
Rocky Enterprise Linux 9.2 Manual Pages on command 'shm_unlink.3'

$ man shm_unlink.3

SHM_OPEN(3) Linux Programmer's Manual SHM_OPEN(3)

NAME

 shm_open, shm_unlink - create/open or unlink POSIX shared memory objects

SYNOPSIS

 #include <sys/mman.h>

 #include <sys/stat.h> /* For mode constants */

 #include <fcntl.h> /* For O_* constants */

 int shm_open(const char *name, int oflag, mode_t mode);

 int shm_unlink(const char *name);

 Link with -lrt.

DESCRIPTION

 shm_open() creates and opens a new, or opens an existing, POSIX shared memory object. A

 POSIX shared memory object is in effect a handle which can be used by unrelated processes

 to mmap(2) the same region of shared memory. The shm_unlink() function performs the con?

 verse operation, removing an object previously created by shm_open().

 The operation of shm_open() is analogous to that of open(2). name specifies the shared

 memory object to be created or opened. For portable use, a shared memory object should be

 identified by a name of the form /somename; that is, a null-terminated string of up to

 NAME_MAX (i.e., 255) characters consisting of an initial slash, followed by one or more

 characters, none of which are slashes.

 oflag is a bit mask created by ORing together exactly one of O_RDONLY or O_RDWR and any of

 the other flags listed here:

 O_RDONLY Page 1/8

 Open the object for read access. A shared memory object opened in this way can be

 mmap(2)ed only for read (PROT_READ) access.

 O_RDWR Open the object for read-write access.

 O_CREAT

 Create the shared memory object if it does not exist. The user and group ownership

 of the object are taken from the corresponding effective IDs of the calling

 process, and the object's permission bits are set according to the low-order 9 bits

 of mode, except that those bits set in the process file mode creation mask (see

 umask(2)) are cleared for the new object. A set of macro constants which can be

 used to define mode is listed in open(2). (Symbolic definitions of these constants

 can be obtained by including <sys/stat.h>.)

 A new shared memory object initially has zero length?the size of the object can be

 set using ftruncate(2). The newly allocated bytes of a shared memory object are

 automatically initialized to 0.

 O_EXCL If O_CREAT was also specified, and a shared memory object with the given name al?

 ready exists, return an error. The check for the existence of the object, and its

 creation if it does not exist, are performed atomically.

 O_TRUNC

 If the shared memory object already exists, truncate it to zero bytes.

 Definitions of these flag values can be obtained by including <fcntl.h>.

 On successful completion shm_open() returns a new file descriptor referring to the shared

 memory object. This file descriptor is guaranteed to be the lowest-numbered file descrip?

 tor not previously opened within the process. The FD_CLOEXEC flag (see fcntl(2)) is set

 for the file descriptor.

 The file descriptor is normally used in subsequent calls to ftruncate(2) (for a newly cre?

 ated object) and mmap(2). After a call to mmap(2) the file descriptor may be closed with?

 out affecting the memory mapping.

 The operation of shm_unlink() is analogous to unlink(2): it removes a shared memory object

 name, and, once all processes have unmapped the object, de-allocates and destroys the con?

 tents of the associated memory region. After a successful shm_unlink(), attempts to

 shm_open() an object with the same name fail (unless O_CREAT was specified, in which case

 a new, distinct object is created).

RETURN VALUE Page 2/8

 On success, shm_open() returns a file descriptor (a nonnegative integer). On failure,

 shm_open() returns -1. shm_unlink() returns 0 on success, or -1 on error.

ERRORS

 On failure, errno is set to indicate the cause of the error. Values which may appear in

 errno include the following:

 EACCES Permission to shm_unlink() the shared memory object was denied.

 EACCES Permission was denied to shm_open() name in the specified mode, or O_TRUNC was

 specified and the caller does not have write permission on the object.

 EEXIST Both O_CREAT and O_EXCL were specified to shm_open() and the shared memory object

 specified by name already exists.

 EINVAL The name argument to shm_open() was invalid.

 EMFILE The per-process limit on the number of open file descriptors has been reached.

 ENAMETOOLONG

 The length of name exceeds PATH_MAX.

 ENFILE The system-wide limit on the total number of open files has been reached.

 ENOENT An attempt was made to shm_open() a name that did not exist, and O_CREAT was not

 specified.

 ENOENT An attempt was to made to shm_unlink() a name that does not exist.

VERSIONS

 These functions are provided in glibc 2.2 and later.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?shm_open(), shm_unlink() ? Thread safety ? MT-Safe locale ?

 ??

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

 POSIX.1-2001 says that the group ownership of a newly created shared memory object is set

 to either the calling process's effective group ID or "a system default group ID".

 POSIX.1-2008 says that the group ownership may be set to either the calling process's ef?

 fective group ID or, if the object is visible in the filesystem, the group ID of the par? Page 3/8

 ent directory.

NOTES

 POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC unspecified. On

 Linux, this will successfully truncate an existing shared memory object?this may not be so

 on other UNIX systems.

 The POSIX shared memory object implementation on Linux makes use of a dedicated tmpfs(5)

 filesystem that is normally mounted under /dev/shm.

EXAMPLES

 The programs below employ POSIX shared memory and POSIX unnamed semaphores to exchange a

 piece of data. The "bounce" program (which must be run first) raises the case of a string

 that is placed into the shared memory by the "send" program. Once the data has been modi?

 fied, the "send" program then prints the contents of the modified shared memory. An exam?

 ple execution of the two programs is the following:

 $./pshm_ucase_bounce /myshm &

 [1] 270171

 $./pshm_ucase_send /myshm hello

 HELLO

 Further detail about these programs is provided below.

