
Rocky Enterprise Linux 9.2 Manual Pages on command 'snmpd.examples.5'

$ man snmpd.examples.5

SNMPD.EXAMPLES(5) Net-SNMP SNMPD.EXAMPLES(5)

NAME

 snmpd.examples - example configuration for the Net-SNMP agent

DESCRIPTION

 The snmpd.conf(5) man page defines the syntax and behaviour of the various configuration

 directives that can be used to control the operation of the Net-SNMP agent, and the man?

 agement information it provides.

 This companion man page illustrates these directives, showing some practical examples of

 how they might be used.

AGENT BEHAVIOUR

 Listening addresses

 The default agent behaviour (listing on the standard SNMP UDP port on all interfaces) is

 equivalent to the directive:

 agentaddress udp:161

 or simply

 agentaddress 161

 The agent can be configured to only accept requests sent to the local loopback interface

 (again listening on the SNMP UDP port), using:

 agentaddress localhost:161 # (udp implicit)

 or

 agentaddress 127.0.0.1 # (udp and standard port implicit)

 It can be configured to accept both UDP and TCP requests (over both IPv4 and IPv6), using:

 agentaddress udp:161,tcp:161,udp6:161,tcp6:161 Page 1/11

 Other combinations are also valid.

 Run-time privileges

 The agent can be configured to relinquish any privileged access once it has opened the

 initial listening ports. Given a suitable "snmp" group (defined in /etc/group), this

 could be done using the directives:

 agentuser nobody

 agentgroup snmp

 A similar effect could be achieved using numeric UID and/or GID values:

 agentuser #10

 agentgroup #10

 SNMPv3 Configuration

 Rather than being generated pseudo-randomly, the engine ID for the agent could be calcu?

 lated based on the MAC address of the second network interface (eth1), using the direc?

 tives:

 engineIDType 3 engineIDNic eth1

 or it could be calculated from the (first) IP address, using:

 engineIDType 1

 or it could be specified explicitly, using:

 engineID "XXX - WHAT FORMAT"

ACCESS CONTROL

 SNMPv3 Users

 The following directives will create three users, all using exactly the same authentica?

 tion and encryption settings:

 createUser me MD5 "single pass phrase"

 createUser myself MD5 "single pass phrase" DES

 createUser andI MD5 "single pass phrase" DES "single pass phrase"

 Note that this defines three distinct users, who could be granted different levels of ac?

 cess. Changing the passphrase for any one of these would not affect the other two.

 Separate pass phrases can be specified for authentication and encryption:

 createUser onering SHA "to rule them all" AES "to bind them"

 Remember that these createUser directives should be defined in the /var/lib/snmp/sn?

 mpd.conf file, rather than the usual location.

 Traditional Access Control Page 2/11

 The SNMPv3 users defined above can be granted access to the full MIB tree using the direc?

 tives:

 rouser me

 rwuser onering

 Or selective access to individual subtrees using:

 rouser myself .1.3.6.1.2

 rwuser andI system

 Note that a combination repeating the same user, such as:

 rouser onering

 rwuser onering

 should not be used. This would configure the user onering with read-only access (and ig?

 nore the rwuser entry altogether). The same holds for the community-based directives.

 The directives:

 rocommunity public

 rwcommunity private

 would define the commonly-expected read and write community strings for SNMPv1 and SNMPv2c

 requests. This behaviour is not configured by default, and would need to be set up ex?

 plicitly.

 Note: It would also be a very good idea to change private to something a little

 less predictable!

 A slightly less vulnerable configuration might restrict what information could be re?

 trieved:

 rocommunity public default system

 or the management systems that settings could be manipulated from:

 rwcommunity private 10.10.10.0/24

 or a combination of the two.

 VACM Configuration

 This last pair of settings are equivalent to the full VACM definitions:

 # sec.name source community

 com2sec public default public

 com2sec mynet 10.10.10.0/24 private

 com2sec6 mynet fec0::/64 private

 # sec.model sec.name Page 3/11

 group worldGroup v1 public

 group worldGroup v2c public

 group myGroup v1 mynet

 group myGroup v2c mynet

 # incl/excl subtree [mask]

 view all included .1

 view sysView included system

 # context model level prefix read write notify (unused)

 access worldGroup "" any noauth exact system none none

 access myGroup "" any noauth exact all all none

 There are several points to note in this example:

 The group directives must be repeated for both SNMPv1 and SNMPv2c requests.

