FPDF lerary

PDF generator,

Full credit is given to the above companies including the

Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'sshd_config.5'
$ man sshd_config.5
SSHD_CONFIG(5) BSD File Formats Manual SSHD_CONFIG(5)
NAME
sshd_config ? OpenSSH daemon configuration file
DESCRIPTION
sshd(8) reads configuration data from /etc/ssh/sshd_config (or the file specified with -f on
the command line). The file contains keyword-argument pairs, one per line. For each key?
word, the first obtained value will be used. Lines starting with ?#? and empty lines are
interpreted as comments. Arguments may optionally be enclosed in double quotes (") in order
to represent arguments containing spaces.
Note that the Debian openssh-server package sets several options as standard in
letc/sshisshd_config which are not the default in sshd(8):
? Include /etc/ssh/sshd_config.d/*.conf
? KbdInteractiveAuthentication no
? X11lForwarding yes
? PrintMotd no
? AcceptEnv LANG LC_*
? Subsystem sftp /usr/lib/openssh/sftp-server
? UsePAM yes
letc/sshisshd_config.d/*.conf files are included at the start of the configuration file, so
options set there will override those in /etc/ssh/sshd_config.
The possible keywords and their meanings are as follows (note that keywords are case-insen?
sitive and arguments are case-sensitive):

AcceptEnv Page 1/27

Specifies what environment variables sent by the client will be copied into the ses?
sion's environ(7). See SendEnv and SetEnv in ssh_config(5) for how to configure the
client. The TERM environment variable is always accepted whenever the client re?
quests a pseudo-terminal as it is required by the protocol. Variables are specified
by name, which may contain the wildcard characters ?*? and ???. Multiple environ?
ment variables may be separated by whitespace or spread across multiple AcceptEnv
directives. Be warned that some environment variables could be used to bypass re?
stricted user environments. For this reason, care should be taken in the use of
this directive. The default is not to accept any environment variables.
AddressFamily
Specifies which address family should be used by sshd(8). Valid arguments are any
(the default), inet (use IPv4 only), or inet6 (use IPv6 only).
AllowAgentForwarding
Specifies whether ssh-agent(1) forwarding is permitted. The default is yes. Note
that disabling agent forwarding does not improve security unless users are also de?
nied shell access, as they can always install their own forwarders.
AllowGroups
This keyword can be followed by a list of group name patterns, separated by spaces.
If specified, login is allowed only for users whose primary group or supplementary
group list matches one of the patterns. Only group names are valid; a numerical
group ID is not recognized. By default, login is allowed for all groups. The al?
low/deny groups directives are processed in the following order: DenyGroups,
AllowGroups.
See PATTERNS in ssh_config(5) for more information on patterns.
AllowStreamLocalForwarding
Specifies whether StreamLocal (Unix-domain socket) forwarding is permitted. The
available options are yes (the default) or all to allow StreamLocal forwarding, no
to prevent all StreamLocal forwarding, local to allow local (from the perspective of
ssh(1)) forwarding only or remote to allow remote forwarding only. Note that dis?
abling StreamLocal forwarding does not improve security unless users are also denied
shell access, as they can always install their own forwarders.
AllowTcpForwarding

Specifies whether TCP forwarding is permitted. The available options are yes (the Page 2/27

default) or all to allow TCP forwarding, no to prevent all TCP forwarding, local to
allow local (from the perspective of ssh(1)) forwarding only or remote to allow re?
mote forwarding only. Note that disabling TCP forwarding does not improve security
unless users are also denied shell access, as they can always install their own for?
warders.
AllowUsers
This keyword can be followed by a list of user name patterns, separated by spaces.
If specified, login is allowed only for user names that match one of the patterns.
Only user names are valid; a numerical user ID is not recognized. By default, login
is allowed for all users. If the pattern takes the form USER@HOST then USER and
HOST are separately checked, restricting logins to particular users from particular
hosts. HOST criteria may additionally contain addresses to match in CIDR ad?
dress/masklen format. The allow/deny users directives are processed in the follow?
ing order: DenyUsers, AllowUsers.
See PATTERNS in ssh_config(5) for more information on patterns.
AuthenticationMethods
Specifies the authentication methods that must be successfully completed for a user
to be granted access. This option must be followed by one or more lists of comma-
separated authentication method names, or by the single string any to indicate the
default behaviour of accepting any single authentication method. If the default is
overridden, then successful authentication requires completion of every method in at
least one of these lists.
For example, "publickey,password publickey,keyboard-interactive" would require the
user to complete public key authentication, followed by either password or keyboard
interactive authentication. Only methods that are next in one or more lists are of?
fered at each stage, so for this example it would not be possible to attempt pass?
word or keyboard-interactive authentication before public key.
For keyboard interactive authentication it is also possible to restrict authentica?
tion to a specific device by appending a colon followed by the device identifier
bsdauth or pam. depending on the server configuration. For example,
"keyboard-interactive:bsdauth" would restrict keyboard interactive authentication to
the bsdauth device.

If the publickey method is listed more than once, sshd(8) verifies that keys that Page 3/27

