PDF generator

FPDF Library

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'shm_open.3'
$ man shm_open.3
SHM_OPEN(3) Linux Programmer's Manual SHM_OPEN(3)
NAME
shm_open, shm_unlink - create/open or unlink POSIX shared memory objects
SYNOPSIS
#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h> /* For O_* constants */
int shm_open(const char *name, int oflag, mode_t mode);
int shm_unlink(const char *name);
Link with -Irt.
DESCRIPTION
shm_open() creates and opens a new, or opens an existing, POSIX shared memory object. A
POSIX shared memory object is in effect a handle which can be used by unrelated processes
to mmap(2) the same region of shared memory. The shm_unlink() function performs the con?
verse operation, removing an object previously created by shm_open().
The operation of shm_open() is analogous to that of open(2). name specifies the shared
memory object to be created or opened. For portable use, a shared memory object should be
identified by a name of the form /somename; that is, a null-terminated string of up to
NAME_MAX (i.e., 255) characters consisting of an initial slash, followed by one or more
characters, none of which are slashes.
oflag is a bit mask created by ORing together exactly one of O_ RDONLY or O_RDWR and any of
the other flags listed here:

O_RDONLY Page 1/8

Open the object for read access. A shared memory object opened in this way can be
mmap(2)ed only for read (PROT_READ) access.

O_RDWR Open the object for read-write access.

O_CREAT
Create the shared memory object if it does not exist. The user and group ownership
of the object are taken from the corresponding effective IDs of the calling
process, and the object's permission bits are set according to the low-order 9 bits
of mode, except that those bits set in the process file mode creation mask (see
umask(2)) are cleared for the new object. A set of macro constants which can be
used to define mode is listed in open(2). (Symbolic definitions of these constants
can be obtained by including <sys/stat.h>.)

A new shared memory object initially has zero length?the size of the object can be
set using ftruncate(2). The newly allocated bytes of a shared memory object are
automatically initialized to 0.

O_EXCL If O_CREAT was also specified, and a shared memory object with the given name al?
ready exists, return an error. The check for the existence of the object, and its
creation if it does not exist, are performed atomically.

O_TRUNC
If the shared memory object already exists, truncate it to zero bytes.

Definitions of these flag values can be obtained by including <fcntl.h>.

On successful completion shm_open() returns a new file descriptor referring to the shared

memory object. This file descriptor is guaranteed to be the lowest-numbered file descrip?

tor not previously opened within the process. The FD_CLOEXEC flag (see fcntl(2)) is set
for the file descriptor.

The file descriptor is normally used in subsequent calls to ftruncate(2) (for a newly cre?

ated object) and mmap(2). After a call to mmap(2) the file descriptor may be closed with?

out affecting the memory mapping.

The operation of shm_unlink() is analogous to unlink(2): it removes a shared memaory object

name, and, once all processes have unmapped the object, de-allocates and destroys the con?

tents of the associated memory region. After a successful shm_unlink(), attempts to
shm_open() an object with the same name fail (unless O_CREAT was specified, in which case

a new, distinct object is created).

RETURN VALUE Page 2/8

On success, shm_open() returns a file descriptor (a nonnegative integer). On failure,
shm_open() returns -1. shm_unlink() returns 0 on success, or -1 on error.
ERRORS
On failure, errno is set to indicate the cause of the error. Values which may appear in
errno include the following:
EACCES Permission to shm_unlink() the shared memory object was denied.
EACCES Permission was denied to shm_open() name in the specified mode, or O_TRUNC was
specified and the caller does not have write permission on the object.
EEXIST Both O_CREAT and O_EXCL were specified to shm_open() and the shared memory object
specified by name already exists.
EINVAL The name argument to shm_open() was invalid.
EMFILE The per-process limit on the number of open file descriptors has been reached.
ENAMETOOLONG
The length of name exceeds PATH_MAX.
ENFILE The system-wide limit on the total number of open files has been reached.
ENOENT An attempt was made to shm_open() a name that did not exist, and O_CREAT was not
specified.
ENOENT An attempt was to made to shm_unlink() a name that does not exist.
VERSIONS
These functions are provided in glibc 2.2 and later.
ATTRIBUTES

For an explanation of the terms used in this section, see attributes(7).

PPV 7???7?72?7?72?7?72?7?77??7?7?7?7??7?7

?Interface ? Attribute ? Value ?

PPV 72?7?7??7??7?7??7?7

?shm_open(), shm_unlink() ? Thread safety ? MT-Safe locale ?

PPV ???7?72?7?7??7?2?7?7???7??7?7??7?7

CONFORMING TO
POSIX.1-2001, POSIX.1-2008.
POSIX.1-2001 says that the group ownership of a newly created shared memory object is set
to either the calling process's effective group ID or "a system default group ID".
POSIX.1-2008 says that the group ownership may be set to either the calling process's ef?

fective group ID or, if the object is visible in the filesystem, the group ID of the par? Page 3/8

ent directory.
NOTES
POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC unspecified. On
Linux, this will successfully truncate an existing shared memory object?this may not be so
on other UNIX systems.
The POSIX shared memory object implementation on Linux makes use of a dedicated tmpfs(5)
filesystem that is normally mounted under /dev/shm.
EXAMPLES

The programs below employ POSIX shared memory and POSIX unnamed semaphores to exchange a
piece of data. The "bounce" program (which must be run first) raises the case of a string
that is placed into the shared memory by the "send" program. Once the data has been modi?
fied, the "send" program then prints the contents of the modified shared memory. An exam?
ple execution of the two programs is the following:

$./Jpshm_ucase_bounce /myshm &

[1] 270171

$./Jpshm_ucase_send /myshm hello

HELLO
Further detail about these programs is provided below.

