<R

University

FPDF Library

PDF ggneramr

"‘ pqthon " manutifie

vbuntu

Full credit is given to the above companies including the OS
that this PDF file was generated!

Linux Ubuntu 22.4.5 Manual Pages on command 'sh.distrib.1’
$ man sh.distrib.1
DASH(1) BSD General Commands Manual DASH(1)
NAME
dash ? command interpreter (shell)
SYNOPSIS
dash [-aCefnuvxlimqVEbp] [+aCefnuvxlimgVEDbp] [-0 option_name] [+0 option_name]
[command_file [argument ...]]
dash -c [-aCefnuvxlimqVEbp] [+aCefnuvxlimqVEbp] [-0 option_name] [+0 option_name]
command_string [command_name [argument ...]]
dash -s [-aCefnuvxlimqVEbp] [+aCefnuvxlimqVEbp] [-0 option_name] [+0 option_name]
[argument ...]
DESCRIPTION
dash is the standard command interpreter for the system. The current version of dash
is in the process of being changed to conform with the POSIX 1003.2 and 1003.2a spec?
ifications for the shell. This version has many features which make it appear simi?
lar in some respects to the Korn shell, but it is not a Korn shell clone (see
ksh(1)). Only features designated by POSIX, plus a few Berkeley extensions, are be?
ing incorporated into this shell. This man page is not intended to be a tutorial or
a complete specification of the shell.
Overview
The shell is a command that reads lines from either a file or the terminal, inter?
prets them, and generally executes other commands. It is the program that is running

. .) Page 1/33
when a user logs into the system (although a user can select a different shell with

the chsh(1) command). The shell implements a language that has flow control con?
structs, a macro facility that provides a variety of features in addition to data
storage, along with built in history and line editing capabilities. It incorporates
many features to aid interactive use and has the advantage that the interpretative
language is common to both interactive and non-interactive use (shell scripts). That
is, commands can be typed directly to the running shell or can be put into a file and
the file can be executed directly by the shell.
Invocation
If no args are present and if the standard input of the shell is connected to a ter?
minal (or if the -i flag is set), and the -c option is not present, the shell is con?
sidered an interactive shell. An interactive shell generally prompts before each
command and handles programming and command errors differently (as described below).
When first starting, the shell inspects argument 0, and if it begins with a dash ?-?,
the shell is also considered a login shell. This is normally done automatically by
the system when the user first logs in. A login shell first reads commands from the
files /etc/profile and .profile if they exist. If the environment variable ENV is
set on entry to an interactive shell, or is set in the .profile of a login shell, the
shell next reads commands from the file named in ENV. Therefore, a user should place
commands that are to be executed only at login time in the .profile file, and com?
mands that are executed for every interactive shell inside the ENV file. To set the
ENV variable to some file, place the following line in your .profile of your home di?
rectory
ENV=$HOME/.shinit; export ENV
substituting for ?.shinit? any filename you wish.
If command line arguments besides the options have been specified, then the shell
treats the first argument as the name of a file from which to read commands (a shell
script), and the remaining arguments are set as the positional parameters of the
shell ($1, $2, etc). Otherwise, the shell reads commands from its standard input.
Argument List Processing
All of the single letter options that have a corresponding name can be used as an ar?
gument to the -0 option. The set -0 name is provided next to the single letter op?
tion in the description below. Specifying a dash ?-? turns the option on, while us?

ing a plus ?+? disables the option. The following options can be set from the com? Page 2/33

mand line or with the set builtin (described later).

-a allexport Export all variables assigned to.

-C Read commands from the command_string operand instead of from
the standard input. Special parameter 0 will be set from the
command_name operand and the positional parameters ($1, $2,
etc.) set from the remaining argument operands.

-C noclobber Don't overwrite existing files with ?>?.

-e errexit If not interactive, exit immediately if any untested command
fails. The exit status of a command is considered to be ex?
plicitly tested if the command is used to control an if, elif,
while, or until; or if the command is the left hand operand of
an ?&&? or ?||? operator.

-f noglob Disable pathname expansion.

-n noexec If not interactive, read commands but do not execute them.
This is useful for checking the syntax of shell scripts.

-u nounset Write a message to standard error when attempting to expand a
variable that is not set, and if the shell is not interactive,
exit immediately.

-v verbose The shell writes its input to standard error as it is read.
Useful for debugging.

-X xtrace Write each command to standard error (preceded by a ?+ ?) be?
fore it is executed. Useful for debugging.

-lignoreeof Ignore EOF's from input when interactive.

-i interactive Force the shell to behave interactively.

-l Make dash act as if it had been invoked as a login shell.

-m monitor Turn on job control (set automatically when interactive).

-s stdin Read commands from standard input (set automatically if no
file arguments are present). This option has no effect when
set after the shell has already started running (i.e. with
set).

-V i Enable the built-in vi(1) command line editor (disables -E if
it has been set).

-E emacs Enable the built-in emacs(1) command line editor (disables -V

Page 3/33

if it has been set).
-b notify Enable asynchronous notification of background job completion.
(UNIMPLEMENTED for 4.4alpha)
-p priv Do not attempt to reset effective uid if it does not match
uid. This is not set by default to help avoid incorrect usage
by setuid root programs via system(3) or popen(3).
Lexical Structure
The shell reads input in terms of lines from a file and breaks it up into words at
whitespace (blanks and tabs), and at certain sequences of characters that are special
to the shell called ?operators?. There are two types of operators: control operators
and redirection operators (their meaning is discussed later). Following is a list of
operators:
Control operators:
& && () ;5] |] <newline>
Redirection operators:
<> > < >> <8 >& <<- <>
Quoting
Quoting is used to remove the special meaning of certain characters or words to the
shell, such as operators, whitespace, or keywords. There are three types of quoting:
matched single quotes, matched double quotes, and backslash.
Backslash
A backslash preserves the literal meaning of the following character, with the excep?
tion of ?newline?. A backslash preceding a ?newline? is treated as a line continua?
tion.
Single Quotes
Enclosing characters in single quotes preserves the literal meaning of all the char?
acters (except single quotes, making it impossible to put single-quotes in a single-
quoted string).
Double Quotes
Enclosing characters within double quotes preserves the literal meaning of all char?
acters except dollarsign ($), backquote (°), and backslash (\). The backslash inside
double quotes is historically weird, and serves to quote only the following charac?