have been used successfully are not reused for subsequent authentications. For ex?
ample, "publickey,publickey" requires successful authentication using two different
public keys.
Note that each authentication method listed should also be explicitly enabled in the
configuration.
The available authentication methods are: "gssapi-with-mic", "hostbased",
"keyboard-interactive”, "none" (used for access to password-less accounts when
PermitEmptyPasswords is enabled), "password" and "publickey".
AuthorizedKeysCommand
Specifies a program to be used to look up the user's public keys. The program must
be owned by root, not writable by group or others and specified by an absolute path.
Arguments to AuthorizedKeysCommand accept the tokens described in the TOKENS sec?
tion. If no arguments are specified then the username of the target user is used.
The program should produce on standard output zero or more lines of authorized_keys
output (see AUTHORIZED_KEYS in sshd(8)). AuthorizedKeysCommand is tried after the
usual AuthorizedKeysFile files and will not be executed if a matching key is found
there. By default, no AuthorizedKeysCommand is run.
AuthorizedKeysCommandUser
Specifies the user under whose account the AuthorizedKeysCommand is run. Itis rec?
ommended to use a dedicated user that has no other role on the host than running au?
thorized keys commands. If AuthorizedKeysCommand is specified but
AuthorizedKeysCommandUser is not, then sshd(8) will refuse to start.
AuthorizedKeysFile
Specifies the file that contains the public keys used for user authentication. The
format is described in the AUTHORIZED_KEYS FILE FORMAT section of sshd(8). Argu?
ments to AuthorizedKeysFile accept the tokens described in the TOKENS section. Af?
ter expansion, AuthorizedKeysFile is taken to be an absolute path or one relative to
the user's home directory. Multiple files may be listed, separated by whitespace.
Alternately this option may be set to none to skip checking for user keys in files.
The default is ".ssh/authorized_keys .ssh/authorized_keys2".
AuthorizedPrincipalsCommand
Specifies a program to be used to generate the list of allowed certificate princi?

pals as per AuthorizedPrincipalsFile. The program must be owned by root, not Page 4/27

writable by group or others and specified by an absolute path. Arguments to
AuthorizedPrincipalsCommand accept the tokens described in the TOKENS section. If
no arguments are specified then the username of the target user is used.
The program should produce on standard output zero or more lines of
AuthorizedPrincipalsFile output. If either AuthorizedPrincipalsCommand or
AuthorizedPrincipalsFile is specified, then certificates offered by the client for
authentication must contain a principal that is listed. By default, no
AuthorizedPrincipalsCommand is run.

AuthorizedPrincipalsCommandUser
Specifies the user under whose account the AuthorizedPrincipalsCommand is run. It
is recommended to use a dedicated user that has no other role on the host than run?
ning authorized principals commands. If AuthorizedPrincipalsCommand is specified
but AuthorizedPrincipalsCommandUser is not, then sshd(8) will refuse to start.

AuthorizedPrincipalsFile
Specifies a file that lists principal names that are accepted for certificate au?
thentication. When using certificates signed by a key listed in TrustedUserCAKeys,
this file lists names, one of which must appear in the certificate for it to be ac?
cepted for authentication. Names are listed one per line preceded by key options
(as described in AUTHORIZED_KEYS FILE FORMAT in sshd(8)). Empty lines and comments
starting with ?#? are ignored.
Arguments to AuthorizedPrincipalsFile accept the tokens described in the TOKENS sec?
tion. After expansion, AuthorizedPrincipalsFile is taken to be an absolute path or
one relative to the user's home directory. The default is none, i.e. not to use a
principals file ? in this case, the username of the user must appear in a certifi?
cate's principals list for it to be accepted.
Note that AuthorizedPrincipalsFile is only used when authentication proceeds using a
CA listed in TrustedUserCAKeys and is not consulted for certification authorities
trusted via ~/.ssh/authorized_keys, though the principals= key option offers a simi?
lar facility (see sshd(8) for details).

Banner The contents of the specified file are sent to the remote user before authentication
is allowed. If the argument is none then no banner is displayed. By default, no
banner is displayed.

CASignatureAlgorithms Page 5/27

Specifies which algorithms are allowed for signing of certificates by certificate
authorities (CAs). The default is:

ssh-ed25519,ecdsa-sha2-nistp256,

ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,

sk-ssh-ed25519@openssh.com,

sk-ecdsa-sha2-nistp256 @openssh.com,

rsa-sha2-512,rsa-sha2-256
If the specified list begins with a ?+? character, then the specified algorithms
will be appended to the default set instead of replacing them. If the specified
list begins with a ?-? character, then the specified algorithms (including wild?
cards) will be removed from the default set instead of replacing them.
Certificates signed using other algorithms will not be accepted for public key or
host-based authentication.

ChrootDirectory
Specifies the pathname of a directory to chroot(2) to after authentication. At ses?
sion startup sshd(8) checks that all components of the pathname are root-owned di?
rectories which are not writable by any other user or group. After the chroot,
sshd(8) changes the working directory to the user's home directory. Arguments to
ChrootDirectory accept the tokens described in the TOKENS section.
The ChrootDirectory must contain the necessary files and directories to support the
user's session. For an interactive session this requires at least a shell, typi?
cally sh(1), and basic /dev nodes such as null(4), zero(4), stdin(4), stdout(4),
stderr(4), and tty(4) devices. For file transfer sessions using SFTP no additional
configuration of the environment is necessary if the in-process sftp-server is used,
though sessions which use logging may require /dev/log inside the chroot directory
on some operating systems (see sftp-server(8) for details).
For safety, it is very important that the directory hierarchy be prevented from mod?
ification by other processes on the system (especially those outside the jail).
Misconfiguration can lead to unsafe environments which sshd(8) cannot detect.
The default is none, indicating not to chroot(2).
Ciphers

Specifies the ciphers allowed. Multiple ciphers must be comma-separated. If the

specified list begins with a ?+? character, then the specified ciphers will be ap? Page 6/27

pended to the default set instead of replacing them. If the specified list begins
with a ?-? character, then the specified ciphers (including wildcards) will be re?
moved from the default set instead of replacing them. If the specified list begins
with a ?7? character, then the specified ciphers will be placed at the head of the
default set.
The supported ciphers are:

3des-cbc

aes128-cbc

aes192-chc

aes256-chc

aesl128-ctr

aes192-ctr

aes256-ctr

aes128-gcm@openssh.com

aes256-gcm@openssh.com

chacha20-poly1305@openssh.com
The default is:

chacha20-poly1305@openssh.com,

aes128-ctr,aes192-ctr,aes256-ctr,

aes128-gcm@openssh.com,aes256-gcm@openssh.com
The list of available ciphers may also be obtained using "ssh -Q cipher".

