
Rocky Enterprise Linux 9.2 Manual Pages on command 'strace.1'

$ man strace.1

STRACE(1) General Commands Manual STRACE(1)

NAME

 strace - trace system calls and signals

SYNOPSIS

 strace [-ACdffhikqqrtttTvVwxxyyzZ] [-I n] [-b execve] [-e expr]... [-O overhead]

 [-S sortby] [-U columns] [-a column] [-o file] [-s strsize] [-X format]

 [-P path]... [-p pid]... [--seccomp-bpf] { -p pid | [-DDD] [-E var[=val]]...

 [-u username] command [args] }

 strace -c [-dfwzZ] [-I n] [-b execve] [-e expr]... [-O overhead] [-S sortby] [-U columns]

 [-P path]... [-p pid]... [--seccomp-bpf] { -p pid | [-DDD] [-E var[=val]]...

 [-u username] command [args] }

DESCRIPTION

 In the simplest case strace runs the specified command until it exits. It intercepts and

 records the system calls which are called by a process and the signals which are received

 by a process. The name of each system call, its arguments and its return value are

 printed on standard error or to the file specified with the -o option.

 strace is a useful diagnostic, instructional, and debugging tool. System administrators,

 diagnosticians and trouble-shooters will find it invaluable for solving problems with pro?

 grams for which the source is not readily available since they do not need to be recom?

 piled in order to trace them. Students, hackers and the overly-curious will find that a

 great deal can be learned about a system and its system calls by tracing even ordinary

 programs. And programmers will find that since system calls and signals are events that

 happen at the user/kernel interface, a close examination of this boundary is very useful Page 1/24

 for bug isolation, sanity checking and attempting to capture race conditions.

 Each line in the trace contains the system call name, followed by its arguments in paren?

 theses and its return value. An example from stracing the command "cat /dev/null" is:

 open("/dev/null", O_RDONLY) = 3

 Errors (typically a return value of -1) have the errno symbol and error string appended.

 open("/foo/bar", O_RDONLY) = -1 ENOENT (No such file or directory)

 Signals are printed as signal symbol and decoded siginfo structure. An excerpt from

 stracing and interrupting the command "sleep 666" is:

 sigsuspend([] <unfinished ...>

 --- SIGINT {si_signo=SIGINT, si_code=SI_USER, si_pid=...} ---

 +++ killed by SIGINT +++

 If a system call is being executed and meanwhile another one is being called from a dif?

 ferent thread/process then strace will try to preserve the order of those events and mark

 the ongoing call as being unfinished. When the call returns it will be marked as resumed.

 [pid 28772] select(4, [3], NULL, NULL, NULL <unfinished ...>

 [pid 28779] clock_gettime(CLOCK_REALTIME, {1130322148, 939977000}) = 0

 [pid 28772] <... select resumed>) = 1 (in [3])

 Interruption of a (restartable) system call by a signal delivery is processed differently

 as kernel terminates the system call and also arranges its immediate reexecution after the

 signal handler completes.

 read(0, 0x7ffff72cf5cf, 1) = ? ERESTARTSYS (To be restarted)

 --- SIGALRM ... ---

 rt_sigreturn(0xe) = 0

 read(0, "", 1) = 0

 Arguments are printed in symbolic form with passion. This example shows the shell per?

 forming ">>xyzzy" output redirection:

 open("xyzzy", O_WRONLY|O_APPEND|O_CREAT, 0666) = 3

 Here, the second and the third argument of open(2) are decoded by breaking down the flag

 argument into its three bitwise-OR constituents and printing the mode value in octal by

 tradition. Where the traditional or native usage differs from ANSI or POSIX, the latter

 forms are preferred. In some cases, strace output is proven to be more readable than the

 source.

 Structure pointers are dereferenced and the members are displayed as appropriate. In most Page 2/24

 cases, arguments are formatted in the most C-like fashion possible. For example, the es?

 sence of the command "ls -l /dev/null" is captured as:

 lstat("/dev/null", {st_mode=S_IFCHR|0666, st_rdev=makedev(0x1, 0x3), ...}) = 0

 Notice how the 'struct stat' argument is dereferenced and how each member is displayed

 symbolically. In particular, observe how the st_mode member is carefully decoded into a

 bitwise-OR of symbolic and numeric values. Also notice in this example that the first ar?

 gument to lstat(2) is an input to the system call and the second argument is an output.

 Since output arguments are not modified if the system call fails, arguments may not always

 be dereferenced. For example, retrying the "ls -l" example with a non-existent file pro?

 duces the following line:

 lstat("/foo/bar", 0xb004) = -1 ENOENT (No such file or directory)

 In this case the porch light is on but nobody is home.