ters:

Page 4/33

$ "\ <newline>.
Otherwise it remains literal.
Reserved Words
Reserved words are words that have special meaning to the shell and are recognized at
the beginning of a line and after a control operator. The following are reserved
words:
! elif fi while case
else for then { }
do done untll if esac
Their meaning is discussed later.
Aliases
An alias is a name and corresponding value set using the alias(1) builtin command.
Whenever a reserved word may occur (see above), and after checking for reserved
words, the shell checks the word to see if it matches an alias. If it does, it re?
places it in the input stream with its value. For example, if there is an alias
called ?If? with the value ?Is -F?, then the input:
If foobar ?return?
would become
Is -F foobar ?return?
Aliases provide a convenient way for naive users to create shorthands for commands
without having to learn how to create functions with arguments. They can also be
used to create lexically obscure code. This use is discouraged.
Commands
The shell interprets the words it reads according to a language, the specification of
which is outside the scope of this man page (refer to the BNF in the POSIX 1003.2
document). Essentially though, a line is read and if the first word of the line (or
after a control operator) is not a reserved word, then the shell has recognized a
simple command. Otherwise, a complex command or some other special construct may
have been recognized.
Simple Commands
If a simple command has been recognized, the shell performs the following actions:
1. Leading words of the form ?name=value? are stripped off and assigned to

the environment of the simple command. Redirection operators and their Page 5/33

arguments (as described below) are stripped off and saved for processing.

2. The remaining words are expanded as described in the section called
?Expansions?, and the first remaining word is considered the command name
and the command is located. The remaining words are considered the argu?
ments of the command. If no command name resulted, then the ?name=value?
variable assignments recognized in item 1 affect the current shell.

3. Redirections are performed as described in the next section.

Redirections
Redirections are used to change where a command reads its input or sends its output.
In general, redirections open, close, or duplicate an existing reference to a file.
The overall format used for redirection is:
[n] redir-op file
where redir-op is one of the redirection operators mentioned previously. Following
is a list of the possible redirections. The [n] is an optional number between 0 and
9, as in ?3? (not ?[3]?), that refers to a file descriptor.
[n]> file Redirect standard output (or n) to file.
[n]>| file Same, but override the -C option.
[n]>> file Append standard output (or n) to file.
[n]< file Redirect standard input (or n) from file.
[n1]<&n2 Copy file descriptor n2 as stdout (or fd n1). fd n2.
[n]<&- Close standard input (or n).
[n1]>&n2 Copy file descriptor n2 as stdin (or fd n1). fd n2.
[n]>&- Close standard output (or n).
[n]<> file Open file for reading and writing on standard input (or n).
The following redirection is often called a ?here-document?.

[n]<< delimiter

here-doc-text ...

delimiter
All the text on successive lines up to the delimiter is saved away and made available
to the command on standard input, or file descriptor n if it is specified. If the
delimiter as specified on the initial line is quoted, then the here-doc-text is
treated literally, otherwise the text is subjected to parameter expansion, command

substitution, and arithmetic expansion (as described in the section on ?Expansions?).

Page 6/33

If the operator is ?<<-? instead of ?<<?, then leading tabs in the here-doc-text are
stripped.

Search and Execution

There are three types of commands: shell functions, builtin commands, and normal pro?

grams -- and the command is searched for (by name) in that order. They each are exe?

cuted in a different way.
When a shell function is executed, all of the shell positional parameters (except $0,
which remains unchanged) are set to the arguments of the shell function. The vari?
ables which are explicitly placed in the environment of the command (by placing as?
signments to them before the function name) are made local to the function and are
set to the values given. Then the command given in the function definition is exe?
cuted. The positional parameters are restored to their original values when the com?
mand completes. This all occurs within the current shell.
Shell builtins are executed internally to the shell, without spawning a new process.
Otherwise, if the command name doesn't match a function or builtin, the command is
searched for as a normal program in the file system (as described in the next sec?
tion). When a normal program is executed, the shell runs the program, passing the
arguments and the environment to the program. If the program is not a normal exe?
cutable file (i.e., if it does not begin with the "magic number" whose ASCII repre?
sentation is "#!", so execve(2) returns ENOEXEC then) the shell will interpret the
program in a subshell. The child shell will reinitialize itself in this case, so
that the effect will be as if a new shell had been invoked to handle the ad-hoc shell
script, except that the location of hashed commands located in the parent shell will
be remembered by the child.
Note that previous versions of this document and the source code itself misleadingly
and sporadically refer to a shell script without a magic number as a "shell proce?
dure".

Path Search
When locating a command, the shell first looks to see if it has a shell function by
that name. Then it looks for a builtin command by that name. If a builtin command
is not found, one of two things happen:
1. Command names containing a slash are simply executed without performing any

searches.

Page 7/33

2. The shell searches each entry in PATH in turn for the command. The value of the
PATH variable should be a series of entries separated by colons. Each entry
consists of a directory name. The current directory may be indicated implicitly
by an empty directory name, or explicitly by a single period.

Command Exit Status

Each command has an exit status that can influence the behaviour of other shell com?

mands. The paradigm is that a command exits with zero for normal or success, and

non-zero for failure, error, or a false indication. The man page for each command
should indicate the various exit codes and what they mean. Additionally, the builtin
commands return exit codes, as does an executed shell function.

If a command consists entirely of variable assignments then the exit status of the

command is that of the last command substitution if any, otherwise 0.

Complex Commands

Complex commands are combinations of simple commands with control operators or re?

served words, together creating a larger complex command. More generally, a command

is one of the following:

? simple command

? pipeline

? list or compound-list

? compound command

? function definition

Unless otherwise stated, the exit status of a command is that of the last simple com?

mand executed by the command.

Pipelines

A pipeline is a sequence of one or more commands separated by the control operator |.

The standard output of all but the last command is connected to the standard input of

the next command. The standard output of the last command is inherited from the

shell, as usual.