ClientAliveCountMax

Sets the number of client alive messages which may be sent without sshd(8) receiving
any messages back from the client. If this threshold is reached while client alive
messages are being sent, sshd will disconnect the client, terminating the session.
It is important to note that the use of client alive messages is very different from
TCPKeepAlive. The client alive messages are sent through the encrypted channel and
therefore will not be spoofable. The TCP keepalive option enabled by TCPKeepAlive
is spoofable. The client alive mechanism is valuable when the client or server de?
pend on knowing when a connection has become unresponsive.
The default value is 3. If ClientAlivelnterval is set to 15, and
ClientAliveCountMax is left at the default, unresponsive SSH clients will be discon?

nected after approximately 45 seconds. Setting a zero ClientAliveCountMax disables Page 7/27

connection termination.

ClientAlivelnterval
Sets a timeout interval in seconds after which if no data has been received from the
client, sshd(8) will send a message through the encrypted channel to request a re?
sponse from the client. The default is 0, indicating that these messages will not
be sent to the client.

Compression
Specifies whether compression is enabled after the user has authenticated success?
fully. The argument must be yes, delayed (a legacy synonym for yes) or no. The de?
fault is yes.

DebianBanner
Specifies whether the distribution-specified extra version suffix is included during
initial protocol handshake. The default is yes.

DenyGroups
This keyword can be followed by a list of group name patterns, separated by spaces.
Login is disallowed for users whose primary group or supplementary group list
matches one of the patterns. Only group names are valid; a numerical group ID is
not recognized. By default, login is allowed for all groups. The allow/deny groups
directives are processed in the following order: DenyGroups, AllowGroups.
See PATTERNS in ssh_config(5) for more information on patterns.

DenyUsers
This keyword can be followed by a list of user name patterns, separated by spaces.
Login is disallowed for user names that match one of the patterns. Only user names
are valid; a numerical user ID is not recognized. By default, login is allowed for
all users. If the pattern takes the form USER@HOST then USER and HOST are sepa?
rately checked, restricting logins to particular users from particular hosts. HOST
criteria may additionally contain addresses to match in CIDR address/masklen format.
The allow/deny users directives are processed in the following order: DenyUsers,
AllowUsers.
See PATTERNS in ssh_config(5) for more information on patterns.

DisableForwarding
Disables all forwarding features, including X11, ssh-agent(1), TCP and StreamLocal.

This option overrides all other forwarding-related options and may simplify re? Page 8/27

stricted configurations.

ExposeAuthinfo
Writes a temporary file containing a list of authentication methods and public cre?
dentials (e.g. keys) used to authenticate the user. The location of the file is ex?
posed to the user session through the SSH_USER_AUTH environment variable. The de?
fault is no.

FingerprintHash
Specifies the hash algorithm used when logging key fingerprints. Valid options are:
md5 and sha256. The default is sha256.

ForceCommand
Forces the execution of the command specified by ForceCommand, ignoring any command
supplied by the client and ~/.ssh/rc if present. The command is invoked by using
the user's login shell with the -c option. This applies to shell, command, or sub?
system execution. It is most useful inside a Match block. The command originally
supplied by the client is available in the SSH_ORIGINAL_COMMAND environment vari?
able. Specifying a command of internal-sftp will force the use of an in-process
SFTP server that requires no support files when used with ChrootDirectory. The de?
fault is none.

GatewayPorts
Specifies whether remote hosts are allowed to connect to ports forwarded for the
client. By default, sshd(8) binds remote port forwardings to the loopback address.
This prevents other remote hosts from connecting to forwarded ports. GatewayPorts
can be used to specify that sshd should allow remote port forwardings to bind to
non-loopback addresses, thus allowing other hosts to connect. The argument may be
no to force remote port forwardings to be available to the local host only, yes to
force remote port forwardings to bind to the wildcard address, or clientspecified to
allow the client to select the address to which the forwarding is bound. The de?
fault is no.

GSSAPIAuthentication
Specifies whether user authentication based on GSSAPI is allowed. The default is
no.

GSSAPICleanupCredentials

Specifies whether to automatically destroy the user's credentials cache on logout. Page 9/27

The default is yes.
GSSAPIKeyExchange
Specifies whether key exchange based on GSSAPI is allowed. GSSAPI key exchange
doesn't rely on ssh keys to verify host identity. The default is no.
GSSAPIStrictAcceptorCheck
Determines whether to be strict about the identity of the GSSAPI acceptor a client
authenticates against. If set to yes then the client must authenticate against the
host service on the current hostname. If set to no then the client may authenticate
against any service key stored in the machine's default store. This facility is
provided to assist with operation on multi homed machines. The default is yes.
GSSAPIStoreCredentialsOnRekey
Controls whether the user's GSSAPI credentials should be updated following a suc?
cessful connection rekeying. This option can be used to accepted renewed or updated
credentials from a compatible client. The default is ?no?.
For this to work GSSAPIKeyExchange needs to be enabled in the server and also used
by the client.
GSSAPIKexAlgorithms
The list of key exchange algorithms that are accepted by GSSAPI key exchange. Possi?
ble values are
gss-gex-shal-,
gss-groupl-shal-,
gss-groupl4-shal-,
gss-groupl4-sha256-,
gss-groupl6-sha512-,
gss-nistp256-sha256-,
gss-curve25519-sha256-

The default is

?gss-groupl4-sha256-,gss-groupl6-sha512-,gss-nistp256-sha256-,gss-curve25519-sha256-,gss-gex-shal-,gss-groupl4-sh
al-?.
This option only applies to connections using GSSAPI.
HostbasedAcceptedAlgorithms