 Syscalls unknown to strace are printed raw, with the unknown system call number printed in

 hexadecimal form and prefixed with "syscall_":

 syscall_0xbad(0x1, 0x2, 0x3, 0x4, 0x5, 0x6) = -1 ENOSYS (Function not implemented)

 Character pointers are dereferenced and printed as C strings. Non-printing characters in

 strings are normally represented by ordinary C escape codes. Only the first strsize (32

 by default) bytes of strings are printed; longer strings have an ellipsis appended follow?

 ing the closing quote. Here is a line from "ls -l" where the getpwuid(3) library routine

 is reading the password file:

 read(3, "root::0:0:System Administrator:/"..., 1024) = 422

 While structures are annotated using curly braces, simple pointers and arrays are printed

 using square brackets with commas separating elements. Here is an example from the com?

 mand id(1) on a system with supplementary group ids:

 getgroups(32, [100, 0]) = 2

 On the other hand, bit-sets are also shown using square brackets, but set elements are

 separated only by a space. Here is the shell, preparing to execute an external command:

 sigprocmask(SIG_BLOCK, [CHLD TTOU], []) = 0

 Here, the second argument is a bit-set of two signals, SIGCHLD and SIGTTOU. In some

 cases, the bit-set is so full that printing out the unset elements is more valuable. In

 that case, the bit-set is prefixed by a tilde like this:

 sigprocmask(SIG_UNBLOCK, ~[], NULL) = 0

 Here, the second argument represents the full set of all signals. Page 3/24

OPTIONS

 General

 -e expr A qualifying expression which modifies which events to trace or how to trace

 them. The format of the expression is:

 [qualifier=][!]value[,value]...

 where qualifier is one of trace (or t), abbrev (or a), verbose (or v), raw (or

 x), signal (or signals or s), read (or reads or r), write (or writes or w),

 fault, inject, status, quiet (or silent or silence or q), decode-fds (or de?

 code-fd), decode-pids (or decode-pid), or kvm, and value is a qualifier-depen?

 dent symbol or number. The default qualifier is trace. Using an exclamation

 mark negates the set of values. For example, -e open means literally

 -e trace=open which in turn means trace only the open system call. By con?

 trast, -e trace=!open means to trace every system call except open. In addi?

 tion, the special values all and none have the obvious meanings.

 Note that some shells use the exclamation point for history expansion even in?

 side quoted arguments. If so, you must escape the exclamation point with a

 backslash.

 Startup

 -E var=val

 --env=var=val

 Run command with var=val in its list of environment variables.

 -E var

 --env=var Remove var from the inherited list of environment variables before passing it

 on to the command.

 -p pid

 --attach=pid

 Attach to the process with the process ID pid and begin tracing. The trace

 may be terminated at any time by a keyboard interrupt signal (CTRL-C). strace

 will respond by detaching itself from the traced process(es) leaving it (them)

 to continue running. Multiple -p options can be used to attach to many pro?

 cesses in addition to command (which is optional if at least one -p option is

 given). Multiple process IDs, separated by either comma (?,?), space (? ?),

 tab, or newline character, can be provided as an argument to a single -p op? Page 4/24

 tion, so, for example, -p "$(pidof PROG)" and -p "$(pgrep PROG)" syntaxes are

 supported.

 -u username

 --user=username

 Run command with the user ID, group ID, and supplementary groups of username.

 This option is only useful when running as root and enables the correct execu?

 tion of setuid and/or setgid binaries. Unless this option is used setuid and

 setgid programs are executed without effective privileges.

 Tracing

 -b syscall

 --detach-on=syscall

 If specified syscall is reached, detach from traced process. Currently, only

 execve(2) syscall is supported. This option is useful if you want to trace

 multi-threaded process and therefore require -f, but don't want to trace its

 (potentially very complex) children.

 -D

 --daemonize

 --daemonize=grandchild

 Run tracer process as a grandchild, not as the parent of the tracee. This re?

 duces the visible effect of strace by keeping the tracee a direct child of the

 calling process.

 -DD

 --daemonize=pgroup

 --daemonize=pgrp

 Run tracer process as tracee's grandchild in a separate process group. In ad?

 dition to reduction of the visible effect of strace, it also avoids killing of

 strace with kill(2) issued to the whole process group.

 -DDD

 --daemonize=session

 Run tracer process as tracee's grandchild in a separate session ("true daemon?

 isation"). In addition to reduction of the visible effect of strace, it also

 avoids killing of strace upon session termination.

 -f Page 5/24

 --follow-forks

 Trace child processes as they are created by currently traced processes as a

 result of the fork(2), vfork(2) and clone(2) system calls. Note that -p PID

 -f will attach all threads of process PID if it is multi-threaded, not only

 thread with thread_id = PID.

 --output-separately

 If the --output=filename option is in effect, each processes trace is written

 to filename.pid where pid is the numeric process id of each process.