 The com2sec security name is distinct from the community string that is mapped to it. They

 can be the same ("public") or different ("mynet"/"private") - but what appears in the

 group directive is the security name, regardless of the original community string.

 Both of the view directives are defining simple OID subtrees, so neither of these require

 an explicit mask. The same holds for the "combined subtree2 view defined below. In fact,

 a mask field is only needed when defining row slices across a table (or similar views),

 and can almost always be omitted.

 In general, it is advisible not to mix traditional and VACM-based access configuration

 settings, as these can sometimes interfere with each other in unexpected ways. Choose a

 particular style of access configuration, and stick to it.

 Typed-View Configuration

 A similar configuration could also be configured as follows:

 view sys2View included system

 view sys2View included .1.3.6.1.2.1.25.1

 authcommunity read public default -v sys2View

 authcommunity read,write private 10.10.10.0/8

 This mechanism allows multi-subtree (or other non-simple) views to be used with the one-

 line rocommunity style of configuration.

 It would also support configuring "write-only" access, should this be required.

SYSTEM INFORMATION

 System Group Page 4/11

 The full contents of the 'system' group (with the exception of sysUpTime) can be explic?

 itly configured using:

 # Override 'uname -a' and hardcoded system OID - inherently read-only values

 sysDescr Universal Turing Machine mk I

 sysObjectID .1.3.6.1.4.1.8072.3.2.1066

 # Override default values from 'configure' - makes these objects read-only

 sysContact Alan.Turing@pre-cs.man.ac.uk

 sysName tortoise.turing.com

 sysLocation An idea in the mind of AT

 # Standard end-host behaviour

 sysServices 72

 Host Resources Group

 The list of devices probed for potential inclusion in the hrDiskStorageTable (and hrDevic?

 eTable) can be amended using any of the following directives:

 ignoredisk /dev/rdsk/c0t2d0

 which prevents the device /dev/rdsk/c0t2d0 from being scanned,

 ignoredisk /dev/rdsk/c0t[!6]d0

 ignoredisk /dev/rdsk/c0t[0-57-9a-f]d0

 either of which prevents all devices /dev/rdsk/c0tXd0 (except .../c0t6d0) from being

 scanned,

 ignoredisk /dev/rdsk/c1*

 which prevents all devices whose device names start with /dev/rdsk/c1 from being scanned,

 or

 ignoredisk /dev/rdsk/c?t0d0

 which prevents all devices /dev/rdsk/cXt0d0 (where 'X' is any single character) from being

 scanned.

 Process Monitoring

 The list of services running on a system can be monitored (and provision made for correct?

 ing any problems), using:

 # At least one web server process must be running at all times

 proc httpd

 procfix httpd /etc/rc.d/init.d/httpd restart

 # There should never be more than 10 mail processes running Page 5/11

 # (more implies a probable mail storm, so shut down the mail system)

 proc sendmail 10

 procfix sendmail /etc/rc.d/init.d/sendmail stop

 # There should be a single network management agent running

 # ("There can be only one")

 proc snmpd 1 1

 Also see the "DisMan Event MIB" section later on.

 Disk Usage Monitoring

 The state of disk storage can be monitored using:

 includeAllDisks 10%

 disk /var 20%

 disk /usr 3%

 # Keep 100 MB free for crash dumps

 disk /mnt/crash 100000

 System Load Monitoring

 A simple check for an overloaded system might be:

 load 10

 A more refined check (to allow brief periods of heavy use, but recognise sustained medium-

 heavy load) might be:

 load 30 10 5

 Log File Monitoring

 TODO

 file FILE [MAXSIZE]

 logmatch NAME PATH CYCLETIME REGEX

ACTIVE MONITORING

 Notification Handling

 Configuring the agent to report invalid access attempts might be done by:

 authtrapenable 1

 trapcommunity public

 trap2sink localhost

 Alternatively, the second and third directives could be combined (and an acknowledgement

 requested) using:

 informsink localhost public Page 6/11

 A configuration with repeated sink destinations, such as:

 trapsink localhost

 trap2sink localhost

 informsink localhost

 should NOT be used, as this will cause multiple copies of each trap to be sent to the same

 trap receiver.

