PDF generator,

FPDF Library

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'sgdisk.8'
$ man sgdisk.8
SGDISK(8) GPT fdisk Manual SGDISK(8)
NAME
sgdisk - Command-line GUID partition table (GPT) manipulator for Linux and Unix
SYNOPSIS
sgdisk [options] device
DESCRIPTION
GPT fdisk is a text-mode menu-driven package for creation and manipulation of partition
tables. It consists of two programs: the text-mode interactive gdisk and the command-line
sgdisk. Either program will automatically convert an old-style Master Boot Record (MBR)
partition table or BSD disklabel stored without an MBR carrier partition to the newer
Globally Unique Identifier (GUID) Partition Table (GPT) format, or will load a GUID parti?
tion table. This man page documents the command-line sgdisk program.
Some advanced data manipulation and recovery options require you to understand the dis?
tinctions between the main and backup data, as well as between the GPT headers and the
partition tables. For information on MBR vs. GPT, as well as GPT terminology and struc?
ture, see the extended gdisk documentation at http://www.rodsbooks.com/gdisk/ or consult
Wikipedia.
The sgdisk program employs a user interface that's based entirely on the command line,
making it suitable for use in scripts or by experts who want to make one or two quick
changes to a disk. (The program may query the user when certain errors are encountered,
though.) The program's name is based on sfdisk, but the user options of the two programs
are entirely different from one another.

Ordinarily, sgdisk operates on disk device files, such as /dev/sda or /dev/hda under Page 1/13

Linux, /dev/diskO under Mac OS X, or /dev/adO or /dev/da0 under FreeBSD. The program can
also operate on disk image files, which can be either copies of whole disks (made with dd,
for instance) or raw disk images used by emulators such as QEMU or VMWare. Note that only
raw disk images are supported; sgdisk cannot work on compressed or other advanced disk im?
age formats.
The MBR partitioning system uses a combination of cylinder/head/sector (CHS) addressing
and logical block addressing (LBA). The former is klunky and limiting. GPT drops CHS ad?
dressing and uses 64-bit LBA mode exclusively. Thus, GPT data structures, and therefore
sgdisk, do not need to deal with CHS geometries and all the problems they create.
For best results, you should use an OS-specific partition table program whenever possible.
For example, you should make Mac OS X partitions with the Mac OS X Disk Utility program
and Linux partitions with the Linux gdisk, sgdisk, or GNU Parted programs.
Upon start, sgdisk attempts to identify the partition type in use on the disk. If it finds
valid GPT data, sgdisk will use it. If sgdisk finds a valid MBR or BSD disklabel but no
GPT data, it will attempt to convert the MBR or disklabel into GPT form. (BSD disklabels
are likely to have unusable first and/or final partitions because they overlap with the
GPT data structures, though.) GPT fdisk can identify, but not use data in, Apple Partition
Map (APM) disks, which are used on 680x0- and PowerPC-based Macintoshes. If you specify
any option that results in changes to an MBR or BSD disklabel, sgdisk ignores those
changes unless the -g (--mbrtogpt), -z (--zap), or -Z (--zap-all) option is used. If you
use the -g option, sgdisk replaces the MBR or disklabel with a GPT. This action is poten?
tially dangerous! Your system may become unbootable, and partition type codes may become
corrupted if the disk uses unrecognized type codes. Boot problems are particularly likely
if you're multi-booting with any GPT-unaware OS.
The MBR-to-GPT conversion will leave at least one gap in the partition numbering if the
original MBR used logical partitions. These gaps are harmless, but you can eliminate them
by using the -s (--sort) option, if you like. (Doing this may require you to update your
[etc/fstab file.)
When creating a fresh partition table, certain considerations may be in order:
* For data (non-boot) disks, and for boot disks used on BIOS-based computers with

GRUB as the boot loader, partitions may be created in whatever order and in what?

ever sizes are desired.