Specifies the signature algorithms that will be accepted for hostbased authentica? Page 10/27

tion as a list of comma-separated patterns. Alternately if the specified list be?
gins with a ?+? character, then the specified signature algorithms will be appended
to the default set instead of replacing them. If the specified list begins with a
?-? character, then the specified signature algorithms (including wildcards) will be
removed from the default set instead of replacing them. If the specified list be?
gins with a ?"? character, then the specified signature algorithms will be placed at
the head of the default set. The default for this option is:
ssh-ed25519-cert-vO1l@openssh.com,
ecdsa-sha2-nistp256-cert-vOl@openssh.com,
ecdsa-sha2-nistp384-cert-vO1l@openssh.com,
ecdsa-sha2-nistp521-cert-vO1l@openssh.com,
sk-ssh-ed25519-cert-vO1@openssh.com,
sk-ecdsa-sha2-nistp256-cert-vO1l@openssh.com,
rsa-sha2-512-cert-vO1@openssh.com,
rsa-sha2-256-cert-vOl@openssh.com,
ssh-ed25519,
ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,
sk-ssh-ed25519@openssh.com,
sk-ecdsa-sha2-nistp256 @openssh.com,
rsa-sha2-512,rsa-sha2-256
The list of available signature algorithms may also be obtained using "ssh -Q
HostbasedAcceptedAlgorithms". This was formerly named HostbasedAcceptedKeyTypes.
HostbasedAuthentication
Specifies whether rhosts or /etc/hosts.equiv authentication together with successful
public key client host authentication is allowed (host-based authentication). The
default is no.
HostbasedUsesNameFromPacketOnly
Specifies whether or not the server will attempt to perform a reverse name lookup
when matching the name in the ~/.shosts, ~/.rhosts, and /etc/hosts.equiv files dur?
ing HostbasedAuthentication. A setting of yes means that sshd(8) uses the name sup?
plied by the client rather than attempting to resolve the name from the TCP connec?
tion itself. The default is no.

HostCertificate Page 11/27

Specifies a file containing a public host certificate. The certificate's public key
must match a private host key already specified by HostKey. The default behaviour
of sshd(8) is not to load any certificates.
HostKey
Specifies a file containing a private host key used by SSH. The defaults are
letc/ssh/ssh_host_ecdsa_key, /etc/ssh/ssh_host_ed25519 key and
letc/ssh/ssh_host_rsa_key.
Note that sshd(8) will refuse to use a file if it is group/world-accessible and that
the HostKeyAlgorithms option restricts which of the keys are actually used by
sshd(8).
It is possible to have multiple host key files. It is also possible to specify pub?
lic host key files instead. In this case operations on the private key will be del?
egated to an ssh-agent(1).
HostKeyAgent
Identifies the UNIX-domain socket used to communicate with an agent that has access
to the private host keys. If the string "SSH_AUTH_SOCK" is specified, the location
of the socket will be read from the SSH_AUTH_SOCK environment variable.
HostKeyAlgorithms
Specifies the host key signature algorithms that the server offers. The default for
this option is:
ssh-ed25519-cert-vO1l@openssh.com,
ecdsa-sha2-nistp256-cert-vO1l@openssh.com,
ecdsa-sha2-nistp384-cert-vOl@openssh.com,
ecdsa-sha2-nistp521-cert-vO1l@openssh.com,
sk-ssh-ed25519-cert-vO1l@openssh.com,
sk-ecdsa-sha2-nistp256-cert-vO1@openssh.com,
rsa-sha2-512-cert-vO1l@openssh.com,
rsa-sha2-256-cert-vOl@openssh.com,
ssh-ed25519,
ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,
sk-ssh-ed25519@openssh.com,
sk-ecdsa-sha2-nistp256 @openssh.com,

rsa-sha2-512,rsa-sha2-256 Page 12/27

The list of available signature algorithms may also be obtained using "ssh -Q
HostKeyAlgorithms".

IgnoreRhosts
Specifies whether to ignore per-user .rhosts and .shosts files during
HostbasedAuthentication. The system-wide /etc/hosts.equiv and /etc/ssh/shosts.equiv
are still used regardless of this setting.
Accepted values are yes (the default) to ignore all per-user files, shosts-only to
allow the use of .shosts but to ignore .rhosts or no to allow both .shosts and
rhosts.

IgnoreUserKnownHosts
Specifies whether sshd(8) should ignore the user's ~/.ssh/known_hosts during
HostbasedAuthentication and use only the system-wide known hosts file
letc/ssh/known_hosts. The default is ?no?.

Include
Include the specified configuration file(s). Multiple pathnames may be specified
and each pathname may contain glob(7) wildcards that will be expanded and processed
in lexical order. Files without absolute paths are assumed to be in /etc/ssh. An
Include directive may appear inside a Match block to perform conditional inclusion.

IPQoS Specifies the IPv4 type-of-service or DSCP class for the connection. Accepted val?
ues are afll, afl2, af13, af21, af22, af23, af31, af32, af33, af41, af42, af43, cs0,
csl, cs2, ¢s3, cs4, csb, ¢s6, cs7, ef, le, lowdelay, throughput, reliability, a nu?
meric value, or none to use the operating system default. This option may take one
or two arguments, separated by whitespace. If one argument is specified, it is used
as the packet class unconditionally. If two values are specified, the first is au?
tomatically selected for interactive sessions and the second for non-interactive
sessions. The default is lowdelay for interactive sessions and throughput for non-
interactive sessions.

KbdInteractiveAuthentication
Specifies whether to allow keyboard-interactive authentication. The default is yes.
The argument to this keyword must be yes or no. ChallengeResponseAuthentication is
a deprecated alias for this.