 TODO - discuss SNMPv3 traps

 trapsess snmpv3 options localhost:162

 TODO - mention trapd access configuration

 DisMan Event MIB

 The simplest configuration for active self-monitoring of the agent, by the agent, for the

 agent, is probably:

 # Set up the credentials to retrieve monitored values

 createUser _internal MD5 "the first sign of madness"

 iquerySecName _internal

 rouser _internal

 # Active the standard monitoring entries

 defaultMonitors yes

 linkUpDownNotifications yes

 # If there's a problem, then tell someone!

 trap2sink localhost

 The first block sets up a suitable user for retrieving the information to by monitored,

 while the following pair of directives activates various built-in monitoring entries.

 Note that the DisMan directives are not themselves sufficient to actively report problems

 - there also needs to be a suitable destination configured to actually send the resulting

 notifications to.

 A more detailed monitor example is given by:

 monitor -u me -o hrSWRunName "high process memory" hrSWRunPerfMem > 10000

 This defines an explicit boolean monitor entry, looking for any process using more than

 10MB of active memory. Such processes will be reported using the (standard) DisMan trap

 mteTriggerFired, but adding an extra (wildcarded) varbind hrSWRunName.

 This entry also specifies an explicit user (me, as defined earlier) for retrieving the

 monitored values, and building the trap. Page 7/11

 Objects that could potentially fluctuate around the specified level are better monitored

 using a threshold monitor entry:

 monitor -D -r 10 "network traffic" ifInOctets 1000000 5000000

 This will send a mteTriggerRising trap whenever the incoming traffic rises above (roughly)

 500 kB/s on any network interface, and a corresponding mteTriggerFalling trap when it

 falls below 100 kB/s again.

 Note that this monitors the deltas between successive samples (-D) rather than the actual

 sample values themselves. The same effect could be obtained using:

 monitor -r 10 "network traffic" ifInOctets - - 1000000 5000000

 The linkUpDownNotifications directive above is broadly equivalent to:

 notificationEvent linkUpTrap linkUp ifIndex ifAdminStatus ifOperStatus

 notificationEvent linkDownTrap linkDown ifIndex ifAdminStatus ifOperStatus

 monitor -r 60 -e linkUpTrap "Generate linkUp" ifOperStatus != 2

 monitor -r 60 -e linkDownTrap "Generate linkDown" ifOperStatus == 2

 This defines the traps to be sent (using notificationEvent), and explicitly references the

 relevant notification in the corresponding monitor entry (rather than using the default

 DisMan traps).

 The defaultMonitors directive above is equivalent to a series of (boolean) monitor en?

 tries:

 monitor -o prNames -o prErrMessage "procTable" prErrorFlag != 0

 monitor -o memErrorName -o memSwapErrorMsg "memory" memSwapError != 0

 monitor -o extNames -o extOutput "extTable" extResult != 0

 monitor -o dskPath -o dskErrorMsg "dskTable" dskErrorFlag != 0

 monitor -o laNames -o laErrMessage "laTable" laErrorFlag != 0

 monitor -o fileName -o fileErrorMsg "fileTable" fileErrorFlag != 0

 and will send a trap whenever any of these entries indicate a problem.

 An alternative approach would be to automatically invoke the corresponding "fix" action:

 setEvent prFixIt prErrFix = 1

 monitor -e prFixIt "procTable" prErrorFlag != 0

 (and similarly for any of the other defaultMonitor entries).

 DisMan Schedule MIB

 The agent could be configured to reload its configuration once an hour, using:

 repeat 3600 versionUpdateConfig.0 = 1 Page 8/11

 Alternatively this could be configured to be run at specific times of day (perhaps follow?

 ing rotation of the logs):

 cron 10 0 * * * versionUpdateConfig.0 = 1

 The one-shot style of scheduling is rather less common, but the secret SNMP virus could be

 activated on the next occurance of Friday 13th using:

 at 13 13 13 * 5 snmpVirus.0 = 1

EXTENDING AGENT FUNCTIONALITY

 Arbitrary Extension Commands

 Old Style

 exec [MIBOID] NAME PROG ARGS"

 sh [MIBOID] NAME PROG ARGS"

 execfix NAME PROG ARGS"

 New Style

 extend [MIBOID] NAME PROG ARGS"

 extendfix [MIBOID] NAME PROG ARGS"

