
Rocky Enterprise Linux 9.2 Manual Pages on command 'sigtimedwait.2'

$ man sigtimedwait.2

SIGWAITINFO(2) Linux Programmer's Manual SIGWAITINFO(2)

NAME

 sigwaitinfo, sigtimedwait, rt_sigtimedwait - synchronously wait for queued signals

SYNOPSIS

 #include <signal.h>

 int sigwaitinfo(const sigset_t *set, siginfo_t *info);

 int sigtimedwait(const sigset_t *set, siginfo_t *info,

 const struct timespec *timeout);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 sigwaitinfo(), sigtimedwait(): _POSIX_C_SOURCE >= 199309L

DESCRIPTION

 sigwaitinfo() suspends execution of the calling thread until one of the signals in set is

 pending (If one of the signals in set is already pending for the calling thread, sigwait?

 info() will return immediately.)

 sigwaitinfo() removes the signal from the set of pending signals and returns the signal

 number as its function result. If the info argument is not NULL, then the buffer that it

 points to is used to return a structure of type siginfo_t (see sigaction(2)) containing

 information about the signal.

 If multiple signals in set are pending for the caller, the signal that is retrieved by

 sigwaitinfo() is determined according to the usual ordering rules; see signal(7) for fur?

 ther details.

 sigtimedwait() operates in exactly the same way as sigwaitinfo() except that it has an ad?

 ditional argument, timeout, which specifies the interval for which the thread is suspended Page 1/3

 waiting for a signal. (This interval will be rounded up to the system clock granularity,

 and kernel scheduling delays mean that the interval may overrun by a small amount.) This

 argument is of the following type:

 struct timespec {

 long tv_sec; /* seconds */

 long tv_nsec; /* nanoseconds */

 }

 If both fields of this structure are specified as 0, a poll is performed: sigtimedwait()

 returns immediately, either with information about a signal that was pending for the

 caller, or with an error if none of the signals in set was pending.

RETURN VALUE

 On success, both sigwaitinfo() and sigtimedwait() return a signal number (i.e., a value

 greater than zero). On failure both calls return -1, with errno set to indicate the er?

 ror.

ERRORS

 EAGAIN No signal in set was became pending within the timeout period specified to sig?

 timedwait().

 EINTR The wait was interrupted by a signal handler; see signal(7). (This handler was for

 a signal other than one of those in set.)

 EINVAL timeout was invalid.

CONFORMING TO

 POSIX.1-2001, POSIX.1-2008.

NOTES

 In normal usage, the calling program blocks the signals in set via a prior call to sig?

 procmask(2) (so that the default disposition for these signals does not occur if they be?

 come pending between successive calls to sigwaitinfo() or sigtimedwait()) and does not es?

 tablish handlers for these signals. In a multithreaded program, the signal should be

 blocked in all threads, in order to prevent the signal being treated according to its de?

 fault disposition in a thread other than the one calling sigwaitinfo() or sigtimedwait()).

 The set of signals that is pending for a given thread is the union of the set of signals

 that is pending specifically for that thread and the set of signals that is pending for

 the process as a whole (see signal(7)).

 Attempts to wait for SIGKILL and SIGSTOP are silently ignored. Page 2/3

 If multiple threads of a process are blocked waiting for the same signal(s) in sigwait?

 info() or sigtimedwait(), then exactly one of the threads will actually receive the signal

 if it becomes pending for the process as a whole; which of the threads receives the signal

 is indeterminate.

 sigwaitinfo() or sigtimedwait(), can't be used to receive signals that are synchronously

 generated, such as the SIGSEGV signal that results from accessing an invalid memory ad?

 dress or the SIGFPE signal that results from an arithmetic error. Such signals can be

 caught only via signal handler.

 POSIX leaves the meaning of a NULL value for the timeout argument of sigtimedwait() un?

 specified, permitting the possibility that this has the same meaning as a call to sigwait?

 info(), and indeed this is what is done on Linux.

 C library/kernel differences

 On Linux, sigwaitinfo() is a library function implemented on top of sigtimedwait().

 The glibc wrapper functions for sigwaitinfo() and sigtimedwait() silently ignore attempts

 to wait for the two real-time signals that are used internally by the NPTL threading im?

 plementation. See nptl(7) for details.

 The original Linux system call was named sigtimedwait(). However, with the addition of

 real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that

 system call was no longer fit for purpose. Consequently, a new system call, rt_sigtimed?

 wait(), was added to support an enlarged sigset_t type. The new system call takes a

 fourth argument, size_t sigsetsize, which specifies the size in bytes of the signal set in

 set. This argument is currently required to have the value sizeof(sigset_t) (or the error

 EINVAL results). The glibc sigtimedwait() wrapper function hides these details from us,

 transparently calling rt_sigtimedwait() when the kernel provides it.

SEE ALSO

 kill(2), sigaction(2), signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigqueue(3),

 sigsetops(3), sigwait(3), signal(7), time(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2017-09-15 SIGWAITINFO(2)

Page 3/3

