PDF generator

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'setreuid.2'

$ man setreuid.2

SETREUID(2) Linux Programmer's Manual SETREUID(2)
NAME
setreuid, setregid - set real and/or effective user or group ID
SYNOPSIS
#include <sys/types.h>
#include <unistd.h>
int setreuid(uid_t ruid, uid_t euid);
int setregid(gid_t rgid, gid_t egid);
Feature Test Macro Requirements for glibc (see feature_test_macros(7)):
setreuid(), setregid():
_XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| 7* Glibc versions <= 2.19: */ BSD_SOURCE
DESCRIPTION
setreuid() sets real and effective user IDs of the calling process.
Supplying a value of -1 for either the real or effective user ID forces the system to
leave that ID unchanged.
Unprivileged processes may only set the effective user ID to the real user ID, the effec?
tive user ID, or the saved set-user-ID.
Unprivileged users may only set the real user ID to the real user ID or the effective user
ID.
If the real user ID is set (i.e., ruid is not -1) or the effective user ID is set to a

value not equal to the previous real user ID, the saved set-user-ID will be set to the new Page 1/3

effective user ID.

Completely analogously, setregid() sets real and effective group ID's of the calling

process, and all of the above holds with "group” instead of "user".

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Note: there are cases where setreuid() can fail even when the caller is UID O; it is a

grave security error to omit checking for a failure return from setreuid().

ERRORS

EAGAIN The call would change the caller's real UID (i.e., ruid does not match the caller's
real UID), but there was a temporary failure allocating the necessary kernel data
structures.

EAGAIN ruid does not match the caller's real UID and this call would bring the number of
processes belonging to the real user ID ruid over the caller's RLIMIT_NPROC re?
source limit. Since Linux 3.1, this error case no longer occurs (but robust appli?
cations should check for this error); see the description of EAGAIN in execve(2).

EINVAL One or more of the target user or group IDs is not valid in this user namespace.

EPERM The calling process is not privileged (on Linux, does not have the necessary capa?
bility in its user namespace: CAP_SETUID in the case of setreuid(), or CAP_SETGID
in the case of setregid()) and a change other than (i) swapping the effective user
(group) ID with the real user (group) ID, or (ii) setting one to the value of the
other or (iii) setting the effective user (group) ID to the value of the saved set-
user-1D (saved set-group-1D) was specified.

CONFORMING TO
POSIX.1-2001, POSIX.1-2008, 4.3BSD (setreuid() and setregid() first appeared in 4.2BSD).
NOTES

Setting the effective user (group) ID to the saved set-user-ID (saved set-group-ID) is

possible since Linux 1.1.37 (1.1.38).

POSIX.1 does not specify all of the UID changes that Linux permits for an unprivileged

process. For setreuid(), the effective user ID can be made the same as the real user ID

or the saved set-user-ID, and it is unspecified whether unprivileged processes may set the

real user ID to the real user ID, the effective user ID, or the saved set-user-ID. For
setregid(), the real group ID can be changed to the value of the saved set-group-ID, and

the effective group ID can be changed to the value of the real group ID or the saved set-

Page 2/3

group-ID. The precise details of what ID changes are permitted vary across implementa?
tions.
POSIX.1 makes no specification about the effect of these calls on the saved set-user-1D
and saved set-group-ID.
The original Linux setreuid() and setregid() system calls supported only 16-bit user and
group IDs. Subsequently, Linux 2.4 added setreuid32() and setregid32(), supporting 32-bit
IDs. The glibc setreuid() and setregid() wrapper functions transparently deal with the
variations across kernel versions.
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading im?
plementation handles the POSIX requirements by providing wrapper functions for the various
system calls that change process UIDs and GIDs. These wrapper functions (including those
for setreuid() and setregid()) employ a signal-based technique to ensure that when one
thread changes credentials, all of the other threads in the process also change their cre?
dentials. For details, see nptl(7).

SEE ALSO
getgid(2), getuid(2), seteuid(2), setgid(2), setresuid(2), setuid(2), capabilities(7),
credentials(7), user_namespaces(7)

COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SETREUID(2)

Page 3/3

