
Rocky Enterprise Linux 9.2 Manual Pages on command 'setrlimit.2'

$ man setrlimit.2

GETRLIMIT(2) Linux Programmer's Manual GETRLIMIT(2)

NAME

 getrlimit, setrlimit, prlimit - get/set resource limits

SYNOPSIS

 #include <sys/time.h>

 #include <sys/resource.h>

 int getrlimit(int resource, struct rlimit *rlim);

 int setrlimit(int resource, const struct rlimit *rlim);

 int prlimit(pid_t pid, int resource, const struct rlimit *new_limit,

 struct rlimit *old_limit);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 prlimit(): _GNU_SOURCE

DESCRIPTION

 The getrlimit() and setrlimit() system calls get and set resource limits. Each resource

 has an associated soft and hard limit, as defined by the rlimit structure:

 struct rlimit {

 rlim_t rlim_cur; /* Soft limit */

 rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */

 };

 The soft limit is the value that the kernel enforces for the corresponding resource. The

 hard limit acts as a ceiling for the soft limit: an unprivileged process may set only its

 soft limit to a value in the range from 0 up to the hard limit, and (irreversibly) lower

 its hard limit. A privileged process (under Linux: one with the CAP_SYS_RESOURCE capabil? Page 1/11

 ity in the initial user namespace) may make arbitrary changes to either limit value.

 The value RLIM_INFINITY denotes no limit on a resource (both in the structure returned by

 getrlimit() and in the structure passed to setrlimit()).

 The resource argument must be one of:

 RLIMIT_AS

 This is the maximum size of the process's virtual memory (address space). The

 limit is specified in bytes, and is rounded down to the system page size. This

 limit affects calls to brk(2), mmap(2), and mremap(2), which fail with the error

 ENOMEM upon exceeding this limit. In addition, automatic stack expansion fails

 (and generates a SIGSEGV that kills the process if no alternate stack has been made

 available via sigaltstack(2)). Since the value is a long, on machines with a

 32-bit long either this limit is at most 2 GiB, or this resource is unlimited.

 RLIMIT_CORE

 This is the maximum size of a core file (see core(5)) in bytes that the process may

 dump. When 0 no core dump files are created. When nonzero, larger dumps are trun?

 cated to this size.

 RLIMIT_CPU

 This is a limit, in seconds, on the amount of CPU time that the process can con?

 sume. When the process reaches the soft limit, it is sent a SIGXCPU signal. The

 default action for this signal is to terminate the process. However, the signal

 can be caught, and the handler can return control to the main program. If the

 process continues to consume CPU time, it will be sent SIGXCPU once per second un?

 til the hard limit is reached, at which time it is sent SIGKILL. (This latter

 point describes Linux behavior. Implementations vary in how they treat processes

 which continue to consume CPU time after reaching the soft limit. Portable appli?

 cations that need to catch this signal should perform an orderly termination upon

 first receipt of SIGXCPU.)

 RLIMIT_DATA

 This is the maximum size of the process's data segment (initialized data, unini?

 tialized data, and heap). The limit is specified in bytes, and is rounded down to

 the system page size. This limit affects calls to brk(2), sbrk(2), and (since

 Linux 4.7) mmap(2), which fail with the error ENOMEM upon encountering the soft

 limit of this resource. Page 2/11

 RLIMIT_FSIZE

 This is the maximum size in bytes of files that the process may create. Attempts

 to extend a file beyond this limit result in delivery of a SIGXFSZ signal. By de?

 fault, this signal terminates a process, but a process can catch this signal in?

 stead, in which case the relevant system call (e.g., write(2), truncate(2)) fails

 with the error EFBIG.

 RLIMIT_LOCKS (Linux 2.4.0 to 2.4.24)

 This is a limit on the combined number of flock(2) locks and fcntl(2) leases that

 this process may establish.

 RLIMIT_MEMLOCK

 This is the maximum number of bytes of memory that may be locked into RAM. This

 limit is in effect rounded down to the nearest multiple of the system page size.

 This limit affects mlock(2), mlockall(2), and the mmap(2) MAP_LOCKED operation.

 Since Linux 2.6.9, it also affects the shmctl(2) SHM_LOCK operation, where it sets

 a maximum on the total bytes in shared memory segments (see shmget(2)) that may be

 locked by the real user ID of the calling process. The shmctl(2) SHM_LOCK locks

 are accounted for separately from the per-process memory locks established by

 mlock(2), mlockall(2), and mmap(2) MAP_LOCKED; a process can lock bytes up to this

 limit in each of these two categories.