* Boot disks for EFl-based systems require an EFI System Partition (gdisk internal

Page 2/13

code OxXEF00) formatted as FAT-32. | recommended making this partition 550 MiB.
(Smaller ESPs are common, but some EFIs have flaky FAT drivers that necessitate a
larger partition for reliable operation.) Boot-related files are stored here. (Note

that GNU Parted identifies such partitions as having the "boot flag" set.)

* Some boot loaders for BIOS-based systems make use of a BIOS Boot Partition (gdisk
internal code OXEF02), in which the secondary boot loader is stored, possibly with?
out the benefit of a filesystem. (GRUB2 may optionally use such a partition.) This
partition can typically be quite small (roughly 32 to 200 KiB, although 1 MiB is
more common in practice), but you should consult your boot loader documentation for
details.

* If Windows is to boot from a GPT disk, a partition of type Microsoft Reserved
(sgdisk internal code 0x0CO01) is recommended. This partition should be about 128
MiB in size. It ordinarily follows the EFI System Partition and immediately pre?
cedes the Windows data partitions. (Note that GNU Parted creates all FAT partitions
as this type, which actually makes the partition unusable for normal file storage
in both Windows and Mac OS X.)

* Some OSes' GPT utilities create some blank space (typically 128 MiB) after each
partition. The intent is to enable future disk utilities to use this space. Such
free space is not required of GPT disks, but creating it may help in future disk
maintenance.

OPTIONS

Some options take no arguments, others take one argument (typically a partition number),

and others take compound arguments with colon delimitation. For instance, -n (--new) takes

a partition number, a starting sector number, and an ending sector number, as in sgdisk -n

2:2000:50000 /dev/sdc, which creates a new patrtition, numbered 2, starting at sector 2000

an ending at sector 50,000, on /dev/sdc.

Unrelated options may be combined; however, some such combinations will be nonsense (such

as deleting a partition and then changing its GUID type code). sgdisk interprets options

in the order in which they're entered, so effects can vary depending on order. For in?

stance, sgdisk -s -d 2 sorts the partition table entries and then deletes partition 2 from

the newly-sorted list; but sgdisk -d 2 -s deletes the original partition 2 and then sorts

the modified partition table.

Error checking and opportunities to correct mistakes in sgdisk are minimal. Although the

Page 3/13

program endeavors to keep the GPT data structures legal, it does not prompt for verifica?
tion before performing its actions. Unless you require a command-line-driven program, you
should use the interactive gdisk instead of sgdisk, since gdisk allows you to quit without
saving your changes, should you make a mistake.
Although sgdisk is based on the same partition-manipulation code as gdisk, sgdisk imple?
ments fewer features than its interactive sibling. Options available in sgdisk are:
-a, --set-alignment=value
Set the sector alignment multiple. GPT fdisk aligns the start of partitions to sec?
tors that are multiples of this value, which defaults to 1 MiB (2048 on disks with
512-byte sectors) on freshly formatted disks. This alignment value is necessary to
obtain optimum performance with Western Digital Advanced Format and similar drives
with larger physical than logical sector sizes, with some types of RAID arrays, and
with SSD devices.
-A, --attributes=list|[parthum:show]|or|nand|xor|=|set|clear|toggle|get[:bithum|hexbit?
mask]]
View or set partition attributes. Use list to see defined (known) attribute values.
Omit the partition number (and even the device filename) when using this option.
The others require a partition number. The show and get options show the current
attribute settings (all attributes or for a particular bit, respectively). The or,
nand, xor, =, set, clear, and toggle options enable you to change the attribute bit
value. The set, clear, toggle, and get options work on a bit number; the others
work on a hexadecimal bit mask. For example, type sgdisk -A 4:set:2 /dev/sdc to set
the bit 2 attribute (legacy BIOS bootable) on partition 4 on /dev/sdc.
-b, --backup=file
Save partition data to a backup file. You can back up your current in-memory parti?
tion table to a disk file using this option. The resulting file is a binary file
consisting of the protective MBR, the main GPT header, the backup GPT header, and
one copy of the partition table, in that order. Note that the backup is of the cur?
rent in-memory data structures, so if you launch the program, make changes, and
then use this option, the backup will reflect your changes. If the GPT data struc?
tures are damaged, the backup may not accurately reflect the damaged state; in?
stead, they will reflect GPT fdisk's first-pass interpretation of the GPT.