 -ff

 --follow-forks --output-separately

 Combine the effects of --follow-forks and --output-separately options. This

 is incompatible with -c, since no per-process counts are kept.

 One might want to consider using strace-log-merge(1) to obtain a combined

 strace log view.

 -I interruptible

 --interruptible=interruptible

 When strace can be interrupted by signals (such as pressing CTRL-C).

 1, anywhere no signals are blocked;

 2, waiting fatal signals are blocked while decoding syscall (default);

 3, never fatal signals are always blocked (default if -o FILE PROG);

 4, never_tstp fatal signals and SIGTSTP (CTRL-Z) are always blocked (useful

 to make strace -o FILE PROG not stop on CTRL-Z, default if -D).

 Filtering

 -e trace=syscall_set

 --trace=syscall_set

 Trace only the specified set of system calls. syscall_set is defined as

 [!]value[,value], and value can be one of the following:

 syscall Trace specific syscall, specified by its name (but see NOTES).

 ?value Question mark before the syscall qualification allows suppression

 of error in case no syscalls matched the qualification provided.

 /regex Trace only those system calls that match the regex. You can use

 POSIX Extended Regular Expression syntax (see regex(7)).

 syscall@64 Trace syscall only for the 64-bit personality. Page 6/24

 syscall@32 Trace syscall only for the 32-bit personality.

 syscall@x32 Trace syscall only for the 32-on-64-bit personality.

 %file

 file Trace all system calls which take a file name as an argument.

 You can think of this as an abbreviation for

 -e trace=open,stat,chmod,unlink,... which is useful to seeing

 what files the process is referencing. Furthermore, using the

 abbreviation will ensure that you don't accidentally forget to

 include a call like lstat(2) in the list. Betchya woulda forgot

 that one. The syntax without a preceding percent sign ("-e

 trace=file") is deprecated.

 %process

 process Trace system calls associated with process lifecycle (creation,

 exec, termination). The syntax without a preceding percent sign

 ("-e trace=process") is deprecated.

 %net

 %network

 network Trace all the network related system calls. The syntax without a

 preceding percent sign ("-e trace=network") is deprecated.

 %signal

 signal Trace all signal related system calls. The syntax without a pre?

 ceding percent sign ("-e trace=signal") is deprecated.

 %ipc

 ipc Trace all IPC related system calls. The syntax without a preced?

 ing percent sign ("-e trace=ipc") is deprecated.

 %desc

 desc Trace all file descriptor related system calls. The syntax with?

 out a preceding percent sign ("-e trace=desc") is deprecated.

 %memory

 memory Trace all memory mapping related system calls. The syntax with?

 out a preceding percent sign ("-e trace=memory") is deprecated.

 %creds Trace system calls that read or modify user and group identifiers

 or capability sets. Page 7/24

 %stat Trace stat syscall variants.

 %lstat Trace lstat syscall variants.

 %fstat Trace fstat, fstatat, and statx syscall variants.

 %%stat Trace syscalls used for requesting file status (stat, lstat, fs?

 tat, fstatat, statx, and their variants).

 %statfs Trace statfs, statfs64, statvfs, osf_statfs, and osf_statfs64

 system calls. The same effect can be achieved with

 -e trace=/^(.*_)?statv?fs regular expression.

 %fstatfs Trace fstatfs, fstatfs64, fstatvfs, osf_fstatfs, and osf_fs?

 tatfs64 system calls. The same effect can be achieved with

 -e trace=/fstatv?fs regular expression.

 %%statfs Trace syscalls related to file system statistics (statfs-like,

 fstatfs-like, and ustat). The same effect can be achieved with

 -e trace=/statv?fs|fsstat|ustat regular expression.

 %clock Trace system calls that read or modify system clocks.

 %pure Trace syscalls that always succeed and have no arguments. Cur?

 rently, this list includes arc_gettls(2), getdtablesize(2), gete?

 gid(2), getegid32(2), geteuid(2), geteuid32(2), getgid(2), get?

 gid32(2), getpagesize(2), getpgrp(2), getpid(2), getppid(2),

 get_thread_area(2) (on architectures other than x86), gettid(2),

 get_tls(2), getuid(2), getuid32(2), getxgid(2), getxpid(2),

 getxuid(2), kern_features(2), and metag_get_tls(2) syscalls.

 The -c option is useful for determining which system calls might be useful to

 trace. For example, trace=open,close,read,write means to only trace those

 four system calls. Be careful when making inferences about the user/kernel

 boundary if only a subset of system calls are being monitored. The default is

 trace=all.

 -e signal=set

 --signal=set

 Trace only the specified subset of signals. The default is signal=all. For

 example, signal=!SIGIO (or signal=!io) causes SIGIO signals not to be traced.