 In Linux kernels before 2.6.9, this limit controlled the amount of memory that

 could be locked by a privileged process. Since Linux 2.6.9, no limits are placed

 on the amount of memory that a privileged process may lock, and this limit instead

 governs the amount of memory that an unprivileged process may lock.

 RLIMIT_MSGQUEUE (since Linux 2.6.8)

 This is a limit on the number of bytes that can be allocated for POSIX message

 queues for the real user ID of the calling process. This limit is enforced for

 mq_open(3). Each message queue that the user creates counts (until it is removed)

 against this limit according to the formula:

 Since Linux 3.5:

 bytes = attr.mq_maxmsg * sizeof(struct msg_msg) +

 min(attr.mq_maxmsg, MQ_PRIO_MAX) *

 sizeof(struct posix_msg_tree_node)+

 /* For overhead */ Page 3/11

 attr.mq_maxmsg * attr.mq_msgsize;

 /* For message data */

 Linux 3.4 and earlier:

 bytes = attr.mq_maxmsg * sizeof(struct msg_msg *) +

 /* For overhead */

 attr.mq_maxmsg * attr.mq_msgsize;

 /* For message data */

 where attr is the mq_attr structure specified as the fourth argument to mq_open(3),

 and the msg_msg and posix_msg_tree_node structures are kernel-internal structures.

 The "overhead" addend in the formula accounts for overhead bytes required by the

 implementation and ensures that the user cannot create an unlimited number of zero-

 length messages (such messages nevertheless each consume some system memory for

 bookkeeping overhead).

 RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)

 This specifies a ceiling to which the process's nice value can be raised using set?

 priority(2) or nice(2). The actual ceiling for the nice value is calculated as

 20 - rlim_cur. The useful range for this limit is thus from 1 (corresponding to a

 nice value of 19) to 40 (corresponding to a nice value of -20). This unusual

 choice of range was necessary because negative numbers cannot be specified as re?

 source limit values, since they typically have special meanings. For example,

 RLIM_INFINITY typically is the same as -1. For more detail on the nice value, see

 sched(7).

 RLIMIT_NOFILE

 This specifies a value one greater than the maximum file descriptor number that can

 be opened by this process. Attempts (open(2), pipe(2), dup(2), etc.) to exceed

 this limit yield the error EMFILE. (Historically, this limit was named

 RLIMIT_OFILE on BSD.)

 Since Linux 4.5, this limit also defines the maximum number of file descriptors

 that an unprivileged process (one without the CAP_SYS_RESOURCE capability) may have

 "in flight" to other processes, by being passed across UNIX domain sockets. This

 limit applies to the sendmsg(2) system call. For further details, see unix(7).

 RLIMIT_NPROC

 This is a limit on the number of extant process (or, more precisely on Linux, Page 4/11

 threads) for the real user ID of the calling process. So long as the current num?

 ber of processes belonging to this process's real user ID is greater than or equal

 to this limit, fork(2) fails with the error EAGAIN.

 The RLIMIT_NPROC limit is not enforced for processes that have either the

 CAP_SYS_ADMIN or the CAP_SYS_RESOURCE capability.

 RLIMIT_RSS

 This is a limit (in bytes) on the process's resident set (the number of virtual

 pages resident in RAM). This limit has effect only in Linux 2.4.x, x < 30, and

 there affects only calls to madvise(2) specifying MADV_WILLNEED.

 RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)

 This specifies a ceiling on the real-time priority that may be set for this process

 using sched_setscheduler(2) and sched_setparam(2).

 For further details on real-time scheduling policies, see sched(7)

 RLIMIT_RTTIME (since Linux 2.6.25)

 This is a limit (in microseconds) on the amount of CPU time that a process sched?

 uled under a real-time scheduling policy may consume without making a blocking sys?

 tem call. For the purpose of this limit, each time a process makes a blocking sys?

 tem call, the count of its consumed CPU time is reset to zero. The CPU time count

 is not reset if the process continues trying to use the CPU but is preempted, its

 time slice expires, or it calls sched_yield(2).

 Upon reaching the soft limit, the process is sent a SIGXCPU signal. If the process

 catches or ignores this signal and continues consuming CPU time, then SIGXCPU will

 be generated once each second until the hard limit is reached, at which point the

 process is sent a SIGKILL signal.

 The intended use of this limit is to stop a runaway real-time process from locking

 up the system.