The format for a pipeline is:

['] command1l [| command?2 ...]

The standard output of command1 is connected to the standard input of command2. The

standard input, standard output, or both of a command is considered to be assigned by

the pipeline before any redirection specified by redirection operators that are part Page 8/33

of the command.
If the pipeline is not in the background (discussed later), the shell waits for all
commands to complete.
If the reserved word ! does not precede the pipeline, the exit status is the exit
status of the last command specified in the pipeline. Otherwise, the exit status is
the logical NOT of the exit status of the last command. That is, if the last command
returns zero, the exit status is 1; if the last command returns greater than zero,
the exit status is zero.
Because pipeline assignment of standard input or standard output or both takes place
before redirection, it can be modified by redirection. For example:
$ commandl 2>&1 | command2

sends both the standard output and standard error of commandl to the standard input
of command2.
A ; or ?newline? terminator causes the preceding AND-OR-list (described next) to be
executed sequentially; a & causes asynchronous execution of the preceding AND-OR-
list.
Note that unlike some other shells, each process in the pipeline is a child of the
invoking shell (unless it is a shell builtin, in which case it executes in the cur?
rent shell -- but any effect it has on the environment is wiped).

Background Commands -- &
If a command is terminated by the control operator ampersand (&), the shell executes
the command asynchronously -- that is, the shell does not wait for the command to
finish before executing the next command.
The format for running a command in background is:

commandl & [command2 & ...]

If the shell is not interactive, the standard input of an asynchronous command is set
to /dev/null.

Lists -- Generally Speaking
A list is a sequence of zero or more commands separated by newlines, semicolons, or
ampersands, and optionally terminated by one of these three characters. The commands
in a list are executed in the order they are written. If command is followed by an
ampersand, the shell starts the command and immediately proceeds onto the next com?

mand; otherwise it waits for the command to terminate before proceeding to the next Page 9/33

one.
Short-Circuit List Operators
?&&? and ?||? are AND-OR list operators. ?&&? executes the first command, and then
executes the second command if and only if the exit status of the first command is
zero. ?||? is similar, but executes the second command if and only if the exit sta?
tus of the first command is nonzero. ?&&? and ?||? both have the same priority.
Flow-Control Constructs -- if, while, for, case
The syntax of the if command is
if list
then list
[elif list
then list] ...
[else list]
fi
The syntax of the while command is
while list
do list
done
The two lists are executed repeatedly while the exit status of the first list is
zero. The until command is similar, but has the word until in place of while, which
causes it to repeat until the exit status of the first list is zero.
The syntax of the for command is
for variable [in [word ...]]
do list
done
The words following in are expanded, and then the list is executed repeatedly with
the variable set to each word in turn. Omitting in word ... is equivalent to in
"$@".
The syntax of the break and continue command is
break [num]
continue [num]
Break terminates the num innermost for or while loops. Continue continues with the

next iteration of the innermost loop. These are implemented as builtin commands. Page 10/33

The syntax of the case command is
case word in

[(Jpattern) list ;;

esac
The pattern can actually be one or more patterns (see Shell Patterns described
later), separated by ?|? characters. The ?(? character before the pattern is op?
tional.
Grouping Commands Together
Commands may be grouped by writing either
(list)
or
{list; }
The first of these executes the commands in a subshell. Builtin commands grouped
into a (list) will not affect the current shell. The second form does not fork an?
other shell so is slightly more efficient. Grouping commands together this way al?
lows you to redirect their output as though they were one program:
{ printf " hello " ; printf " world\n" ; } > greeting
Note that ?}? must follow a control operator (here, ?;?) so that it is recognized as
a reserved word and not as another command argument.
Functions
The syntax of a function definition is
name () command
A function definition is an executable statement; when executed it installs a func?
tion named name and returns an exit status of zero. The command is normally a list
enclosed between ?{? and ?}7.
Variables may be declared to be local to a function by using a local command. This
should appear as the first statement of a function, and the syntax is
local [variable | -] ...
Local is implemented as a builtin command.
When a variable is made local, it inherits the initial value and exported and read?
only flags from the variable with the same name in the surrounding scope, if there is

one. Otherwise, the variable is initially unset. The shell uses dynamic scoping, so

Page 11/33

that if you make the variable x local to function f, which then calls function g,
references to the variable x made inside g will refer to the variable x declared in?
side f, not to the global variable named x.
The only special parameter that can be made local is ?-?. Making ?-? local any shell
options that are changed via the set command inside the function to be restored to
their original values when the function returns.
The syntax of the return command is
return [exitstatus]
It terminates the currently executing function. Return is implemented as a builtin
command.
Variables and Parameters
The shell maintains a set of parameters. A parameter denoted by a name is called a
variable. When starting up, the shell turns all the environment variables into shell
variables. New variables can be set using the form
name=value
Variables set by the user must have a hame consisting solely of alphabetics, numer?
ics, and underscores - the first of which must not be numeric. A parameter can also
be denoted by a number or a special character as explained below.
Positional Parameters
A positional parameter is a parameter denoted by a number (n > 0). The shell sets
these initially to the values of its command line arguments that follow the name of
the shell script. The set builtin can also be used to set or reset them.
Special Parameters
A special parameter is a parameter denoted by one of the following special charac?
ters. The value of the parameter is listed next to its character.
* Expands to the positional parameters, starting from one. When the ex?
pansion occurs within a double-quoted string it expands to a single
field with the value of each parameter separated by the first character
of the IFS variable, or by a ?space? if IFS is unset.
@ Expands to the positional parameters, starting from one. When the ex?
pansion occurs within double-quotes, each positional parameter expands
as a separate argument. If there are no positional parameters, the ex?

pansion of @ generates zero arguments, even when @ is double-quoted. Page 12/33

What this basically means, for example, is if $1 is ?abc? and $2 is ?def

ghi?, then "$@" expands to the two arguments:

Ilabcll lldef ghill
Expands to the number of positional parameters.
? Expands to the exit status of the most recent pipeline.

- (Hyphen.) Expands to the current option flags (the single-letter option names con?
catenated into a string) as specified on invocation, by the set builtin
command, or implicitly by the shell.