Program source: pshm_ucase.h

The following header file is included by both programs below. Its primary purpose is to
define a structure that will be imposed on the memory object that is shared between the
two programs.

#include <sys/mman.h>

#include <fcntl.h>

#include <semaphore.h>

#include <sys/stat.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

} while (0)
#define BUF_SIZE 1024 /* Maximum size for exchanged string */

/* Define a structure that will be imposed on the shared

Page 4/8

memory object */

struct shmbuf {

sem_t semi; [* POSIX unnamed semaphore */
sem_t sem2; [* POSIX unnamed semaphore */
size_tcnt; /* Number of bytes used in 'buf' */

char buf[BUF_SIZE]; /* Data being transferred */
¥
Program source: pshm_ucase_bounce.c
The "bounce" program creates a new shared memory object with the name given in its com?
mand-line argument and sizes the object to match the size of the shmbuf structure defined
in the header file. It then maps the object into the process's address space, and ini?
tializes two POSIX semaphores inside the object to 0.
After the "send" program has posted the first of the semaphores, the "bounce" program up?
per cases the data that has been placed in the memory by the "send" program and then posts
the second semaphore to tell the "send" program that it may now access the shared memory.
[* pshm_ucase_bounce.c
Licensed under GNU General Public License v2 or later.
*/
#include <ctype.h>
#include "pshm_ucase.h"
int
main(int argc, char *argv[])
{
if (argc 1= 2) {
fprintf(stderr, "Usage: %s /shm-path\n", argv[0Q]);
exit(EXIT_FAILURE);
}
char *shmpath = argv[1];
[* Create shared memory object and set its size to the size
of our structure */
int fd = shm_open(shmpath, O_CREAT | O_EXCL | O_RDWR,
S_IRUSR | S_IWUSR);

if (fd == -1) Page 5/8

errExit("shm_open");

if (ftruncate(fd, sizeof(struct shmbuf)) == -1)
errExit("ftruncate™);

[* Map the object into the caller's address space */

struct shmbuf *shmp = mmap(NULL, sizeof(*shmp),

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

if (shmp == MAP_FAILED)
errExit("mmap");

[* Initialize semaphores as process-shared, with value 0 */

if (sem_init(&shmp->sem1, 1, 0) == -1)
errExit("sem_init-sem1");

if (sem_init(&shmp->sem2, 1, 0) == -1)
errExit("sem_init-sem2");

[* Wait for 'sem1' to be posted by peer before touching
shared memory */

if (sem_wait(&shmp->sem1l) == -1)
errExit("sem_wait");

[* Convert data in shared memory into upper case */

for (intj = 0; j < shmp->cnt; j++)
shmp->bufj] = toupper((unsigned char) shmp->buf[j]);

[* Post 'sem2' to tell the to tell peer that it can now
access the modified data in shared memory */

if (sem_post(&shmp->sem2) == -1)
errexit("sem_post");

/* Unlink the shared memory object. Even if the peer process
is still using the object, this is okay. The object will
be removed only after all open references are closed. */

shm_unlink(shmpath);

exit(EXIT_SUCCESS);

}
Program source: pshm_ucase_send.c

The "send" program takes two command-line arguments: the pathname of a shared memory ob?

Page 6/8

ject previously created by the "bounce" program and a string that is to be copied into
that object.
The program opens the shared memory object and maps the object into its address space. It
then copies the data specified in its second argument into the shared memory, and posts
the first semaphore, which tells the "bounce" program that it can now access that data.
After the "bounce" program posts the second semaphore, the "send" program prints the con?
tents of the shared memory on standard output.
/* pshm_ucase_send.c
Licensed under GNU General Public License v2 or later.
*/
#include <string.h>
#include "pshm_ucase.h"
int
main(int argc, char *argv[])
{
if (argc = 3) {
fprintf(stderr, "Usage: %s /shm-path string\n", argv[0]);
exit(EXIT_FAILURE);
}
char *shmpath = argv[1];
char *string = argv|[2];
size_t len = strlen(string);
if (len > BUF_SIZE) {
fprintf(stderr, "String is too long\n");
exit(EXIT_FAILURE);
}
[* Open the existing shared memory object and map it
into the caller's address space */
int fd = shm_open(shmpath, O_RDWR, 0);
if (fd ==-1)
errExit("shm_open");
struct shmbuf *shmp = mmap(NULL, sizeof(*shmp),

PROT_READ | PROT_WRITE,

Page 7/8

MAP_SHARED, fd, 0);
if (shmp == MAP_FAILED)
errExit("mmap");
[* Copy data into the shared memory object */
shmp->cnt = len;
memcpy(&shmp->buf, string, len);
[* Tell peer that it can now access shared memory */
if (sem_post(&shmp->sem1) == -1)
errExit("sem_post");
[* Wait until peer says that it has finished accessing
the shared memory */
if (sem_wait(&shmp->sem2) == -1)
errExit("sem_wait");
[* Write modified data in shared memory to standard output */
write(STDOUT_FILENO, &shmp->buf, len);
write(STDOUT_FILENO, "\n", 1);
exit(EXIT_SUCCESS);
}
SEE ALSO
close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2), memfd_create(2),
mmap(2), open(2), umask(2), shm_overview(7)
COLOPHON
This page is part of release 5.10 of the Linux man-pages project. A description of the
project, information about reporting bugs, and the latest version of this page, can be
found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SHM_OPEN(3)

Page 8/8

