NAME

 setreuid, setregid - set real and/or effective user or group ID

SYNOPSIS

 #include <sys/types.h>

 #include <unistd.h>

 int setreuid(uid_t ruid, uid_t euid);

 int setregid(gid_t rgid, gid_t egid);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 setreuid(), setregid():

 _XOPEN_SOURCE >= 500

 || /* Since glibc 2.19: */ _DEFAULT_SOURCE

 || /* Glibc versions <= 2.19: */ _BSD_SOURCE

DESCRIPTION

 setreuid() sets real and effective user IDs of the calling process.

 Supplying a value of -1 for either the real or effective user ID forces the system to

 leave that ID unchanged.

 Unprivileged processes may only set the effective user ID to the real user ID, the effec?

 tive user ID, or the saved set-user-ID.

 Unprivileged users may only set the real user ID to the real user ID or the effective user

 ID.

 If the real user ID is set (i.e., ruid is not -1) or the effective user ID is set to a

 value not equal to the previous real user ID, the saved set-user-ID will be set to the new Page 1/3

 effective user ID.

 Completely analogously, setregid() sets real and effective group ID's of the calling

 process, and all of the above holds with "group" instead of "user".

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

 Note: there are cases where setreuid() can fail even when the caller is UID 0; it is a

 grave security error to omit checking for a failure return from setreuid().

ERRORS

 EAGAIN The call would change the caller's real UID (i.e., ruid does not match the caller's

 real UID), but there was a temporary failure allocating the necessary kernel data

 structures.

 EAGAIN ruid does not match the caller's real UID and this call would bring the number of

 processes belonging to the real user ID ruid over the caller's RLIMIT_NPROC re?

 source limit. Since Linux 3.1, this error case no longer occurs (but robust appli?

 cations should check for this error); see the description of EAGAIN in execve(2).

 EINVAL One or more of the target user or group IDs is not valid in this user namespace.

 EPERM The calling process is not privileged (on Linux, does not have the necessary capa?

 bility in its user namespace: CAP_SETUID in the case of setreuid(), or CAP_SETGID

 in the case of setregid()) and a change other than (i) swapping the effective user

 (group) ID with the real user (group) ID, or (ii) setting one to the value of the

 other or (iii) setting the effective user (group) ID to the value of the saved set-

 user-ID (saved set-group-ID) was specified.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008, 4.3BSD (setreuid() and setregid() first appeared in 4.2BSD).

NOTES

 Setting the effective user (group) ID to the saved set-user-ID (saved set-group-ID) is

 possible since Linux 1.1.37 (1.1.38).

 POSIX.1 does not specify all of the UID changes that Linux permits for an unprivileged

 process. For setreuid(), the effective user ID can be made the same as the real user ID

 or the saved set-user-ID, and it is unspecified whether unprivileged processes may set the

 real user ID to the real user ID, the effective user ID, or the saved set-user-ID. For

 setregid(), the real group ID can be changed to the value of the saved set-group-ID, and

 the effective group ID can be changed to the value of the real group ID or the saved set- Page 2/3

 group-ID. The precise details of what ID changes are permitted vary across implementa?

 tions.

 POSIX.1 makes no specification about the effect of these calls on the saved set-user-ID

 and saved set-group-ID.

 The original Linux setreuid() and setregid() system calls supported only 16-bit user and

 group IDs. Subsequently, Linux 2.4 added setreuid32() and setregid32(), supporting 32-bit

 IDs. The glibc setreuid() and setregid() wrapper functions transparently deal with the

 variations across kernel versions.

 C library/kernel differences

 At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX

 requires that all threads in a process share the same credentials. The NPTL threading im?

 plementation handles the POSIX requirements by providing wrapper functions for the various

 system calls that change process UIDs and GIDs. These wrapper functions (including those

 for setreuid() and setregid()) employ a signal-based technique to ensure that when one

 thread changes credentials, all of the other threads in the process also change their cre?

 dentials. For details, see nptl(7).

SEE ALSO

 getgid(2), getuid(2), seteuid(2), setgid(2), setresuid(2), setuid(2), capabilities(7),

 credentials(7), user_namespaces(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SETREUID(2)

Page 3/3