$ Expands to the process ID of the invoked shell. A subshell retains the
same value of $ as its parent.

! Expands to the process ID of the most recent background command executed
from the current shell. For a pipeline, the process ID is that of the
last command in the pipeline.

0 (Zero.) Expands to the name of the shell or shell script.

Word Expansions

This clause describes the various expansions that are performed on words. Not all

expansions are performed on every word, as explained later.

Tilde expansions, parameter expansions, command substitutions, arithmetic expansions,

and quote removals that occur within a single word expand to a single field. Itis

only field splitting or pathname expansion that can create multiple fields from a

single word. The single exception to this rule is the expansion of the special pa?

rameter @ within double-quotes, as was described above.

The order of word expansion is:

1. Tilde Expansion, Parameter Expansion, Command Substitution, Arithmetic Expansion

(these all occur at the same time).

2. Field Splitting is performed on fields generated by step (1) unless the IFS

variable is null.

3. Pathname Expansion (unless set -f is in effect).

4. Quote Removal.

The $ character is used to introduce parameter expansion, command substitution, or

arithmetic evaluation.

Tilde Expansion (substituting a user's home directory)

A word beginning with an unquoted tilde character (~) is subjected to tilde expan?

Page 13/33

sion. All the characters up to a slash (/) or the end of the word are treated as a
username and are replaced with the user's home directory. If the username is missing
(as in ~/foobar), the tilde is replaced with the value of the HOME variable (the cur?
rent user's home directory).
Parameter Expansion
The format for parameter expansion is as follows:
${expression}
where expression consists of all characters until the matching ?}?. Any ?}? escaped
by a backslash or within a quoted string, and characters in embedded arithmetic ex?
pansions, command substitutions, and variable expansions, are not examined in deter?
mining the matching ?}2.
The simplest form for parameter expansion is:
${parameter}
The value, if any, of parameter is substituted.
The parameter name or symbol can be enclosed in braces, which are optional except for
positional parameters with more than one digit or when parameter is followed by a
character that could be interpreted as part of the name. If a parameter expansion
occurs inside double-quotes:
1. Pathname expansion is not performed on the results of the expansion.
2. Field splitting is not performed on the results of the expansion, with the ex?
ception of @.
In addition, a parameter expansion can be modified by using one of the following for?
mats.
${parameter:-word} Use Default Values. If parameter is unset or null, the expan?
sion of word is substituted; otherwise, the value of parameter
is substituted.
${parameter:=word} Assign Default Values. If parameter is unset or null, the ex?
pansion of word is assigned to parameter. In all cases, the
final value of parameter is substituted. Only variables, not
positional parameters or special parameters, can be assigned in
this way.
${parameter:?[word]} Indicate Error if Null or Unset. If parameter is unset or

null, the expansion of word (or a message indicating it is un?

Page 14/33

set if word is omitted) is written to standard error and the
shell exits with a nonzero exit status. Otherwise, the value
of parameter is substituted. An interactive shell need not
exit.
${parameter:+word} Use Alternative Value. If parameter is unset or null, null is
substituted; otherwise, the expansion of word is substituted.
In the parameter expansions shown previously, use of the colon in the format results
in a test for a parameter that is unset or null; omission of the colon results in a
test for a parameter that is only unset.
${#parameter} String Length. The length in characters of the value of param?
eter.
The following four varieties of parameter expansion provide for substring processing.
In each case, pattern matching notation (see Shell Patterns), rather than regular ex?
pression notation, is used to evaluate the patterns. If parameter is * or @, the re?
sult of the expansion is unspecified. Enclosing the full parameter expansion string
in double-quotes does not cause the following four varieties of pattern characters to
be quoted, whereas quoting characters within the braces has this effect.
${parameter¥%word} Remove Smallest Suffix Pattern. The word is expanded to pro?
duce a pattern. The parameter expansion then results in param?
eter, with the smallest portion of the suffix matched by the
pattern deleted.
${parameter%%word} Remove Largest Suffix Pattern. The word is expanded to produce
a pattern. The parameter expansion then results in parameter,
with the largest portion of the suffix matched by the pattern
deleted.
${parameter#word} Remove Smallest Prefix Pattern. The word is expanded to pro?
duce a pattern. The parameter expansion then results in param?
eter, with the smallest portion of the prefix matched by the
pattern deleted.
${parameter##word} Remove Largest Prefix Pattern. The word is expanded to produce
a pattern. The parameter expansion then results in parameter,

with the largest portion of the prefix matched by the pattern

deleted. Page 15/33

Command Substitution

Command substitution allows the output of a command to be substituted in place of the

command name itself. Command substitution occurs when the command is enclosed as

follows:
$(command)
or (?backquoted? version):

‘command’

The shell expands the command substitution by executing command in a subshell envi?

ronment and replacing the command substitution with the standard output of the com?

mand, removing sequences of one or more ?newline?s at the end of the substitution.

(Embedded ?newline?s before the end of the output are not removed; however, during

field splitting, they may be translated into ?space?s, depending on the value of IFS
and quoting that is in effect.)

Arithmetic Expansion

Arithmetic expansion provides a mechanism for evaluating an arithmetic expression and

substituting its value. The format for arithmetic expansion is as follows:
$((expression))
The expression is treated as if it were in double-quotes, except that a double-quote
inside the expression is not treated specially. The shell expands all tokens in the
expression for parameter expansion, command substitution, and quote removal.
Next, the shell treats this as an arithmetic expression and substitutes the value of
the expression.
White Space Splitting (Field Splitting)
After parameter expansion, command substitution, and arithmetic expansion the shell
scans the results of expansions and substitutions that did not occur in double-quotes
for field splitting and multiple fields can result.
The shell treats each character of the IFS as a delimiter and uses the delimiters to
split the results of parameter expansion and command substitution into fields.
Pathname Expansion (File Name Generation)
Unless the -f flag is set, file name generation is performed after word splitting is
complete. Each word is viewed as a series of patterns, separated by slashes. The
process of expansion replaces the word with the names of all existing files whose

names can be formed by replacing each pattern with a string that matches the speci?