-B, --byte-swap-name=partnum

Page 4/13

Swap the byte order for the name of the specified partition. Some partitioning
tools, including GPT fdisk 1.0.7 and earlier, can write the partition name in the
wrong byte order on big-endian computers, such as the IBM s390 mainframes and Pow?
erPC-based Macs. This feature corrects this problem.

-¢, --change-name=partnum:name
Change the GPT name of a partition. This name is encoded as a UTF-16 string, but
proper entry and display of anything beyond basic ASCII values requires suitable
locale and font support. For the most part, Linux ignores the partition name, but
it may be important in some OSes. If you want to set a name that includes a space,
enclose it in quotation marks, as in sgdisk -c 1:"Sample Name" /dev/sdb. Note that
the GPT name of a partition is distinct from the filesystem name, which is encoded
in the filesystem's data structures.

-C, --recompute-chs
Recompute CHS values in protective or hybrid MBR. This option can sometimes help if
a disk utility, OS, or BIOS doesn't like the CHS values used by the partitions in
the protective or hybrid MBR. In particular, the GPT specification requires a CHS
value of OXFFFFFF for over-8GiB partitions, but this value is technically illegal
by the usual standards. Some BIOSes hang if they encounter this value. This option
will recompute a more normal CHS value -- OXFEFFFF for over-8GiB partitions, en?
abling these BIOSes to boot.

-d, --delete=partnum
Delete a partition. This action deletes the entry from the partition table but does
not disturb the data within the sectors originally allocated to the partition on
the disk. If a corresponding hybrid MBR partition exists, gdisk deletes it, as
well, and expands any adjacent OXEE (EFI GPT) MBR protective partition to fill the
new free space.

-D, --display-alignment
Display current sector alignment value. Partitions will be created on multiples of
the sector value reported by this option. You can change the alignment value with
the -a option.

-e, --move-second-header
Move backup GPT data structures to the end of the disk. Use this option if you've

added disks to a RAID array, thus creating a virtual disk with space that follows Page 5/13

the backup GPT data structures. This command moves the backup GPT data structures
to the end of the disk, where they belong.

-E, --end-of-largest
Displays the sector number of the end of the largest available block of sectors on
the disk. A script may store this value and pass it back as part of -n's option to
create a partition. If no unallocated sectors are available, this function returns
the value O.

-f, --first-in-largest
Displays the sector number of the start of the largest available block of sectors
on the disk. A script may store this value and pass it back as part of -n's option
to create a partition. If no unallocated sectors are available, this function re?
turns the value 0. Note that this parameter is blind to partition alignment; when
you actually create a partition, its start point might be changed from this value.

-F, --first-aligned-in-largest
Similar to -f (--first-in-largest), except returns the sector number with the cur?
rent alignment correction applied. Use this function if you need to compute the ac?
tual partition start point rather than a theoretical start point or the actual
start point if you set the alignment value to 1.

-g, --mbrtogpt
Convert an MBR or BSD disklabel disk to a GPT disk. As a safety measure, use of
this option is required on MBR or BSD disklabel disks if you intend to save your
changes, in order to prevent accidentally damaging such disks.

-G, --randomize-guids
Randomize the disk's GUID and all partitions' unique GUIDs (but not their partition
type code GUIDs). This function may be used after cloning a disk in order to render
all GUIDs once again unique.