 For further details on real-time scheduling policies, see sched(7)

 RLIMIT_SIGPENDING (since Linux 2.6.8)

 This is a limit on the number of signals that may be queued for the real user ID of

 the calling process. Both standard and real-time signals are counted for the pur?

 pose of checking this limit. However, the limit is enforced only for sigqueue(3);

 it is always possible to use kill(2) to queue one instance of any of the signals

 that are not already queued to the process. Page 5/11

 RLIMIT_STACK

 This is the maximum size of the process stack, in bytes. Upon reaching this limit,

 a SIGSEGV signal is generated. To handle this signal, a process must employ an al?

 ternate signal stack (sigaltstack(2)).

 Since Linux 2.6.23, this limit also determines the amount of space used for the

 process's command-line arguments and environment variables; for details, see ex?

 ecve(2).

 prlimit()

 The Linux-specific prlimit() system call combines and extends the functionality of setr?

 limit() and getrlimit(). It can be used to both set and get the resource limits of an ar?

 bitrary process.

 The resource argument has the same meaning as for setrlimit() and getrlimit().

 If the new_limit argument is a not NULL, then the rlimit structure to which it points is

 used to set new values for the soft and hard limits for resource. If the old_limit argu?

 ment is a not NULL, then a successful call to prlimit() places the previous soft and hard

 limits for resource in the rlimit structure pointed to by old_limit.

 The pid argument specifies the ID of the process on which the call is to operate. If pid

 is 0, then the call applies to the calling process. To set or get the resources of a

 process other than itself, the caller must have the CAP_SYS_RESOURCE capability in the

 user namespace of the process whose resource limits are being changed, or the real, effec?

 tive, and saved set user IDs of the target process must match the real user ID of the

 caller and the real, effective, and saved set group IDs of the target process must match

 the real group ID of the caller.

RETURN VALUE

 On success, these system calls return 0. On error, -1 is returned, and errno is set ap?

 propriately.

ERRORS

 EFAULT A pointer argument points to a location outside the accessible address space.

 EINVAL The value specified in resource is not valid; or, for setrlimit() or prlimit():

 rlim->rlim_cur was greater than rlim->rlim_max.

 EPERM An unprivileged process tried to raise the hard limit; the CAP_SYS_RESOURCE capa?

 bility is required to do this.

 EPERM The caller tried to increase the hard RLIMIT_NOFILE limit above the maximum defined Page 6/11

 by /proc/sys/fs/nr_open (see proc(5))

 EPERM (prlimit()) The calling process did not have permission to set limits for the

 process specified by pid.

 ESRCH Could not find a process with the ID specified in pid.

VERSIONS

 The prlimit() system call is available since Linux 2.6.36. Library support is available

 since glibc 2.13.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?getrlimit(), setrlimit(), prlimit() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 getrlimit(), setrlimit(): POSIX.1-2001, POSIX.1-2008, SVr4, 4.3BSD.

 prlimit(): Linux-specific.

 RLIMIT_MEMLOCK and RLIMIT_NPROC derive from BSD and are not specified in POSIX.1; they are

 present on the BSDs and Linux, but on few other implementations. RLIMIT_RSS derives from

 BSD and is not specified in POSIX.1; it is nevertheless present on most implementations.

 RLIMIT_MSGQUEUE, RLIMIT_NICE, RLIMIT_RTPRIO, RLIMIT_RTTIME, and RLIMIT_SIGPENDING are

 Linux-specific.

NOTES

 A child process created via fork(2) inherits its parent's resource limits. Resource lim?

 its are preserved across execve(2).

 Resource limits are per-process attributes that are shared by all of the threads in a

 process.

 Lowering the soft limit for a resource below the process's current consumption of that re?

 source will succeed (but will prevent the process from further increasing its consumption

 of the resource).

 One can set the resource limits of the shell using the built-in ulimit command (limit in

 csh(1)). The shell's resource limits are inherited by the processes that it creates to

 execute commands. Page 7/11

 Since Linux 2.6.24, the resource limits of any process can be inspected via

 /proc/[pid]/limits; see proc(5).

 Ancient systems provided a vlimit() function with a similar purpose to setrlimit(). For

 backward compatibility, glibc also provides vlimit(). All new applications should be

 written using setrlimit().

 C library/kernel ABI differences

 Since version 2.13, the glibc getrlimit() and setrlimit() wrapper functions no longer in?

 voke the corresponding system calls, but instead employ prlimit(), for the reasons de?

 scribed in BUGS.

 The name of the glibc wrapper function is prlimit(); the underlying system call is

 prlimit64().

BUGS

 In older Linux kernels, the SIGXCPU and SIGKILL signals delivered when a process encoun?

 tered the soft and hard RLIMIT_CPU limits were delivered one (CPU) second later than they

 should have been. This was fixed in kernel 2.6.8.