 -e status=set

 --status=set Page 8/24

 Print only system calls with the specified return status. The default is sta?

 tus=all. When using the status qualifier, because strace waits for system

 calls to return before deciding whether they should be printed or not, the

 traditional order of events may not be preserved anymore. If two system calls

 are executed by concurrent threads, strace will first print both the entry and

 exit of the first system call to exit, regardless of their respective entry

 time. The entry and exit of the second system call to exit will be printed

 afterwards. Here is an example when select(2) is called, but a different

 thread calls clock_gettime(2) before select(2) finishes:

 [pid 28779] 1130322148.939977 clock_gettime(CLOCK_REALTIME, {1130322148, 939977000}) = 0

 [pid 28772] 1130322148.438139 select(4, [3], NULL, NULL, NULL) = 1 (in [3])

 set can include the following elements:

 successful Trace system calls that returned without an error code. The -z

 option has the effect of status=successful.

 failed Trace system calls that returned with an error code. The -Z op?

 tion has the effect of status=failed.

 unfinished Trace system calls that did not return. This might happen, for

 example, due to an execve call in a neighbour thread.

 unavailable Trace system calls that returned but strace failed to fetch the

 error status.

 detached Trace system calls for which strace detached before the return.

 -P path

 --trace-path=path

 Trace only system calls accessing path. Multiple -P options can be used to

 specify several paths.

 -z

 --successful-only

 Print only syscalls that returned without an error code.

 -Z

 --failed-only

 Print only syscalls that returned with an error code.

 Output format

 -a column Page 9/24

 --columns=column

 Align return values in a specific column (default column 40).

 -e abbrev=syscall_set

 --abbrev=syscall_set

 Abbreviate the output from printing each member of large structures. The syn?

 tax of the syscall_set specification is the same as in the -e trace option.

 The default is abbrev=all. The -v option has the effect of abbrev=none.

 -e verbose=syscall_set

 --verbose=syscall_set

 Dereference structures for the specified set of system calls. The syntax of

 the syscall_set specification is the same as in the -e trace option. The de?

 fault is verbose=all.

 -e raw=syscall_set

 --raw=syscall_set

 Print raw, undecoded arguments for the specified set of system calls. The

 syntax of the syscall_set specification is the same as in the -e trace option.

 This option has the effect of causing all arguments to be printed in hexadeci?

 mal. This is mostly useful if you don't trust the decoding or you need to

 know the actual numeric value of an argument. See also -X raw option.

 -e read=set

 --read=set Perform a full hexadecimal and ASCII dump of all the data read from file de?

 scriptors listed in the specified set. For example, to see all input activity

 on file descriptors 3 and 5 use -e read=3,5. Note that this is independent

 from the normal tracing of the read(2) system call which is controlled by the

 option -e trace=read.

 -e write=set

 --write=set Perform a full hexadecimal and ASCII dump of all the data written to file de?

 scriptors listed in the specified set. For example, to see all output activ?

 ity on file descriptors 3 and 5 use -e write=3,5. Note that this is indepen?

 dent from the normal tracing of the write(2) system call which is controlled

 by the option -e trace=write.

 -e quiet=set

 --quiet=set Page 10/24

 --silent=set

 --silence=set

 Suppress various information messages. The default is quiet=none. set can

 include the following elements:

 attach Suppress messages about attaching and detaching ("[Process

 NNNN attached]", "[Process NNNN detached]").

 exit Suppress messages about process exits ("+++ exited with SSS

 +++").

 path-resolution Suppress messages about resolution of paths provided via the

 -P option ("Requested path "..." resolved into "..."").

 personality Suppress messages about process personality changes ("[

 Process PID=NNNN runs in PPP mode.]").

 thread-execve

 superseded Suppress messages about process being superseded by execve(2)

 in another thread ("+++ superseded by execve in pid NNNN

 +++").

 -e decode-fds=set

 --decode-fds=set

 Decode various information associated with file descriptors. The default is

 decode-fds=none. set can include the following elements:

 path Print file paths. Also enables printing of tracee's current working

 directory when AT_FDCWD constant is used.

 socket Print socket protocol-specific information,

 dev Print character/block device numbers.

 pidfd Print PIDs associated with pidfd file descriptors.

 -e decode-pids=set

 --decode-pids=set

 Decode various information associated with process IDs (and also thread IDs,

 process group IDs, and session IDs). The default is decode-pids=none. set

 can include the following elements:

 comm Print command names associated with thread or process IDs.

 pidns Print thread, process, process group, and session IDs in strace's PID

 namespace if the tracee is in a different PID namespace. Page 11/24

 -e kvm=vcpu

 --kvm=vcpu Print the exit reason of kvm vcpu. Requires Linux kernel version 4.16.0 or

 higher.

 -i

 --instruction-pointer

 Print the instruction pointer at the time of the system call.

 -n

 --syscall-number

 Print the syscall number.

 -k

 --stack-traces

 Print the execution stack trace of the traced processes after each system

 call.