-h, --hybrid
Create a hybrid MBR. This option takes from one to three partition numbers, sepa?
rated by colons, as arguments. You may optionally specify a final partition "EE" to
indicate that the EFI GPT (type OXEE) should be placed last in the table, otherwise
it will be placed first, followed by the partition(s) you specify. Their type
codes are based on the GPT fdisk type codes divided by 0x0100, which is usually

correct for Windows partitions. If the active/bootable flag should be set, you must Page 6/13

do so in another program, such as fdisk. The gdisk program offers additional hybrid
MBR creation options.

-i, --info=partnum
Show detailed partition information. The summary information produced by the -p
command necessarily omits many details, such as the partition's unique GUID and the
translation of sgdisk's internal partition type code to a plain type name. The -i
option displays this information for a single partition.

-j, --adjust-main-table=sector
Adjust the location of the main partition table. This value is normally 2, but it
may need to be increased in some cases, such as when a system-on-chip (SoC) is
hard-coded to read boot code from sector 2. | recommend against adjusting this
value unless doing so is absolutely necessary.

-1, --load-backup=file
Load partition data from a backup file. This option is the reverse of the -b op?
tion. Note that restoring partition data from anything but the original disk is not
recommended. This option will work even if the disk's original partition table is
bad; however, most other options on the same command line will be ignored.

-L, --list-types
Display a summary of partition types. GPT uses a GUID to identify partition types
for particular OSes and purposes. For ease of data entry, sgdisk compresses these
into two-byte (four-digit hexadecimal) values that are related to their equivalent
MBR codes. Specifically, the MBR code is multiplied by hexadecimal 0x0100. For in?
stance, the code for Linux swap space in MBR is 0x82, and it's 0x8200 in gdisk. A
one-to-one correspondence is impossible, though. Most notably, the codes for all
varieties of FAT and NTFS partition correspond to a single GPT code (entered as
0x0700 in sgdisk). Some OSes use a single MBR code but employ many more codes in
GPT. For these, sgdisk adds code numbers sequentially, such as 0xa500 for a FreeBSD
disklabel, 0xa501 for FreeBSD boot, 0xa502 for FreeBSD swap, and so on. Note that
these two-byte codes are unique to gdisk and sgdisk. This option does not require
you to specify a valid disk device filename.

-m, --gpttombr
Convert disk from GPT to MBR form. This option takes from one to four partition

numbers, separated by colons, as arguments. Their type codes are based on the GPT Page 7/13

fdisk type codes divided by 0x0100. If the active/bootable flag should be set, you
must do so in another program, such as fdisk. The gdisk program offers additional
MBR conversion options. It is not possible to convert more than four partitions
from GPT to MBR form or to convert partitions that start above the 2TiB mark or
that are larger than 2TiB.

-n, --new=partnum:start:end
Create a new partition. You enter a partition number, starting sector, and an end?
ing sector. Both start and end sectors can be specified in absolute terms as sector
numbers or as positions measured in kibibytes (K), mebibytes (M), gibibytes (G),
tebibytes (T), or pebibytes (P); for instance, 40M specifies a position 40MiB from
the start of the disk. You can specify locations relative to the start or end of
the specified default range by preceding the number by a '+' or '-' symbol, as in
+2G to specify a point 2GiB after the default start sector, or -200M to specify a
point 200MiB before the last available sector. A start or end value of 0 specifies
the default value, which is the start of the largest available block for the start
sector and the end of the same block for the end sector. A partnum value of O
causes the program to use the first available partition number. Subsequent uses of
the -A (--attributes), -c¢ (--change-name), -t (--typecode), and -u (--parti?
tion-guid) options may also use 0 to refer to the same partition.

-N, --largest-new=num
Create a new partition that fills the largest available block of space on the disk.
You can use the -a (--set-alignment) option to adjust the alignment, if desired. A
num value of 0 causes the program to use the first available partition number.

-0, --Clear
Clear out all partition data. This includes GPT header data, all partition defini?
tions, and the protective MBR. Note that this operation will, like most other oper?
ations, fail on a damaged disk. If you want to prepare a disk you know to be dam?
aged for GPT use, you should first wipe it with -Z and then patrtition it normally.
This option will work even if the disk's original partition table is bad; however,
most other options on the same command line will be ignored.