Page 16/33

fied pattern. There are two restrictions on this: first, a pattern cannot match a
string containing a slash, and second, a pattern cannot match a string starting with
a period unless the first character of the pattern is a period. The next section de?
scribes the patterns used for both Pathname Expansion and the case command.

Shell Patterns
A pattern consists of normal characters, which match themselves, and meta-characters.
The meta-characters are ?1?, ?*?, ???, and ?[?. These characters lose their special
meanings if they are quoted. When command or variable substitution is performed and
the dollar sign or back quotes are not double quoted, the value of the variable or
the output of the command is scanned for these characters and they are turned into
meta-characters.
An asterisk (?*?) matches any string of characters. A question mark matches any sin?
gle character. A left bracket (?[?) introduces a character class. The end of the
character class is indicated by a (?]?); if the ?]? is missing then the ?[? matches a
?[? rather than introducing a character class. A character class matches any of the
characters between the square brackets. A range of characters may be specified using
a minus sign. The character class may be complemented by making an exclamation point
the first character of the character class.
To include a ?]? in a character class, make it the first character listed (after the
?1?, if any). To include a minus sign, make it the first or last character listed.

Builtins
This section lists the builtin commands which are builtin because they need to per?
form some operation that can't be performed by a separate process. In addition to
these, there are several other commands that may be builtin for efficiency (e.g.

printf(1), echo(1), test(1), etc).

true A null command that returns a O (true) exit value.
. file
The commands in the specified file are read and executed by the shell.
alias [name[=string ...]]
If name=string is specified, the shell defines the alias name with value
string. If just name is specified, the value of the alias name is printed.

With no arguments, the alias builtin prints the names and values of all de?

Page 17/33

fined aliases (see unalias).

bg [job] ...

Continue the specified jobs (or the current job if no jobs are given) in the

background.

command [-p] [-v] [V] command [arg ...]

cd -

Execute the specified command but ignore shell functions when searching for

it. (This is useful when you have a shell function with the same name as a

builtin command.)

-p search for command using a PATH that guarantees to find all the stan?
dard utilities.

-V Do not execute the command but search for the command and print the
resolution of the command search. This is the same as the type
builtin.

-v Do not execute the command but search for the command and print the ab?
solute pathname of utilities, the name for builtins or the expansion of

aliases.

cd [-LP] [directory]

Switch to the specified directory (default HOME). If an entry for CDPATH ap?
pears in the environment of the cd command or the shell variable CDPATH is set
and the directory name does not begin with a slash, then the directories

listed in CDPATH will be searched for the specified directory. The format of
CDPATH is the same as that of PATH. If a single dash is specified as the ar?
gument, it will be replaced by the value of OLDPWD. The cd command will print
out the name of the directory that it actually switched to if this is differ?

ent from the name that the user gave. These may be different either because
the CDPATH mechanism was used or because the argument is a single dash. The
-P option causes the physical directory structure to be used, that is, all

symbolic links are resolved to their respective values. The -L option turns

off the effect of any preceding -P options.

echo [-n] args...

Print the arguments on the standard output, separated by spaces. Unless the

-n option is present, a newline is output following the arguments.

Page 18/33

If any of the following sequences of characters is encountered during output,

the sequence is not output. Instead, the specified action is performed:

\b A backspace character is output.

\c Subsequent output is suppressed. This is normally used at the end of
the last argument to suppress the trailing newline that echo would
otherwise output.

\e Outputs an escape character (ESC).

\f Output a form feed.

\n Output a newline character.

\r Output a carriage return.

\t Output a (horizontal) tab character.

\v. Output a vertical tab.

\Odigits
Output the character whose value is given by zero to three octal dig?
its. If there are zero digits, a nul character is output.

\\ Output a backslash.

All other backslash sequences elicit undefined behaviour.

eval string ...
Concatenate all the arguments with spaces. Then re-parse and execute the com?
mand.

exec [command arg ...]

Unless command is omitted, the shell process is replaced with the specified

program (which must be a real program, not a shell builtin or function). Any

redirections on the exec command are marked as permanent, so that they are not
undone when the exec command finishes.
exit [exitstatus]
Terminate the shell process. If exitstatus is given it is used as the exit
status of the shell; otherwise the exit status of the preceding command is
used.
export name ...
export -p
The specified names are exported so that they will appear in the environment

of subsequent commands. The only way to un-export a variable is to unset it. Page 19/33

The shell allows the value of a variable to be set at the same time it is ex?
ported by writing
export name=value
With no arguments the export command lists the names of all exported vari?
ables. With the -p option specified the output will be formatted suitably for
non-interactive use.
fc [-e editor] [first [last]]
fc -1 [-nr] [first [last]]
fc -s [old=new] [first]
The fc builtin lists, or edits and re-executes, commands previously entered to
an interactive shell.
-e editor
Use the editor named by editor to edit the commands. The editor string
is a command name, subject to search via the PATH variable. The value
in the FCEDIT variable is used as a default when -e is not specified.
If FCEDIT is null or unset, the value of the EDITOR variable is used.
If EDITOR is null or unset, ed(1) is used as the editor.
-1 (ell)
List the commands rather than invoking an editor on them. The commands
are written in the sequence indicated by the first and last operands,
as affected by -r, with each command preceded by the command number.
-n Suppress command numbers when listing with -I.
-r Reverse the order of the commands listed (with -I) or edited (with nei?
ther -l nor -s).
-s Re-execute the command without invoking an editor.
first
last Select the commands to list or edit. The number of previous commands
that can be accessed are determined by the value of the HISTSIZE vari?
able. The value of first or last or both are one of the following:
[+]number
A positive number representing a command number; command numbers
can be displayed with the -l option.