 -o filename

 --output=filename

 Write the trace output to the file filename rather than to stderr. file?

 name.pid form is used if -ff option is supplied. If the argument begins with

 '|' or '!', the rest of the argument is treated as a command and all output is

 piped to it. This is convenient for piping the debugging output to a program

 without affecting the redirections of executed programs. The latter is not

 compatible with -ff option currently.

 -A

 --output-append-mode

 Open the file provided in the -o option in append mode.

 -q

 --quiet

 --quiet=attach,personality

 Suppress messages about attaching, detaching, and personality changes. This

 happens automatically when output is redirected to a file and the command is

 run directly instead of attaching.

 -qq

 --quiet=attach,personality,exit

 Suppress messages attaching, detaching, personality changes, and about process Page 12/24

 exit status.

 -qqq

 --quiet=all Suppress all suppressible messages (please refer to the -e quiet option de?

 scription for the full list of suppressible messages).

 -r

 --relative-timestamps[=precision]

 Print a relative timestamp upon entry to each system call. This records the

 time difference between the beginning of successive system calls. precision

 can be one of s (for seconds), ms (milliseconds), us (microseconds), or ns

 (nanoseconds), and allows setting the precision of time value being printed.

 Default is us (microseconds). Note that since -r option uses the monotonic

 clock time for measuring time difference and not the wall clock time, its mea?

 surements can differ from the difference in time reported by the -t option.

 -s strsize

 --string-limit=strsize

 Specify the maximum string size to print (the default is 32). Note that file?

 names are not considered strings and are always printed in full.

 --absolute-timestamps[=[[format:]format],[[precision:]precision]]

 --timestamps[=[[format:]format],[[precision:]precision]]

 Prefix each line of the trace with the wall clock time in the specified format

 with the specified precision. format can be one of the following:

 none No time stamp is printed. Can be used to override the previous

 setting.

 time Wall clock time (strftime(3) format string is %T).

 unix Number of seconds since the epoch (strftime(3) format string is

 %s).

 precision can be one of s (for seconds), ms (milliseconds), us (microseconds),

 or ns (nanoseconds). Default arguments for the option are format:time,preci?

 sion:s.

 -t

 --absolute-timestamps

 Prefix each line of the trace with the wall clock time.

 -tt Page 13/24

 --absolute-timestamps=precision:us

 If given twice, the time printed will include the microseconds.

 -ttt

 --absolute-timestamps=format:unix,precision:us

 If given thrice, the time printed will include the microseconds and the lead?

 ing portion will be printed as the number of seconds since the epoch.

 -T

 --syscall-times[=precision]

 Show the time spent in system calls. This records the time difference between

 the beginning and the end of each system call. precision can be one of s (for

 seconds), ms (milliseconds), us (microseconds), or ns (nanoseconds), and al?

 lows setting the precision of time value being printed. Default is us (mi?

 croseconds).

 -v

 --no-abbrev Print unabbreviated versions of environment, stat, termios, etc. calls.

 These structures are very common in calls and so the default behavior displays

 a reasonable subset of structure members. Use this option to get all of the

 gory details.

 --strings-in-hex[=option]

 Control usage of escape sequences with hexadecimal numbers in the printed

 strings. Normally (when no --strings-in-hex or -x option is supplied), escape

 sequences are used to print non-printable and non-ASCII characters (that is,

 characters with a character code less than 32 or greater than 127), or to dis?

 ambiguate the output (so, for quotes and other characters that encase the

 printed string, for example, angle brackets, in case of file descriptor path

 output); for the former use case, unless it is a white space character that

 has a symbolic escape sequence defined in the C standard (that is, ?\t? for a

 horizontal tab, ?\n? for a newline, ?\v? for a vertical tab, ?\f? for a form

 feed page break, and ?\r? for a carriage return) are printed using escape se?

 quences with numbers that correspond to their byte values, with octal number

 format being the default. option can be one of the following:

 none Hexadecimal numbers are not used in the output at all. When

 there is a need to emit an escape sequence, octal numbers are Page 14/24

 used.

 non-ascii-chars Hexadecimal numbers are used instead of octal in the escape

 sequences.

 non-ascii Strings that contain non-ASCII characters are printed using

 escape sequences with hexadecimal numbers.

 all All strings are printed using escape sequences with hexadeci?

 mal numbers.

 When the option is supplied without an argument, all is assumed.

 -x

 --strings-in-hex=non-ascii

 Print all non-ASCII strings in hexadecimal string format.

 -xx

 --strings-in-hex[=all]

 Print all strings in hexadecimal string format.

 -X format

 --const-print-style=format

 Set the format for printing of named constants and flags. Supported format

 values are:

 raw Raw number output, without decoding.

 abbrev Output a named constant or a set of flags instead of the raw number

 if they are found. This is the default strace behaviour.

 verbose Output both the raw value and the decoded string (as a comment).