KerberosAuthentication

Specifies whether the password provided by the user for PasswordAuthentication will Page 13/27

be validated through the Kerberos KDC. To use this option, the server needs a Ker?
beros servtab which allows the verification of the KDC's identity. The default is
no.
KerberosGetAFSToken
If AFS is active and the user has a Kerberos 5 TGT, attempt to acquire an AFS token
before accessing the user's home directory. The default is no.
KerberosOrLocalPasswd
If password authentication through Kerberos fails then the password will be vali?
dated via any additional local mechanism such as /etc/passwd. The default is yes.
KerberosTicketCleanup
Specifies whether to automatically destroy the user's ticket cache file on logout.
The default is yes.
KexAlgorithms
Specifies the available KEX (Key Exchange) algorithms. Multiple algorithms must be
comma-separated. Alternately if the specified list begins with a ?+? character,
then the specified algorithms will be appended to the default set instead of replac?
ing them. If the specified list begins with a ?-? character, then the specified al?
gorithms (including wildcards) will be removed from the default set instead of re?
placing them. If the specified list begins with a ?? character, then the specified
algorithms will be placed at the head of the default set. The supported algorithms
are:
curve25519-sha256
curve25519-sha256@libssh.org
diffie-hellman-groupl-shal
diffie-hellman-group14-shal
diffie-hellman-group14-sha256
diffie-hellman-group16-sha512
diffie-hellman-group18-sha512
diffie-hellman-group-exchange-shal
diffie-hellman-group-exchange-sha256
ecdh-sha2-nistp256
ecdh-sha2-nistp384

ecdh-sha2-nistp521

Page 14/27

sntrup761x25519-sha512@openssh.com
The default is:
curve25519-sha256,curve25519-sha256 @libssh.org,
ecdh-sha2-nistp256,ecdh-sha2-nistp384,ecdh-sha2-nistp521,
sntrup761x25519-sha512@openssh.com,
diffie-hellman-group-exchange-sha256,
diffie-hellman-group16-sha512,diffie-hellman-group18-sha512,
diffie-hellman-group14-sha256
The list of available key exchange algorithms may also be obtained using "ssh -Q
KexAlgorithms".
ListenAddress
Specifies the local addresses sshd(8) should listen on. The following forms may be
used:
ListenAddress hostname|address
ListenAddress hostname:port
ListenAddress IPv4_address:port
ListenAddress [hostname|address]:port
If port is not specified, sshd will listen on the address and all Port options spec?
ified. The default is to listen on all local addresses. Multiple ListenAddress op?
tions are permitted.
LoginGraceTime
The server disconnects after this time if the user has not successfully logged in.
If the value is O, there is no time limit. The default is 120 seconds.
LogLevel
Gives the verbosity level that is used when logging messages from sshd(8). The pos?
sible values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and DE?
BUGS3. The default is INFO. DEBUG and DEBUG1 are equivalent. DEBUG2 and DEBUG3
each specify higher levels of debugging output. Logging with a DEBUG level violates
the privacy of users and is not recommended.
LogVerbose
Specify one or more overrides to LoglLevel. An override consists of a pattern lists
that matches the source file, function and line number to force detailed logging

for. For example, an override pattern of: Page 15/27

kex.c:*:1000,*:kex_exchange_identification():*,packet.c:*
would enable detailed logging for line 1000 of kex.c, everything in the
kex_exchange_identification() function, and all code in the packet.c file. This op?
tion is intended for debugging and no overrides are enabled by default.

MACs Specifies the available MAC (message authentication code) algorithms. The MAC algo?
rithm is used for data integrity protection. Multiple algorithms must be comma-sep?
arated. If the specified list begins with a ?+? character, then the specified algo?
rithms will be appended to the default set instead of replacing them. If the speci?
fied list begins with a ?-? character, then the specified algorithms (including
wildcards) will be removed from the default set instead of replacing them. If the
specified list begins with a ?2? character, then the specified algorithms will be
placed at the head of the default set.

The algorithms that contain "-etm" calculate the MAC after encryption (encrypt-then-
mac). These are considered safer and their use recommended. The supported MACs
are:

hmac-md5

hmac-md5-96

hmac-shal

hmac-shal-96

hmac-sha2-256

hmac-sha2-512

umac-64@openssh.com

umac-128@openssh.com

hmac-md5-etm@openssh.com

hmac-md5-96-etm@openssh.com

hmac-shal-etm@openssh.com

hmac-shal-96-etm@openssh.com

hmac-sha2-256-etm@openssh.com

hmac-sha2-512-etm@openssh.com

umac-64-etm@openssh.com

umac-128-etm@openssh.com
The default is:

umac-64-etm@openssh.com,umac-128-etm@openssh.com, Page 16/27

hmac-sha2-256-etm@openssh.com,hmac-sha2-512-etm@openssh.com,
hmac-shal-etm@openssh.com,
umac-64@openssh.com,umac-128@openssh.com,
hmac-sha2-256,hmac-sha2-512,hmac-shal
The list of available MAC algorithms may also be obtained using "ssh -Q mac".
Match Introduces a conditional block. If all of the criteria on the Match line are satis?
fied, the keywords on the following lines override those set in the global section
of the config file, until either another Match line or the end of the file. If a
keyword appears in multiple Match blocks that are satisfied, only the first instance
of the keyword is applied.
The arguments to Match are one or more criteria-pattern pairs or the single token
All which matches all criteria. The available criteria are User, Group, Host,
LocalAddress, LocalPort, and Address.
The match patterns may consist of single entries or comma-separated lists and may
use the wildcard and negation operators described in the PATTERNS section of
ssh_config(b).
The patterns in an Address criteria may additionally contain addresses to match in
CIDR address/masklen format, such as 192.0.2.0/24 or 2001:db8::/32. Note that the
mask length provided must be consistent with the address - it is an error to specify
a mask length that is too long for the address or one with bits set in this host
portion of the address. For example, 192.0.2.0/33 and 192.0.2.0/8, respectively.
Only a subset of keywords may be used on the lines following a Match keyword.
Available keywords are AcceptEnv, AllowAgentForwarding, AllowGroups,
AllowStreamLocalForwarding, AllowTcpForwarding, AllowUsers, AuthenticationMethods,
AuthorizedKeysCommand, AuthorizedKeysCommandUser, AuthorizedKeysFile,
AuthorizedPrincipalsCommand, AuthorizedPrincipalsCommandUser,
AuthorizedPrincipalsFile, Banner, CASignatureAlgorithms, ChrootDirectory,
ClientAliveCountMax, ClientAlivelnterval, DenyGroups, DenyUsers, DisableForwarding,
ExposeAuthinfo, ForceCommand, GatewayPorts, GSSAPIAuthentication,
HostbasedAcceptedAlgorithms, HostbasedAuthentication,
HostbasedUsesNameFromPacketOnly, IgnoreRhosts, Include, IPQoS,
KbdInteractiveAuthentication, KerberosAuthentication, LogLevel, MaxAuthTries,