-0, --print-mbr
Display basic MBR partition summary data. This includes partition numbers, starting

and ending sector numbers, partition sizes, MBR partition types codes, and parti? Page 8/13

tion names. This option is useful mainly for diagnosing partition table problems,
particularly on disks with hybrid MBRs.

-p, --print
Display basic GPT partition summary data. This includes partition numbers, starting
and ending sector numbers, partition sizes, sgdisk's partition types codes, and
partition names. For additional information, use the -i (--info) option.

-P, --pretend
Pretend to make specified changes. In-memory GPT data structures are altered ac?
cording to other parameters, but changes are not written to disk.

-r, --transpose
Swap two partitions' entries in the partition table. One or both partitions may be
empty, although swapping two empty partitions is pointless. For instance, if parti?
tions 1-4 are defined, transposing 1 and 5 results in a table with partitions num?
bered from 2-5. Transposing partitions in this way has no effect on their disk
space allocation; it only alters their order in the partition table.

-R, --replicate=second_device_filename
Replicate the main device's partition table on the specified second device. Note
that the replicated partition table is an exact copy, including all GUIDs; if the
device should have its own unique GUIDs, you should use the -G option on the new
disk.

-s, --sort
Sort partition entries. GPT partition numbers need not match the order of parti?
tions on the disk. If you want them to match, you can use this option. Note that
some partitioning utilities sort partitions whenever they make changes. Such
changes will be reflected in your device filenames, so you may need to edit
[etc/fstab if you use this option.

-t, --typecode=partnum:{hexcode|GUID}
Change a single partition's type code. You enter the type code using either a
two-byte hexadecimal number, as described earlier, or a fully-specified GUID value,
such as EBDOAOA2-BIE5-4433-87C0-68B6B72699C7.

-T, --transform-bsd=partnum
Transform BSD partitions into GPT partitions. This option works on BSD disklabels

held within GPT (or converted MBR) partitions. Converted partitions' type codes are Page 9/13

likely to need manual adjustment. sgdisk will attempt to convert BSD disklabels
stored on the main disk when launched, but this conversion is likely to produce
first and/or last partitions that are unusable. The many BSD variants means that
the probability of sgdisk being unable to convert a BSD disklabel is high compared
to the likelihood of problems with an MBR conversion.

-u, --partition-guid=partnum:guid
Set the partition unique GUID for an individual partition. The GUID may be a com?
plete GUID or 'R' to set a random GUID.

-U, --disk-guid=guid
Set the GUID for the disk. The GUID may be a complete GUID or 'R' to set a random
GUID.

--usage
Print a brief summary of available options.

-v, --verify
Verify disk. This option checks for a variety of problems, such as incorrect CRCs
and mismatched main and backup data. This option does not automatically correct
most problems, though; for that, you must use options on the recovery & transforma?
tion menu. If no problems are found, this command displays a summary of unallocated
disk space. This option will work even if the disk's original partition table is
bad; however, most other options on the same command line will be ignored.

-V, --version
Display program version information. This option may be used without specifying a
device filename.

-z, --zap
Zap (destroy) the GPT data structures and then exit. Use this option if you want to
repartition a GPT disk using fdisk or some other GPT-unaware program. This option
destroys only the GPT data structures; it leaves the MBR intact. This makes it use?
ful for wiping out GPT data structures after a disk has been repartitioned for MBR
using a GPT-unaware utility; however, there's a risk that it will damage boot load?
ers or even the start of the first or end of the last MBR patrtition. If you use it
on a valid GPT disk, the MBR will be left with an inappropriate EFI GPT (OXEE) par?

tition definition, which you can delete using another utility.

-Z, --zap-all Page 10/13

Zap (destroy) the GPT and MBR data structures and then exit. This option works much
like -z, but as it wipes the MBR as well as the GPT, it's more suitable if you want

to repartition a disk after using this option, and completely unsuitable if you've

already repartitioned the disk.