 -y

 --decode-fds

 --decode-fds=path

 Print paths associated with file descriptor arguments and with the AT_FDCWD

 constant.

 -yy

 --decode-fds=all

 Print all available information associated with file descriptors: protocol-

 specific information associated with socket file descriptors, block/character

 device number associated with device file descriptors, and PIDs associated

 with pidfd file descriptors. Page 15/24

 --pidns-translation

 --decode-pids=pidns

 If strace and tracee are in different PID namespaces, print PIDs in strace's

 namespace, too.

 -Y

 --decode-pids=comm

 Print command names for PIDs.

 Statistics

 -c

 --summary-only

 Count time, calls, and errors for each system call and report a summary on

 program exit, suppressing the regular output. This attempts to show system

 time (CPU time spent running in the kernel) independent of wall clock time.

 If -c is used with -f, only aggregate totals for all traced processes are

 kept.

 -C

 --summary Like -c but also print regular output while processes are running.

 -O overhead

 --summary-syscall-overhead=overhead

 Set the overhead for tracing system calls to overhead. This is useful for

 overriding the default heuristic for guessing how much time is spent in mere

 measuring when timing system calls using the -c option. The accuracy of the

 heuristic can be gauged by timing a given program run without tracing (using

 time(1)) and comparing the accumulated system call time to the total produced

 using -c.

 The format of overhead specification is described in section Time specifica?

 tion format description.

 -S sortby

 --summary-sort-by=sortby

 Sort the output of the histogram printed by the -c option by the specified

 criterion. Legal values are time (or time-percent or time-total or to?

 tal-time), min-time (or shortest or time-min), max-time (or longest or

 time-max), avg-time (or time-avg), calls (or count), errors (or error), name Page 16/24

 (or syscall or syscall-name), and nothing (or none); default is time.

 -U columns

 --summary-columns=columns

 Configure a set (and order) of columns being shown in the call summary. The

 columns argument is a comma-separated list with items being one of the follow?

 ing:

 time-percent (or time) Percentage of cumulative time consumed by

 a specific system call.

 total-time (or time-total) Total system (or wall clock, if -w option

 is provided) time consumed by a specific

 system call.

 min-time (or shortest or time-min) Minimum observed call duration.

 max-time (or longest or time-max) Maximum observed call duration.

 avg-time (or time-avg) Average call duration.

 calls (or count) Call count.

 errors (or error) Error count.

 name (or syscall or syscall-name) Syscall name.

 The default value is time-percent,total-time,avg-time,calls,errors,name. If

 the name field is not supplied explicitly, it is added as the last column.

 -w

 --summary-wall-clock

 Summarise the time difference between the beginning and end of each system

 call. The default is to summarise the system time.

 Tampering

 -e inject=syscall_set[:error=errno|:retval=value][:signal=sig][:syscall=syscall][:de?

 lay_en?

 ter=delay][:delay_exit=delay][:poke_en?

 ter=@argN=DATAN,@argM=DATAM...][:poke_exit=@argN=DATAN,@argM=DATAM...][:when=expr]

 --inject=syscall_set[:error=errno|:retval=value][:signal=sig][:syscall=syscall][:delay_en?

 ter=delay][:delay_exit=delay][:poke_en?

 ter=@argN=DATAN,@argM=DATAM...][:poke_exit=@argN=DATAN,@argM=DATAM...][:when=expr]

 Perform syscall tampering for the specified set of syscalls. The syntax of

 the syscall_set specification is the same as in the -e trace option. Page 17/24

 At least one of error, retval, signal, delay_enter, delay_exit, poke_enter, or

 poke_exit options has to be specified. error and retval are mutually exclu?

 sive.

 If :error=errno option is specified, a fault is injected into a syscall invo?

 cation: the syscall number is replaced by -1 which corresponds to an invalid

 syscall (unless a syscall is specified with :syscall= option), and the error

 code is specified using a symbolic errno value like ENOSYS or a numeric value

 within 1..4095 range.

 If :retval=value option is specified, success injection is performed: the

 syscall number is replaced by -1, but a bogus success value is returned to the

 callee.

 If :signal=sig option is specified with either a symbolic value like SIGSEGV

 or a numeric value within 1..SIGRTMAX range, that signal is delivered on en?

 tering every syscall specified by the set.

 If :delay_enter=delay or :delay_exit=delay options are specified, delay injec?

 tion is performed: the tracee is delayed by time period specified by delay on

 entering or exiting the syscall, respectively. The format of delay specifica?

 tion is described in section Time specification format description.

 If :poke_enter=@argN=DATAN,@argM=DATAM... or

 :poke_exit=@argN=DATAN,@argM=DATAM... options are specified, tracee's memory

 at locations, pointed to by system call arguments argN and argM (going from

 arg1 to arg7) is overwritten by data DATAN and DATAM (specified in hexadecimal

 format; for example :poke_enter=@arg1=0000DEAD0000BEEF). :poke_enter modifies

 memory on syscall enter, and :poke_exit - on exit.