-number

Page 20/33

A negative decimal number representing the command that was exe?
cuted number of commands previously. For example, -1 is the im?
mediately previous command.
string
A string indicating the most recently entered command that begins with
that string. If the old=new operand is not also specified with -s, the
string form of the first operand cannot contain an embedded equal sign.
The following environment variables affect the execution of fc:
FCEDIT Name of the editor to use.
HISTSIZE The number of previous commands that are accessible.
fg [job]
Move the specified job or the current job to the foreground.
getopts optstring var
The POSIX getopts command, not to be confused with the Bell Labs -derived
getopt(1).
The first argument should be a series of letters, each of which may be option?
ally followed by a colon to indicate that the option requires an argument.
The variable specified is set to the parsed option.
The getopts command deprecates the older getopt(1) utility due to its handling
of arguments containing whitespace.
The getopts builtin may be used to obtain options and their arguments from a
list of parameters. When invoked, getopts places the value of the next option
from the option string in the list in the shell variable specified by var and
its index in the shell variable OPTIND. When the shell is invoked, OPTIND is
initialized to 1. For each option that requires an argument, the getopts
builtin will place it in the shell variable OPTARG. If an option is not al?
lowed for in the optstring, then OPTARG will be unset.
optstring is a string of recognized option letters (see getopt(3)). If a let?
ter is followed by a colon, the option is expected to have an argument which
may or may not be separated from it by white space. If an option character is
not found where expected, getopts will set the variable var to a ???; getopts
will then unset OPTARG and write output to standard error. By specifying a

colon as the first character of optstring all errors will be ignored. Page 21/33

After the last option getopts will return a non-zero value and set var to ???.

The following code fragment shows how one might process the arguments for a
command that can take the options [a] and [b], and the option [c], which re?
quires an argument.

while getopts abc: f

do
case $fin
a|b) flag=%f;
c) carg=$0PTARG;;
\?) echo $USAGE; exit 1;;
esac
done

shift “expr $OPTIND - 1
This code will accept any of the following as equivalent:

cmd -acarg file file

cmd -a -c arg file file

cmd -carg -a file file

cmd -a -carg -- file file

hash -rv command ...
The shell maintains a hash table which remembers the locations of commands.
With no arguments whatsoever, the hash command prints out the contents of this
table. Entries which have not been looked at since the last cd command are
marked with an asterisk; it is possible for these entries to be invalid.
With arguments, the hash command removes the specified commands from the hash
table (unless they are functions) and then locates them. With the -v option,
hash prints the locations of the commands as it finds them. The -r option
causes the hash command to delete all the entries in the hash table except for
functions.
pwd [-LP]

builtin command remembers what the current directory is rather than recomput?
ing it each time. This makes it faster. However, if the current directory is
renamed, the builtin version of pwd will continue to print the old name for

the directory. The -P option causes the physical value of the current working Page 22/33

directory to be shown, that is, all symbolic links are resolved to their re?
spective values. The -L option turns off the effect of any preceding -P op?
tions.

read [-p prompt] [-r] variable [...]
The prompt is printed if the -p option is specified and the standard input is
aterminal. Then a line is read from the standard input. The trailing new?
line is deleted from the line and the line is split as described in the sec?
tion on word splitting above, and the pieces are assigned to the variables in
order. At least one variable must be specified. If there are more pieces
than variables, the remaining pieces (along with the characters in IFS that
separated them) are assigned to the last variable. If there are more vari?
ables than pieces, the remaining variables are assigned the null string. The
read builtin will indicate success unless EOF is encountered on input, in
which case failure is returned.
By default, unless the -r option is specified, the backslash ?\? acts as an
escape character, causing the following character to be treated literally. If
a backslash is followed by a newline, the backslash and the newline will be
deleted.

readonly name ...

readonly -p
The specified names are marked as read only, so that they cannot be subse?
guently modified or unset. The shell allows the value of a variable to be set
at the same time it is marked read only by writing

readonly name=value

With no arguments the readonly command lists the names of all read only vari?
ables. With the -p option specified the output will be formatted suitably for
non-interactive use.

printf format [arguments ...]
printf formats and prints its arguments, after the first, under control of the
format. The format is a character string which contains three types of ob?
jects: plain characters, which are simply copied to standard output, character
escape sequences which are converted and copied to the standard output, and

format specifications, each of which causes printing of the next successive Page 23/33

argument.
The arguments after the first are treated as strings if the corresponding for?
mat is either b, c or s; otherwise it is evaluated as a C constant, with the
following extensions:
? Aleading plus or minus sign is allowed.
? If the leading character is a single or double quote, the value is
the ASCII code of the next character.
The format string is reused as often as necessary to satisfy the arguments.
Any extra format specifications are evaluated with zero or the null string.
Character escape sequences are in backslash notation as defined in ANSI
X3.159-1989 (?ANSI C897?). The characters and their meanings are as follows:
\a Write a <bell> character.
\b Write a <backspace> character.
\e Write an <escape> (ESC) character.
\f Write a <form-feed> character.
\n Write a <new-line> character.
\r Write a <carriage return> character.
\t Write a <tab> character.
\v Write a <vertical tab> character.
\\ Write a backslash character.
\num Write an 8-bit character whose ASCII value is the 1-, 2-, or
3-digit octal number num.
Each format specification is introduced by the percent character ("%"). The
remainder of the format specification includes, in the following order:
Zero or more of the following flags:
A “#' character specifying that the value should be printed in
an alternative form". For b, c, d, and s formats, this op?
tion has no effect. For the o format the precision of the
number is increased to force the first character of the output
string to a zero. For the x (X) format, a non-zero result has
the string 0x (0X) prepended to it. Fore, E, f, g, and G
formats, the result will always contain a decimal point, even

if no digits follow the point (normally, a decimal point only Page 24/33

appears in the results of those formats if a digit follows the
decimal point). For g and G formats, trailing zeros are not
removed from the result as they would otherwise be.

A minus sign *-' which specifies left adjustment of the output

in the indicated field;

+ A "+' character specifying that there should always be a sign
placed before the number when using signed formats.

?? A space specifying that a blank should be left before a posi?
tive number for a signed format. A “+' overrides a space if
both are used,;

0 A zero "0' character indicating that zero-padding should be
used rather than blank-padding. A "-' overrides a "0' if both
are used;

Field Width:

An optional digit string specifying a field width; if the output

string has fewer characters than the field width it will be blank-

padded on the left (or right, if the left-adjustment indicator has

been given) to make up the field width (note that a leading zero is a

flag, but an embedded zero is part of a field width);

Precision:

An optional period, ?.?, followed by an optional digit string giving a

precision which specifies the number of digits to appear after the

decimal point, for e and f formats, or the maximum number of bytes to

be printed from a string (b and s formats); if the digit string is

missing, the precision is treated as zero;

Format:

A character which indicates the type of format to use (one of

diouxXfwEgGhbcs).