-?, --help
Print a summary of options.

RETURN VALUES

sgdisk returns various values depending on its success or failure:

0 Normal program execution

1 Too few arguments

2 An error occurred while reading the partition table

3 Non-GPT disk detected and no -g option, but operation requires a write action

4 An error prevented saving changes

5 An error occurred while reading standard input (should never occur with sgdisk, but
may with gdisk)

8 Disk replication operation (-R) failed

BUGS

Known bugs and limitations include:

* The program compiles correctly only on Linux, FreeBSD, and Mac OS X. Linux versions
for x86-64 (64-bit), x86 (32-bit), and PowerPC (32-bit) have been tested, with the
x86-64 version having seen the most testing.

* The FreeBSD version of the program can't write changes to the partition table to a
disk when existing partitions on that disk are mounted. (The same problem exists
with many other FreeBSD utilities, such as gpt, fdisk, and dd.) This limitation can
be overcome by typing sysctl kern.geom.debugflags=16 at a shell prompt.

* The fields used to display the start and end sector numbers for partitions in the
-p option are 14 characters wide. This translates to a limitation of about 45 PiB.

On larger disks, the displayed columns will go out of alignment.

* The program can load only up to 128 partitions (4 primary partitions and 124 logi?
cal partitions) when converting from MBR format. This limit can be raised by chang?
ing the #define MAX_MBR_PARTS line in the basicmbr.h source code file and recompil?
ing; however, such a change will require using a larger-than-normal partition ta?

ble. (The limit of 128 partitions was chosen because that number equals the 128 Page 11/13

partitions supported by the most common partition table size.)

* Converting from MBR format sometimes fails because of insufficient space at the
start or (more commonly) the end of the disk. Resizing the partition table (using
the 's' option in the experts' menu) can sometimes overcome this problem; however,
in extreme cases it may be necessary to resize a partition using GNU Parted or a
similar tool prior to conversion with gdisk.

* MBR conversions work only if the disk has correct LBA partition descriptors. These
descriptors should be present on any disk over 8 GiB in size or on smaller disks
partitioned with any but very ancient software.

* BSD disklabel support can create first and/or last partitions that overlap with the
GPT data structures. This can sometimes be compensated by adjusting the partition
table size, but in extreme cases the affected partition(s) may need to be deleted.

* Because of the highly variable nature of BSD disklabel structures, conversions from
this form may be unreliable -- partitions may be dropped, converted in a way that
creates overlaps with other partitions, or converted with incorrect start or end
values. Use this feature with caution!

* Booting after converting an MBR or BSD disklabel disk is likely to be disrupted.
Sometimes re-installing a boot loader will fix the problem, but other times you may
need to switch boot loaders. Except on EFI-based platforms, Windows through at
least Windows 7 RC doesn't support booting from GPT disks. Creating a hybrid MBR
(using the 'h' option on the recovery & transformation menu) or abandoning GPT in
favor of MBR may be your only options in this case.

AUTHORS

Primary author: Roderick W. Smith (rodsmith@rodsbooks.com)

Contributors:

* Yves Blusseau (lotnwmz02@sneakemail.com)

* David Hubbard (david.c.hubbard@gmail.com)

* Justin Maggard (justin.maggard@netgear.com)

* Dwight Schauer (das@teegra.net)

* Florian Zumbiehl (florz@florz.de)

SEE ALSO
cfdisk(8), cgdisk(8), fdisk(8), gdisk(8), mkfs(8), parted(8), sfdisk(8), fixparts(8).

http://en.wikipedia.org/wiki/GUID_Partition_Table

Page 12/13

http://developer.apple.com/technotes/tn2006/tn2166.html
http://www.rodsbooks.com/gdisk/

AVAILABILITY
The sgdisk command is part of the GPT fdisk package and is available from Rod Smith.

Roderick W. Smith 1.0.8 SGDISK(8)

Page 13/13