 If :signal=sig option is specified without :error=errno, :retval=value or :de?

 lay_{enter,exit}=usecs options, then only a signal sig is delivered without a

 syscall fault or delay injection. Conversely, :error=errno or :retval=value

 option without :delay_enter=delay, :delay_exit=delay or :signal=sig options

 injects a fault without delivering a signal or injecting a delay, etc.

 If :signal=sig option is specified together with :error=errno or :ret?

 val=value, then both injection of a fault or success and signal delivery are

 performed.

 if :syscall=syscall option is specified, the corresponding syscall with no Page 18/24

 side effects is injected instead of -1. Currently, only "pure" (see -e

 trace=%pure description) syscalls can be specified there.

 Unless a :when=expr subexpression is specified, an injection is being made

 into every invocation of each syscall from the set.

 The format of the subexpression is:

 first[..last][+[step]]

 Number first stands for the first invocation number in the range, number last

 stands for the last invocation number in the range, and step stands for the

 step between two consecutive invocations. The following combinations are use?

 ful:

 first For every syscall from the set, perform an injection for the

 syscall invocation number first only.

 first..last For every syscall from the set, perform an injection for the

 syscall invocation number first and all subsequent invoca?

 tions until the invocation number last (inclusive).

 first+ For every syscall from the set, perform injections for the

 syscall invocation number first and all subsequent invoca?

 tions.

 first..last+ For every syscall from the set, perform injections for the

 syscall invocation number first and all subsequent invoca?

 tions until the invocation number last (inclusive).

 first+step For every syscall from the set, perform injections for

 syscall invocations number first, first+step,

 first+step+step, and so on.

 first..last+step Same as the previous, but consider only syscall invocations

 with numbers up to last (inclusive).

 For example, to fail each third and subsequent chdir syscalls with ENOENT, use

 -e inject=chdir:error=ENOENT:when=3+.

 The valid range for numbers first and step is 1..65535, and for number last is

 1..65534.

 An injection expression can contain only one error= or retval= specification,

 and only one signal= specification. If an injection expression contains mul?

 tiple when= specifications, the last one takes precedence. Page 19/24

 Accounting of syscalls that are subject to injection is done per syscall and

 per tracee.

 Specification of syscall injection can be combined with other syscall filter?

 ing options, for example, -P /dev/urandom -e inject=file:error=ENOENT.

 -e fault=syscall_set[:error=errno][:when=expr]

 --fault=syscall_set[:error=errno][:when=expr]

 Perform syscall fault injection for the specified set of syscalls.

 This is equivalent to more generic -e inject= expression with default value of

 errno option set to ENOSYS.

 Miscellaneous

 -d

 --debug Show some debugging output of strace itself on the standard error.

 -F This option is deprecated. It is retained for backward compatibility only and

 may be removed in future releases. Usage of multiple instances of -F option

 is still equivalent to a single -f, and it is ignored at all if used along

 with one or more instances of -f option.

 -h

 --help Print the help summary.

 --seccomp-bpf

 Try to enable use of seccomp-bpf (see seccomp(2)) to have ptrace(2)-stops only

 when system calls that are being traced occur in the traced processes. This

 option has no effect unless -f/--follow-forks is also specified. --sec?

 comp-bpf is also not applicable to processes attached using -p/--attach op?

 tion. An attempt to enable system calls filtering using seccomp-bpf may fail

 for various reasons, e.g. there are too many system calls to filter, the sec?

 comp API is not available, or strace itself is being traced. In cases when

 seccomp-bpf filter setup failed, strace proceeds as usual and stops traced

 processes on every system call.

 -V

 --version Print the version number of strace.

 Time specification format description

 Time values can be specified as a decimal floating point number (in a format accepted by

 strtod(3)), optionally followed by one of the following suffices that specify the unit of Page 20/24

 time: s (seconds), ms (milliseconds), us (microseconds), or ns (nanoseconds). If no suf?

 fix is specified, the value is interpreted as microseconds.

 The described format is used for -O, -e inject=delay_enter, and -e inject=delay_exit op?

 tions.

DIAGNOSTICS

 When command exits, strace exits with the same exit status. If command is terminated by a

 signal, strace terminates itself with the same signal, so that strace can be used as a

 wrapper process transparent to the invoking parent process. Note that parent-child rela?

 tionship (signal stop notifications, getppid(2) value, etc) between traced process and its

 parent are not preserved unless -D is used.

 When using -p without a command, the exit status of strace is zero unless no processes has

 been attached or there was an unexpected error in doing the tracing.