A field width or precision may be ?*? instead of a digit string. In this case

an argument supplies the field width or precision.

The format characters and their meanings are:

diouXx

tal

The argument is printed as a signed decimal (d or i), unsigned oc?

, unsigned decimal, or unsigned hexadecimal (X or x), respec?

Page 25/33

eE

gG

%

tively.

The argument is printed in the style [-]Jddd.ddd where the number
of d's after the decimal point is equal to the precision specifi?
cation for the argument. If the precision is missing, 6 digits

are given; if the precision is explicitly 0, no digits and no dec?
imal point are printed.

The argument is printed in the style [-]d.ddde?dd where there is
one digit before the decimal point and the number after is equal
to the precision specification for the argument; when the preci?
sion is missing, 6 digits are produced. An upper-case E is used
for an "E' format.

The argument is printed in style f or in style e (E) whichever

gives full precision in minimum space.

Characters from the string argument are printed with backslash-es?

cape sequences expanded.

The following additional backslash-escape sequences are supported:

\c Causes dash to ignore any remaining characters in the
string operand containing it, any remaining string oper?
ands, and any additional characters in the format operand.

\Onum Write an 8-bit character whose ASCII value is the 1-, 2-,
or 3-digit octal number num.

The first character of argument is printed.

Characters from the string argument are printed until the end is

reached or until the number of bytes indicated by the precision

specification is reached; if the precision is omitted, all charac?
ters in the string are printed.

Print a "%'; no argument is used.

In no case does a non-existent or small field width cause truncation of a

field; padding takes place only if the specified field width exceeds the ac?

tual width.

set [{ -options | +options | -- }] arg ...

The set command performs three different functions.

With no arguments, it lists the values of all shell variables.

Page 26/33

If options are given, it sets the specified option flags, or clears them as
described in the section called Argument List Processing. As a special case,
if the option is -0 or +0 and no argument is supplied, the shell prints the
settings of all its options. If the option is -0, the settings are printed in
a human-readable format; if the option is +0, the settings are printed in a
format suitable for reinput to the shell to affect the same option settings.
The third use of the set command is to set the values of the shell's posi?
tional parameters to the specified args. To change the positional parameters
without changing any options, use ?--? as the first argument to set. If no
args are present, the set command will clear all the positional parameters
(equivalent to executing ?shift $#7?.)

shift [n]
Shift the positional parameters n times. A shift sets the value of $1 to the
value of $2, the value of $2 to the value of $3, and so on, decreasing the
value of $# by one. If n is greater than the number of positional parameters,
shift will issue an error message, and exit with return status 2.

test expression

[expression]
The test utility evaluates the expression and, if it evaluates to true, re?
turns a zero (true) exit status; otherwise it returns 1 (false). If there is
no expression, test also returns 1 (false).
All operators and flags are separate arguments to the test utility.
The following primaries are used to construct expression:
-b file True if file exists and is a block special file.
-c file True if file exists and is a character special file.
-d file True if file exists and is a directory.
-e file True if file exists (regardless of type).
-f file True if file exists and is a regular file.
-g file True if file exists and its set group ID flag is set.
-h file True if file exists and is a symbolic link.
-k file True if file exists and its sticky bit is set.
-n string True if the length of string is nonzero.

-pfile True if file is a named pipe (FIFO). Page 27/33

-r file True if file exists and is readable.

-s file True if file exists and has a size greater than zero.

-t file_descriptor
True if the file whose file descriptor number is file_descriptor
is open and is associated with a terminal.

-u file True if file exists and its set user ID flag is set.

-w file True if file exists and is writable. True indicates only that
the write flag is on. The file is not writable on a read-only
file system even if this test indicates true.

-x file True if file exists and is executable. True indicates only that
the execute flag is on. If file is a directory, true indicates
that file can be searched.

-z string True if the length of string is zero.

-L file True if file exists and is a symbolic link. This operator is
retained for compatibility with previous versions of this pro?
gram. Do not rely on its existence; use -h instead.

-O file True if file exists and its owner matches the effective user id
of this process.

-G file True if file exists and its group matches the effective group id
of this process.

-S file True if file exists and is a socket.

filel -nt file2
True if filel and file2 exist and filel is newer than file2.

filel -ot file2
True if filel and file2 exist and filel is older than file2.

filel -ef file2
True if filel and file2 exist and refer to the same file.

string True if string is not the null string.

sl=s2 True if the strings s1 and s2 are identical.

sl!=s2 True if the strings s1 and s2 are not identical.

sl<s2 True if string s1 comes before s2 based on the ASCII value of
their characters.

sl1>s2 True if string s1 comes after s2 based on the ASCII value of Page 28/33

their characters.
nl-eqn2 True if the integers nl1 and n2 are algebraically equal.
nl-nen2 True if the integers n1 and n2 are not algebraically equal.
nl-gtn2 True if the integer nl is algebraically greater than the integer
n2.
nl-gen2 True if the integer nl is algebraically greater than or equal to
the integer n2.
nl-ltn2 True if the integer nl is algebraically less than the integer
n2.
nl-len2 True if the integer nl is algebraically less than or equal to
the integer n2.
These primaries can be combined with the following operators:
I expression True if expression is false.
expressionl -a expression2
True if both expressionl and expression2 are true.
expressionl -0 expression2
True if either expressionl or expression2 are true.
(expression) True if expression is true.
The -a operator has higher precedence than the -o operator.
times Print the accumulated user and system times for the shell and for processes
run from the shell. The return status is 0.
trap [action signal ...]
Cause the shell to parse and execute action when any of the specified signals
are received. The signals are specified by signal number or as the name of
the signal. If signal is 0 or EXIT, the action is executed when the shell ex?
its. action may be empty ("), which causes the specified signals to be ig?
nored. With action omitted or set to "-' the specified signals are set to
their default action. When the shell forks off a subshell, it resets trapped
(but not ignored) signals to the default action. The trap command has no ef?
fect on signals that were ignored on entry to the shell. trap without any ar?
guments cause it to write a list of signals and their associated action to the
standard output in a format that is suitable as an input to the shell that