MaxSessions, PasswordAuthentication, PermitEmptyPasswords, PermitListen, PermitOpen, Page 17/27

PermitRootLogin, PermitTTY, PermitTunnel, PermitUserRC, PubkeyAcceptedAlgorithms,
PubkeyAuthentication, PubkeyAuthOptions, RekeyLimit, RevokedKeys, SetEnv,
StreamLocalBindMask, StreamLocalBindUnlink, TrustedUserCAKeys, X11DisplayOffset,
X11Forwarding and X11UseLocalhost.
MaxAuthTries
Specifies the maximum number of authentication attempts permitted per connection.
Once the number of failures reaches half this value, additional failures are logged.
The default is 6.
MaxSessions
Specifies the maximum number of open shell, login or subsystem (e.g. sftp) sessions
permitted per network connection. Multiple sessions may be established by clients
that support connection multiplexing. Setting MaxSessions to 1 will effectively
disable session multiplexing, whereas setting it to O will prevent all shell, login
and subsystem sessions while still permitting forwarding. The default is 10.
MaxStartups
Specifies the maximum number of concurrent unauthenticated connections to the SSH
daemon. Additional connections will be dropped until authentication succeeds or the
LoginGraceTime expires for a connection. The default is 10:30:100.
Alternatively, random early drop can be enabled by specifying the three colon sepa?
rated values start:rate:full (e.g. "10:30:60"). sshd(8) will refuse connection at?
tempts with a probability of rate/100 (30%) if there are currently start (10) unau?
thenticated connections. The probability increases linearly and all connection at?
tempts are refused if the number of unauthenticated connections reaches full (60).
ModuliFile
Specifies the moduli(5) file that contains the Diffie-Hellman groups used for the
?diffie-hellman-group-exchange-shal? and ?diffie-hellman-group-exchange-sha2567? key
exchange methods. The default is /etc/ssh/moduli.
PasswordAuthentication
Specifies whether password authentication is allowed. The default is yes.
PermitEmptyPasswords
When password authentication is allowed, it specifies whether the server allows [0?
gin to accounts with empty password strings. The default is no.

PermitListen Page 18/27

Specifies the addresses/ports on which a remote TCP port forwarding may listen. The
listen specification must be one of the following forms:

PermitListen port

PermitListen host:port
Multiple permissions may be specified by separating them with whitespace. An argu?
ment of any can be used to remove all restrictions and permit any listen requests.
An argument of none can be used to prohibit all listen requests. The host name may
contain wildcards as described in the PATTERNS section in ssh_config(5). The wild?
card ?*? can also be used in place of a port number to allow all ports. By default
all port forwarding listen requests are permitted. Note that the GatewayPorts op?
tion may further restrict which addresses may be listened on. Note also that ssh(1)
will request a listen host of ?localhost? if no listen host was specifically re?
quested, and this name is treated differently to explicit localhost addresses of
?127.0.0.1? and ?::17?.

PermitOpen

Specifies the destinations to which TCP port forwarding is permitted. The forward?
ing specification must be one of the following forms:

PermitOpen host:port

PermitOpen IPv4_addr:port

PermitOpen [IPv6_addr]:port
Multiple forwards may be specified by separating them with whitespace. An argument
of any can be used to remove all restrictions and permit any forwarding requests.
An argument of none can be used to prohibit all forwarding requests. The wildcard
?*? can be used for host or port to allow all hosts or ports respectively. Other?
wise, no pattern matching or address lookups are performed on supplied names. By
default all port forwarding requests are permitted.

PermitRootLogin

Specifies whether root can log in using ssh(1). The argument must be yes,
prohibit-password, forced-commands-only, or no. The default is prohibit-password.
If this option is set to prohibit-password (or its deprecated alias,
without-password), password and keyboard-interactive authentication are disabled for
root.

If this option is set to forced-commands-only, root login with public key authenti? Page 19/27

cation will be allowed, but only if the command option has been specified (which may
be useful for taking remote backups even if root login is normally not allowed).
All other authentication methods are disabled for root.
If this option is set to no, root is not allowed to log in.

PermitTTY
Specifies whether pty(4) allocation is permitted. The default is yes.

PermitTunnel
Specifies whether tun(4) device forwarding is allowed. The argument must be yes,
point-to-point (layer 3), ethernet (layer 2), or no. Specifying yes permits both
point-to-point and ethernet. The default is no.
Independent of this setting, the permissions of the selected tun(4) device must al?
low access to the user.

PermitUserEnvironment
Specifies whether ~/.ssh/environment and environment= options in
~/.ssh/authorized_keys are processed by sshd(8). Valid options are yes, no or a
pattern-list specifying which environment variable names to accept (for example
"LANG,LC_*"). The default is no. Enabling environment processing may enable users
to bypass access restrictions in some configurations using mechanisms such as
LD_PRELOAD.

PermitUserRC
Specifies whether any ~/.ssh/rc file is executed. The default is yes.

PerSourceMaxStartups
Specifies the number of unauthenticated connections allowed from a given source ad?
dress, or ?none? if there is no limit. This limit is applied in addition to
MaxStartups, whichever is lower. The default is none.