 Program source: pshm_ucase.h

 The following header file is included by both programs below. Its primary purpose is to

 define a structure that will be imposed on the memory object that is shared between the

 two programs.

 #include <sys/mman.h>

 #include <fcntl.h>

 #include <semaphore.h>

 #include <sys/stat.h>

 #include <stdio.h>

 #include <stdlib.h>

 #include <unistd.h>

 #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \

 } while (0)

 #define BUF_SIZE 1024 /* Maximum size for exchanged string */

 /* Define a structure that will be imposed on the shared Page 4/8

 memory object */

 struct shmbuf {

 sem_t sem1; /* POSIX unnamed semaphore */

 sem_t sem2; /* POSIX unnamed semaphore */

 size_t cnt; /* Number of bytes used in 'buf' */

 char buf[BUF_SIZE]; /* Data being transferred */

 };

 Program source: pshm_ucase_bounce.c

 The "bounce" program creates a new shared memory object with the name given in its com?

 mand-line argument and sizes the object to match the size of the shmbuf structure defined

 in the header file. It then maps the object into the process's address space, and ini?

 tializes two POSIX semaphores inside the object to 0.

 After the "send" program has posted the first of the semaphores, the "bounce" program up?

 per cases the data that has been placed in the memory by the "send" program and then posts

 the second semaphore to tell the "send" program that it may now access the shared memory.

 /* pshm_ucase_bounce.c

 Licensed under GNU General Public License v2 or later.

 */

 #include <ctype.h>

 #include "pshm_ucase.h"

 int

 main(int argc, char *argv[])

 {

 if (argc != 2) {

 fprintf(stderr, "Usage: %s /shm-path\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 char *shmpath = argv[1];

 /* Create shared memory object and set its size to the size

 of our structure */

 int fd = shm_open(shmpath, O_CREAT | O_EXCL | O_RDWR,

 S_IRUSR | S_IWUSR);

 if (fd == -1) Page 5/8

 errExit("shm_open");

 if (ftruncate(fd, sizeof(struct shmbuf)) == -1)

 errExit("ftruncate");

 /* Map the object into the caller's address space */

 struct shmbuf *shmp = mmap(NULL, sizeof(*shmp),

 PROT_READ | PROT_WRITE,

 MAP_SHARED, fd, 0);

 if (shmp == MAP_FAILED)

 errExit("mmap");

 /* Initialize semaphores as process-shared, with value 0 */

 if (sem_init(&shmp->sem1, 1, 0) == -1)

 errExit("sem_init-sem1");

 if (sem_init(&shmp->sem2, 1, 0) == -1)

 errExit("sem_init-sem2");

 /* Wait for 'sem1' to be posted by peer before touching

 shared memory */

 if (sem_wait(&shmp->sem1) == -1)

 errExit("sem_wait");

 /* Convert data in shared memory into upper case */

 for (int j = 0; j < shmp->cnt; j++)

 shmp->buf[j] = toupper((unsigned char) shmp->buf[j]);

 /* Post 'sem2' to tell the to tell peer that it can now

 access the modified data in shared memory */

 if (sem_post(&shmp->sem2) == -1)

 errExit("sem_post");

 /* Unlink the shared memory object. Even if the peer process

 is still using the object, this is okay. The object will

 be removed only after all open references are closed. */

 shm_unlink(shmpath);

 exit(EXIT_SUCCESS);

 }

 Program source: pshm_ucase_send.c

 The "send" program takes two command-line arguments: the pathname of a shared memory ob? Page 6/8

 ject previously created by the "bounce" program and a string that is to be copied into

 that object.

 The program opens the shared memory object and maps the object into its address space. It

 then copies the data specified in its second argument into the shared memory, and posts

 the first semaphore, which tells the "bounce" program that it can now access that data.

 After the "bounce" program posts the second semaphore, the "send" program prints the con?

 tents of the shared memory on standard output.

 /* pshm_ucase_send.c

 Licensed under GNU General Public License v2 or later.

 */

 #include <string.h>

 #include "pshm_ucase.h"

 int

 main(int argc, char *argv[])

 {

 if (argc != 3) {

 fprintf(stderr, "Usage: %s /shm-path string\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 char *shmpath = argv[1];

 char *string = argv[2];

 size_t len = strlen(string);

 if (len > BUF_SIZE) {

 fprintf(stderr, "String is too long\n");

 exit(EXIT_FAILURE);

 }

 /* Open the existing shared memory object and map it

 into the caller's address space */

 int fd = shm_open(shmpath, O_RDWR, 0);

 if (fd == -1)

 errExit("shm_open");

 struct shmbuf *shmp = mmap(NULL, sizeof(*shmp),

 PROT_READ | PROT_WRITE, Page 7/8

 MAP_SHARED, fd, 0);

 if (shmp == MAP_FAILED)

 errExit("mmap");

 /* Copy data into the shared memory object */

 shmp->cnt = len;

 memcpy(&shmp->buf, string, len);

 /* Tell peer that it can now access shared memory */

 if (sem_post(&shmp->sem1) == -1)

 errExit("sem_post");

 /* Wait until peer says that it has finished accessing

 the shared memory */

 if (sem_wait(&shmp->sem2) == -1)

 errExit("sem_wait");

 /* Write modified data in shared memory to standard output */

 write(STDOUT_FILENO, &shmp->buf, len);

 write(STDOUT_FILENO, "\n", 1);

 exit(EXIT_SUCCESS);

 }

SEE ALSO

 close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2), memfd_create(2),

 mmap(2), open(2), umask(2), shm_overview(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-11-01 SHM_OPEN(3)

Page 8/8