achieves the same trapping results. Page 29/33

Examples:

trap
List trapped signals and their corresponding action

trap " INT QUIT tstp 30
Ignore signals INT QUIT TSTP USR1

trap date INT
Print date upon receiving signal INT

type [name ...]
Interpret each name as a command and print the resolution of the command
search. Possible resolutions are: shell keyword, alias, shell builtin, com?
mand, tracked alias and not found. For aliases the alias expansion is
printed; for commands and tracked aliases the complete pathname of the command
is printed.
ulimit [-H | -S] [-a | -tfdscmlpnv [value]]
Inquire about or set the hard or soft limits on processes or set new limits.
The choice between hard limit (which no process is allowed to violate, and
which may not be raised once it has been lowered) and soft limit (which causes
processes to be signaled but not necessarily killed, and which may be raised)
is made with these flags:
-H set or inquire about hard limits
-S set or inquire about soft limits. If neither -H nor -S is speci?
fied, the soft limit is displayed or both limits are set. If both
are specified, the last one wins.

The limit to be interrogated or set, then, is chosen by specifying any one of

these flags:

-a show all the current limits

-t show or set the limit on CPU time (in seconds)

-f show or set the limit on the largest file that can be created (in

512-byte blocks)

-d show or set the limit on the data segment size of a process (in
kilobytes)
-S show or set the limit on the stack size of a process (in kilo?

bytes) Page 30/33

-C show or set the limit on the largest core dump size that can be
produced (in 512-byte blocks)

-m show or set the limit on the total physical memory that can be in
use by a process (in kilobytes)

- show or set the limit on how much memory a process can lock with
mlock(2) (in kilobytes)

-p show or set the limit on the number of processes this user can

have at one time

-n show or set the limit on the number files a process can have open
at once
-v show or set the limit on the total virtual memory that can be in

use by a process (in kilobytes)
-r show or set the limit on the real-time scheduling priority of a
process

If none of these is specified, it is the limit on file size that is shown or
set. If value is specified, the limit is set to that number; otherwise the
current limit is displayed.
Limits of an arbitrary process can be displayed or set using the sysctl(8)
utility.

umask [mask]
Set the value of umask (see umask(2)) to the specified octal value. If the
argument is omitted, the umask value is printed.

unalias [-a] [name]
If name is specified, the shell removes that alias. If -a is specified, all
aliases are removed.

unset [-fv] name ...
The specified variables and functions are unset and unexported. If -f or -v
is specified, the corresponding function or variable is unset, respectively.
If a given name corresponds to both a variable and a function, and no options
are given, only the variable is unset.

wait [job]
Wait for the specified job to complete and return the exit status of the last

process in the job. If the argument is omitted, wait for all jobs to complete

Page 31/33

and return an exit status of zero.
Command Line Editing
When dash is being used interactively from a terminal, the current command and the
command history (see fc in Builtins) can be edited using vi-mode command-line edit?
ing. This mode uses commands, described below, similar to a subset of those de?
scribed in the vi man page. The command ?set -0 vi? enables vi-mode editing and
places sh into vi insert mode. With vi-mode enabled, sh can be switched between in?
sert mode and command mode. It is similar to vi: typing ?ESC? enters vi command
mode. Hitting ?return? while in command mode will pass the line to the shell.
EXIT STATUS
Errors that are detected by the shell, such as a syntax error, will cause the shell
to exit with a non-zero exit status. If the shell is not an interactive shell, the
execution of the shell file will be aborted. Otherwise the shell will return the
exit status of the last command executed, or if the exit builtin is used with a nu?
meric argument, it will return the argument.
ENVIRONMENT
HOME Set automatically by login(1) from the user's login directory in the pass?
word file (passwd(4)). This environment variable also functions as the
default argument for the cd builtin.
PATH The default search path for executables. See the above section Path
Search.
CDPATH The search path used with the cd builtin.
MAIL The name of a malil file, that will be checked for the arrival of new mail.
Overridden by MAILPATH.
MAILCHECK The frequency in seconds that the shell checks for the arrival of mail in
the files specified by the MAILPATH or the MAIL file. If set to O, the
check will occur at each prompt.
MAILPATH A colon ?:? separated list of file names, for the shell to check for in?
coming mail. This environment setting overrides the MAIL setting. There
is a maximum of 10 mailboxes that can be monitored at once.
PS1 The primary prompt string, which defaults to ?$?, unless you are the su?
peruser, in which case it defaults to ?# 2.

PS2 The secondary prompt string, which defaults to 7> ?. Page 32/33

PS4 Output before each line when execution trace (set -x) is enabled, defaults

to 7+ 2.

IFS Input Field Separators. This is normally set to ?space?, ?tab?, and
?newline?. See the White Space Splitting section for more details.

TERM The default terminal setting for the shell. This is inherited by children
of the shell, and is used in the history editing modes.

HISTSIZE The number of lines in the history buffer for the shell.

PWD The logical value of the current working directory. This is set by the cd

command.

OLDPWD The previous logical value of the current working directory. This is set

by the cd command.
PPID The process ID of the parent process of the shell.
FILES
$HOME/.profile
/etc/profile
SEE ALSO
csh(1), echo(1), getopt(1), ksh(1), login(1), printf(1), test(1), getopt(3),
passwd(5), environ(7), sysctl(8)

HISTORY

dash is a POSIX-compliant implementation of /bin/sh that aims to be as small as pos?

sible. dash is a direct descendant of the NetBSD version of ash (the AlImquist
SHell), ported to Linux in early 1997. It was renamed to dash in 2002.

BUGS
Setuid shell scripts should be avoided at all costs, as they are a significant secu?

rity risk.

PS1, PS2, and PS4 should be subject to parameter expansion before being displayed.

BSD January 19, 2003 BSD

Page 33/33