 MIB-Specific Extension Commands

 One-Shot

 "pass [-p priority] MIBOID PROG"

 Persistent

 "pass_persist [-p priority] MIBOID PROG"

 Embedded Perl Support

 If embedded perl support is enabled in the agent, the default initialisation is equivalent

 to the directives:

 disablePerl false

 perlInitFile /usr/share/snmp/snmp_perl.pl

 The main mechanism for defining embedded perl scripts is the perl directive. A very sim?

 ple (if somewhat pointless) MIB handler could be registered using:

 perl use Data::Dumper;

 perl sub myroutine { print "got called: ",Dumper(@_),"\n"; }

 perl $agent->register('mylink', '.1.3.6.1.8765', \&myroutine);

 This relies on the $agent object, defined in the example snmp_perl.pl file.

 A more realistic MIB handler might be:

 XXX - WHAT ??? Page 9/11

 Alternatively, this code could be stored in an external file, and loaded using:

 perl 'do /usr/share/snmp/perl_example.pl';

 Dynamically Loadable Modules

 TODO

 dlmod NAME PATH"

 Proxy Support

 A configuration for acting as a simple proxy for two other SNMP agents (running on remote

 systems) might be:

 com2sec -Cn rem1context rem1user default remotehost1

 com2sec -Cn rem2context rem2user default remotehost2

 proxy -Cn rem1context -v 1 -c public remotehost1 .1.3

 proxy -Cn rem2context -v 1 -c public remotehost2 .1.3

 (plus suitable access control entries).

 The same proxy directives would also work with (incoming) SNMPv3 requests, which can spec?

 ify a context directly. It would probably be more sensible to use contexts of remotehost1

 and remotehost2 - the names above were chosen to indicate how these directives work to?

 gether.

 Note that the administrative settings for the proxied request are specified explicitly,

 and are independent of the settings from the incoming request.

 An alternative use for the proxy directive is to pass part of the OID tree to another

 agent (either on a remote host or listening on a different port on the same system), while

 handling the rest internally:

 proxy -v 1 -c public localhost:6161 .1.3.6.1.4.1.99

 This mechanism can be used to link together two separate SNMP agents.

 A less usual approach is to map one subtree into a different area of the overall MIB tree

 (either locally or on a remote system):

 # uses SNMPv3 to access the MIB tree .1.3.6.1.2.1.1 on 'remotehost'

 # and maps this to the local tree .1.3.6.1.3.10

 proxy -v 3 -l noAuthNoPriv -u user remotehost .1.3.6.1.3.10 .1.3.6.1.2.1.1

 SMUX Sub-Agents

 smuxsocket 127.0.0.1

 smuxpeer .1.3.6.1.2.1.14 ospf_pass

 AgentX Sub-Agents Page 10/11

 The Net-SNMP agent could be configured to operate as an AgentX master agent (listening on

 a non-standard named socket, and running using the access privileges defined earlier), us?

 ing:

 master agentx

 agentXSocket /tmp/agentx/master

 agentXPerms 0660 0550 nobody snmp

 A sub-agent wishing to connect to this master agent would need the same agentXSocket di?

 rective, or the equivalent code:

 netsnmp_ds_set_string(NETSNMP_DS_APPLICATION_ID, NETSNMP_DS_AGENT_X_SOCKET,

 "/tmp/agentx/master");

 A loopback networked AgentX configuration could be set up using:

 agentXSocket tcp:localhost:705

 agentXTimeout 5

 agentXRetries 2

 on the master side, and:

 agentXSocket tcp:localhost:705

 agentXTimeout 10

 agentXRetries 1

 agentXPingInterval 600

 on the client.

 Note that the timeout and retry settings can be asymmetric for the two directions, and the

 sub-agent can poll the master agent at regular intervals (600s = every 10 minutes), to en?

 sure the connection is still working.

OTHER CONFIGURATION

 override sysDescr.0 octet_str "my own sysDescr"

 injectHandler stash_cache NAME table_iterator

FILES

 /etc/snmp/snmpd.conf

SEE ALSO

 snmpconf(1), snmpd.conf(5), snmp.conf(5), snmp_config(5), snmpd(8), EXAMPLE.conf, net?

 snmp_config_api(3).

V5.9.1 13 Oct 2006 SNMPD.EXAMPLES(5)

Page 11/11