PerSourceNetBlockSize
Specifies the number of bits of source address that are grouped together for the
purposes of applying PerSourceMaxStartups limits. Values for IPv4 and optionally
IPv6 may be specified, separated by a colon. The default is 32:128, which means
each address is considered individually.

PidFile
Specifies the file that contains the process ID of the SSH daemon, or none to not

write one. The default is /run/sshd.pid. Page 20/27

Port Specifies the port number that sshd(8) listens on. The default is 22. Multiple op?
tions of this type are permitted. See also ListenAddress.
PrintLastLog
Specifies whether sshd(8) should print the date and time of the last user login when
a user logs in interactively. The default is yes.
PrintMotd
Specifies whether sshd(8) should print /etc/motd when a user logs in interactively.
(On some systems it is also printed by the shell, /etc/profile, or equivalent.) The
default is yes.
PubkeyAcceptedAlgorithms
Specifies the signature algorithms that will be accepted for public key authentica?
tion as a list of comma-separated patterns. Alternately if the specified list be?
gins with a ?+? character, then the specified algorithms will be appended to the de?
fault set instead of replacing them. If the specified list begins with a ?-? char?
acter, then the specified algorithms (including wildcards) will be removed from the
default set instead of replacing them. If the specified list begins with a ?7?
character, then the specified algorithms will be placed at the head of the default
set. The default for this option is:
ssh-ed25519-cert-vO1l@openssh.com,
ecdsa-sha2-nistp256-cert-vO1l@openssh.com,
ecdsa-sha2-nistp384-cert-vO1l@openssh.com,
ecdsa-sha2-nistp521-cert-vO1l@openssh.com,
sk-ssh-ed25519-cert-vO1l@openssh.com,
sk-ecdsa-sha2-nistp256-cert-vOl@openssh.com,
rsa-sha2-512-cert-vO1l@openssh.com,
rsa-sha2-256-cert-vOl@openssh.com,
ssh-ed25519,
ecdsa-sha2-nistp256,ecdsa-sha2-nistp384,ecdsa-sha2-nistp521,
sk-ssh-ed25519@openssh.com,
sk-ecdsa-sha2-nistp256 @openssh.com,
rsa-sha2-512,rsa-sha2-256
The list of available signature algorithms may also be obtained using "ssh -Q

PubkeyAcceptedAlgorithms".

Page 21/27

PubkeyAuthOptions
Sets one or more public key authentication options. The supported keywords are:
none (the default; indicating no additional options are enabled), touch-required and
verify-required.
The touch-required option causes public key authentication using a FIDO authentica?
tor algorithm (i.e. ecdsa-sk or ed25519-sk) to always require the signature to at?
test that a physically present user explicitly confirmed the authentication (usually
by touching the authenticator). By default, sshd(8) requires user presence unless
overridden with an authorized_keys option. The touch-required flag disables this
override.
The verify-required option requires a FIDO key signature attest that the user was
verified, e.g. via a PIN.
Neither the touch-required or verify-required options have any effect for other,
non-FIDO, public key types.

PubkeyAuthentication
Specifies whether public key authentication is allowed. The default is yes.

RekeyLimit

Specifies the maximum amount of data that may be transmitted before the session key

is renegotiated, optionally followed by a maximum amount of time that may pass be?
fore the session key is renegotiated. The first argument is specified in bytes and
may have a suffix of ?K?, ?M?, or ?G? to indicate Kilobytes, Megabytes, or Giga?
bytes, respectively. The default is between ?1G? and ?4G?, depending on the cipher.
The optional second value is specified in seconds and may use any of the units docu?
mented in the TIME FORMATS section. The default value for RekeyLimit is default
none, which means that rekeying is performed after the cipher's default amount of
data has been sent or received and no time based rekeying is done.

RevokedKeys
Specifies revoked public keys file, or none to not use one. Keys listed in this
file will be refused for public key authentication. Note that if this file is not
readable, then public key authentication will be refused for all users. Keys may be
specified as a text file, listing one public key per line, or as an OpenSSH Key Re?
vocation List (KRL) as generated by ssh-keygen(1). For more information on KRLsS,

see the KEY REVOCATION LISTS section in ssh-keygen(1).

Page 22/27

SecurityKeyProvider
Specifies a path to a library that will be used when loading FIDO authenticator-
hosted keys, overriding the default of using the built-in USB HID support.

SetEnv Specifies one or more environment variables to set in child sessions started by
sshd(8) as ?NAME=VALUE?. The environment value may be quoted (e.qg. if it contains
whitespace characters). Environment variables set by SetEnv override the default
environment and any variables specified by the user via AcceptEnv or
PermitUserEnvironment.

StreamLocalBindMask
Sets the octal file creation mode mask (umask) used when creating a Unix-domain
socket file for local or remote port forwarding. This option is only used for port
forwarding to a Unix-domain socket file.

The default value is 0177, which creates a Unix-domain socket file that is readable
and writable only by the owner. Note that not all operating systems honor the file
mode on Unix-domain socket files.

StreamLocalBindUnlink
Specifies whether to remove an existing Unix-domain socket file for local or remote
port forwarding before creating a new one. If the socket file already exists and
StreamLocalBindUnlink is not enabled, sshd will be unable to forward the port to the
Unix-domain socket file. This option is only used for port forwarding to a Unix-do?
main socket file.

The argument must be yes or no. The default is no.

StrictModes
Specifies whether sshd(8) should check file modes and ownership of the user's files
and home directory before accepting login. This is normally desirable because
novices sometimes accidentally leave their directory or files world-writable. The
default is yes. Note that this does not apply to ChrootDirectory, whose permissions
and ownership are checked unconditionally.

Subsystem
Configures an external subsystem (e.g. file transfer daemon). Arguments should be a
subsystem name and a command (with optional arguments) to execute upon subsystem re?
quest.

The command sftp-server implements the SFTP file transfer subsystem. Page 23/27

Alternately the name internal-sftp implements an in-process SFTP server. This may
simplify configurations using ChrootDirectory to force a different filesystem root
on clients.
By default no subsystems are defined.