 In 2.6.x kernels before 2.6.17, a RLIMIT_CPU limit of 0 is wrongly treated as "no limit"

 (like RLIM_INFINITY). Since Linux 2.6.17, setting a limit of 0 does have an effect, but

 is actually treated as a limit of 1 second.

 A kernel bug means that RLIMIT_RTPRIO does not work in kernel 2.6.12; the problem is fixed

 in kernel 2.6.13.

 In kernel 2.6.12, there was an off-by-one mismatch between the priority ranges returned by

 getpriority(2) and RLIMIT_NICE. This had the effect that the actual ceiling for the nice

 value was calculated as 19 - rlim_cur. This was fixed in kernel 2.6.13.

 Since Linux 2.6.12, if a process reaches its soft RLIMIT_CPU limit and has a handler in?

 stalled for SIGXCPU, then, in addition to invoking the signal handler, the kernel in?

 creases the soft limit by one second. This behavior repeats if the process continues to

 consume CPU time, until the hard limit is reached, at which point the process is killed.

 Other implementations do not change the RLIMIT_CPU soft limit in this manner, and the

 Linux behavior is probably not standards conformant; portable applications should avoid

 relying on this Linux-specific behavior. The Linux-specific RLIMIT_RTTIME limit exhibits

 the same behavior when the soft limit is encountered.

 Kernels before 2.4.22 did not diagnose the error EINVAL for setrlimit() when

 rlim->rlim_cur was greater than rlim->rlim_max. Page 8/11

 Linux doesn't return an error when an attempt to set RLIMIT_CPU has failed, for compati?

 bility reasons.

 Representation of "large" resource limit values on 32-bit platforms

 The glibc getrlimit() and setrlimit() wrapper functions use a 64-bit rlim_t data type,

 even on 32-bit platforms. However, the rlim_t data type used in the getrlimit() and setr?

 limit() system calls is a (32-bit) unsigned long. Furthermore, in Linux, the kernel rep?

 resents resource limits on 32-bit platforms as unsigned long. However, a 32-bit data type

 is not wide enough. The most pertinent limit here is RLIMIT_FSIZE, which specifies the

 maximum size to which a file can grow: to be useful, this limit must be represented using

 a type that is as wide as the type used to represent file offsets?that is, as wide as a

 64-bit off_t (assuming a program compiled with _FILE_OFFSET_BITS=64).

 To work around this kernel limitation, if a program tried to set a resource limit to a

 value larger than can be represented in a 32-bit unsigned long, then the glibc setrlimit()

 wrapper function silently converted the limit value to RLIM_INFINITY. In other words, the

 requested resource limit setting was silently ignored.

 Since version 2.13, glibc works around the limitations of the getrlimit() and setrlimit()

 system calls by implementing setrlimit() and getrlimit() as wrapper functions that call

 prlimit().

EXAMPLES

 The program below demonstrates the use of prlimit().

 #define _GNU_SOURCE

 #define _FILE_OFFSET_BITS 64

 #include <stdint.h>

 #include <stdio.h>

 #include <time.h>

 #include <stdlib.h>

 #include <unistd.h>

 #include <sys/resource.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 int

 main(int argc, char *argv[])

 { Page 9/11

 struct rlimit old, new;

 struct rlimit *newp;

 pid_t pid;

 if (!(argc == 2 || argc == 4)) {

 fprintf(stderr, "Usage: %s <pid> [<new-soft-limit> "

 "<new-hard-limit>]\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 pid = atoi(argv[1]); /* PID of target process */

 newp = NULL;

 if (argc == 4) {

 new.rlim_cur = atoi(argv[2]);

 new.rlim_max = atoi(argv[3]);

 newp = &new;

 }

 /* Set CPU time limit of target process; retrieve and display

 previous limit */

 if (prlimit(pid, RLIMIT_CPU, newp, &old) == -1)

 errExit("prlimit-1");

 printf("Previous limits: soft=%jd; hard=%jd\n",

 (intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

 /* Retrieve and display new CPU time limit */

 if (prlimit(pid, RLIMIT_CPU, NULL, &old) == -1)

 errExit("prlimit-2");

 printf("New limits: soft=%jd; hard=%jd\n",

 (intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 prlimit(1), dup(2), fcntl(2), fork(2), getrusage(2), mlock(2), mmap(2), open(2), quo?

 tactl(2), sbrk(2), shmctl(2), malloc(3), sigqueue(3), ulimit(3), core(5), capabilities(7),

 cgroups(7), credentials(7), signal(7)

COLOPHON Page 10/11

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 GETRLIMIT(2)

Page 11/11

