
Rocky Enterprise Linux 9.2 Manual Pages on command 'srand.3'

$ man srand.3

RAND(3) Linux Programmer's Manual RAND(3)

NAME

 rand, rand_r, srand - pseudo-random number generator

SYNOPSIS

 #include <stdlib.h>

 int rand(void);

 int rand_r(unsigned int *seedp);

 void srand(unsigned int seed);

 Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

 rand_r():

 Since glibc 2.24:

 _POSIX_C_SOURCE >= 199506L

 Glibc 2.23 and earlier

 _POSIX_C_SOURCE

DESCRIPTION

 The rand() function returns a pseudo-random integer in the range 0 to RAND_MAX inclusive

 (i.e., the mathematical range [0, RAND_MAX]).

 The srand() function sets its argument as the seed for a new sequence of pseudo-random in?

 tegers to be returned by rand(). These sequences are repeatable by calling srand() with

 the same seed value.

 If no seed value is provided, the rand() function is automatically seeded with a value of

 1.

 The function rand() is not reentrant, since it uses hidden state that is modified on each Page 1/4

 call. This might just be the seed value to be used by the next call, or it might be some?

 thing more elaborate. In order to get reproducible behavior in a threaded application,

 this state must be made explicit; this can be done using the reentrant function rand_r().

 Like rand(), rand_r() returns a pseudo-random integer in the range [0, RAND_MAX]. The

 seedp argument is a pointer to an unsigned int that is used to store state between calls.

 If rand_r() is called with the same initial value for the integer pointed to by seedp, and

 that value is not modified between calls, then the same pseudo-random sequence will re?

 sult.

 The value pointed to by the seedp argument of rand_r() provides only a very small amount

 of state, so this function will be a weak pseudo-random generator. Try drand48_r(3) in?

 stead.

RETURN VALUE

 The rand() and rand_r() functions return a value between 0 and RAND_MAX (inclusive). The

 srand() function returns no value.

ATTRIBUTES

 For an explanation of the terms used in this section, see attributes(7).

 ??

 ?Interface ? Attribute ? Value ?

 ??

 ?rand(), rand_r(), srand() ? Thread safety ? MT-Safe ?

 ??

CONFORMING TO

 The functions rand() and srand() conform to SVr4, 4.3BSD, C89, C99, POSIX.1-2001. The

 function rand_r() is from POSIX.1-2001. POSIX.1-2008 marks rand_r() as obsolete.

NOTES

 The versions of rand() and srand() in the Linux C Library use the same random number gen?

 erator as random(3) and srandom(3), so the lower-order bits should be as random as the

 higher-order bits. However, on older rand() implementations, and on current implementa?

 tions on different systems, the lower-order bits are much less random than the higher-or?

 der bits. Do not use this function in applications intended to be portable when good ran?

 domness is needed. (Use random(3) instead.)

EXAMPLES

 POSIX.1-2001 gives the following example of an implementation of rand() and srand(), pos? Page 2/4

 sibly useful when one needs the same sequence on two different machines.

 static unsigned long next = 1;

 /* RAND_MAX assumed to be 32767 */

 int myrand(void) {

 next = next * 1103515245 + 12345;

 return((unsigned)(next/65536) % 32768);

 }

 void mysrand(unsigned int seed) {

 next = seed;

 }

 The following program can be used to display the pseudo-random sequence produced by rand()

 when given a particular seed.

 #include <stdlib.h>

 #include <stdio.h>

 int

 main(int argc, char *argv[])

 {

 int r, nloops;

 unsigned int seed;

 if (argc != 3) {

 fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);

 exit(EXIT_FAILURE);

 }

 seed = atoi(argv[1]);

 nloops = atoi(argv[2]);

 srand(seed);

 for (int j = 0; j < nloops; j++) {

 r = rand();

 printf("%d\n", r);

 }

 exit(EXIT_SUCCESS);

 }

SEE ALSO Page 3/4

 drand48(3), random(3)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

 2020-11-01 RAND(3)

Page 4/4