SyslogFacility
Gives the facility code that is used when logging messages from sshd(8). The possi?
ble values are: DAEMON, USER, AUTH, LOCALO, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCALS5,
LOCALSG6, LOCAL7. The defaultis AUTH.

TCPKeepAlive
Specifies whether the system should send TCP keepalive messages to the other side.
If they are sent, death of the connection or crash of one of the machines will be
properly noticed. However, this means that connections will die if the route is
down temporarily, and some people find it annoying. On the other hand, if TCP
keepalives are not sent, sessions may hang indefinitely on the server, leaving
"ghost" users and consuming server resources.
The default is yes (to send TCP keepalive messages), and the server will notice if
the network goes down or the client host crashes. This avoids infinitely hanging
sessions.
To disable TCP keepalive messages, the value should be set to no.
This option was formerly called KeepAlive.

TrustedUserCAKeys
Specifies a file containing public keys of certificate authorities that are trusted
to sign user certificates for authentication, or none to not use one. Keys are
listed one per line; empty lines and comments starting with ?#? are allowed. If a
certificate is presented for authentication and has its signing CA key listed in
this file, then it may be used for authentication for any user listed in the cer?
tificate's principals list. Note that certificates that lack a list of principals
will not be permitted for authentication using TrustedUserCAKeys. For more details
on certificates, see the CERTIFICATES section in ssh-keygen(1).

UseDNS Specifies whether sshd(8) should look up the remote host name, and to check that the
resolved host name for the remote IP address maps back to the very same IP address.
If this option is set to no (the default) then only addresses and not host names may

be used in ~/.ssh/authorized_keys from and sshd_config Match Host directives. Page 24/27

UsePAM Enables the Pluggable Authentication Module interface. If set to yes this will en?
able PAM authentication using KbdInteractiveAuthentication and
PasswordAuthentication in addition to PAM account and session module processing for
all authentication types.

Because PAM keyboard-interactive authentication usually serves an equivalent role to
password authentication, you should disable either PasswordAuthentication or
KbdinteractiveAuthentication.

If UsePAM is enabled, you will not be able to run sshd(8) as a non-root user. The
default is no.

VersionAddendum
Optionally specifies additional text to append to the SSH protocol banner sent by
the server upon connection. The default is none.

X11DisplayOffset
Specifies the first display number available for sshd(8)'s X11 forwarding. This
prevents sshd from interfering with real X11 servers. The default is 10.

X11Forwarding
Specifies whether X11 forwarding is permitted. The argument must be yes or no. The
default is no.

When X11 forwarding is enabled, there may be additional exposure to the server and
to client displays if the sshd(8) proxy display is configured to listen on the wild?

card address (see X11UselLocalhost), though this is not the default. Additionally,

the authentication spoofing and authentication data verification and substitution
occur on the client side. The security risk of using X11 forwarding is that the

client's X11 display server may be exposed to attack when the SSH client requests
forwarding (see the warnings for ForwardX11 in ssh_config(5)). A system administra?
tor may have a stance in which they want to protect clients that may expose them?
selves to attack by unwittingly requesting X11 forwarding, which can warrant a no
setting.

Note that disabling X11 forwarding does not prevent users from forwarding X11 traf?
fic, as users can always install their own forwarders.

X11Uselocalhost
Specifies whether sshd(8) should bind the X11 forwarding server to the loopback ad?

dress or to the wildcard address. By default, sshd binds the forwarding server to Page 25/27

the loopback address and sets the hostname part of the DISPLAY environment variable
to localhost. This prevents remote hosts from connecting to the proxy display.
However, some older X11 clients may not function with this configuration.
X11UselLocalhost may be set to no to specify that the forwarding server should be
bound to the wildcard address. The argument must be yes or no. The default is yes.
XAuthLocation
Specifies the full pathname of the xauth(1) program, or none to not use one. The
default is /usr/bin/xauth.
TIME FORMATS
sshd(8) command-line arguments and configuration file options that specify time may be ex?
pressed using a sequence of the form: time[qualifier], where time is a positive integer
value and qualifier is one of the following:
?none? seconds
s|S seconds
m | M minutes
h|H hours
d|D days
w|W weeks
Each member of the sequence is added together to calculate the total time value.
Time format examples:
600 600 seconds (10 minutes)
10m 10 minutes
1h30m 1 hour 30 minutes (90 minutes)
TOKENS
Arguments to some keywords can make use of tokens, which are expanded at runtime:
%% A literal ?%?.
%F The fingerprint of the CA key.
%f The fingerprint of the key or certificate.
%h The home directory of the user.
%i The key ID in the certificate.
%K The base64-encoded CA key.
%k The base64-encoded key or certificate for authentication.

%s The serial number of the certificate. Page 26/27

%T The type of the CA key.
%t The key or certificate type.
%U The numeric user ID of the target user.
%u The username.
AuthorizedKeysCommand accepts the tokens %%, %f, %h, %k, %t, %U, and %u.
AuthorizedKeysFile accepts the tokens %%, %h, %U, and %u.
AuthorizedPrincipalsCommand accepts the tokens %%, %F, %f, %h, %i, %K, %k, %s, %T, %t, %U,
and %u.
AuthorizedPrincipalsFile accepts the tokens %%, %h, %U, and %u.
ChrootDirectory accepts the tokens %%, %h, %U, and %u.
FILES
letc/ssh/sshd_config
Contains configuration data for sshd(8). This file should be writable by root only,
but it is recommended (though not necessary) that it be world-readable.
SEE ALSO
sftp-server(8), sshd(8)
AUTHORS
OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron
Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt and Dug Song removed many
bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support
for SSH protocol versions 1.5 and 2.0. Niels Provos and Markus Friedl contributed support
for privilege separation.

BSD December 4, 2021 BSD

Page 27/27