SETUID INSTALLATION

 If strace is installed setuid to root then the invoking user will be able to attach to and

 trace processes owned by any user. In addition setuid and setgid programs will be exe?

 cuted and traced with the correct effective privileges. Since only users trusted with

 full root privileges should be allowed to do these things, it only makes sense to install

 strace as setuid to root when the users who can execute it are restricted to those users

 who have this trust. For example, it makes sense to install a special version of strace

 with mode 'rwsr-xr--', user root and group trace, where members of the trace group are

 trusted users. If you do use this feature, please remember to install a regular non-se?

 tuid version of strace for ordinary users to use.

MULTIPLE PERSONALITIES SUPPORT

 On some architectures, strace supports decoding of syscalls for processes that use differ?

 ent ABI rather than the one strace uses. Specifically, in addition to decoding native

 ABI, strace can decode the following ABIs on the following architectures:

 ???

 ?Architecture ? ABIs supported ?

 ???

 ?x86_64 ? i386, x32 [1]; i386 [2] ?

 ???

 ?AArch64 ? ARM 32-bit EABI ?

 ??? Page 21/24

 ?PowerPC 64-bit [3] ? PowerPC 32-bit ?

 ???

 ?s390x ? s390 ?

 ???

 ?SPARC 64-bit ? SPARC 32-bit ?

 ???

 ?TILE 64-bit ? TILE 32-bit ?

 ???

 [1] When strace is built as an x86_64 application

 [2] When strace is built as an x32 application

 [3] Big endian only

 This support is optional and relies on ability to generate and parse structure definitions

 during the build time. Please refer to the output of the strace -V command in order to

 figure out what support is available in your strace build ("non-native" refers to an ABI

 that differs from the ABI strace has):

 m32-mpers strace can trace and properly decode non-native 32-bit binaries.

 no-m32-mpers strace can trace, but cannot properly decode non-native 32-bit binaries.

 mx32-mpers strace can trace and properly decode non-native 32-on-64-bit binaries.

 no-mx32-mpers strace can trace, but cannot properly decode non-native 32-on-64-bit bina?

 ries.

 If the output contains neither m32-mpers nor no-m32-mpers, then decoding of non-native

 32-bit binaries is not implemented at all or not applicable.

 Likewise, if the output contains neither mx32-mpers nor no-mx32-mpers, then decoding of

 non-native 32-on-64-bit binaries is not implemented at all or not applicable.

NOTES

 It is a pity that so much tracing clutter is produced by systems employing shared li?

 braries.

 It is instructive to think about system call inputs and outputs as data-flow across the

 user/kernel boundary. Because user-space and kernel-space are separate and address-pro?

 tected, it is sometimes possible to make deductive inferences about process behavior using

 inputs and outputs as propositions.

 In some cases, a system call will differ from the documented behavior or have a different

 name. For example, the faccessat(2) system call does not have flags argument, and the Page 22/24

 setrlimit(2) library function uses prlimit64(2) system call on modern (2.6.38+) kernels.

 These discrepancies are normal but idiosyncratic characteristics of the system call inter?

 face and are accounted for by C library wrapper functions.

 Some system calls have different names in different architectures and personalities. In

 these cases, system call filtering and printing uses the names that match corresponding

 __NR_* kernel macros of the tracee's architecture and personality. There are two excep?

 tions from this general rule: arm_fadvise64_64(2) ARM syscall and xtensa_fadvise64_64(2)

 Xtensa syscall are filtered and printed as fadvise64_64(2).

 On x32, syscalls that are intended to be used by 64-bit processes and not x32 ones (for

 example, readv(2), that has syscall number 19 on x86_64, with its x32 counterpart has

 syscall number 515), but called with __X32_SYSCALL_BIT flag being set, are designated with

 #64 suffix.

 On some platforms a process that is attached to with the -p option may observe a spurious

 EINTR return from the current system call that is not restartable. (Ideally, all system

 calls should be restarted on strace attach, making the attach invisible to the traced

 process, but a few system calls aren't. Arguably, every instance of such behavior is a

 kernel bug.) This may have an unpredictable effect on the process if the process takes no

 action to restart the system call.

 As strace executes the specified command directly and does not employ a shell for that,

 scripts without shebang that usually run just fine when invoked by shell fail to execute

 with ENOEXEC error. It is advisable to manually supply a shell as a command with the

 script as its argument.

BUGS

 Programs that use the setuid bit do not have effective user ID privileges while being

 traced.

 A traced process runs slowly (but check out the --seccomp-bpf option).

 Traced processes which are descended from command may be left running after an interrupt

 signal (CTRL-C).

HISTORY

 The original strace was written by Paul Kranenburg for SunOS and was inspired by its trace

 utility. The SunOS version of strace was ported to Linux and enhanced by Branko

 Lankester, who also wrote the Linux kernel support. Even though Paul released strace 2.5

 in 1992, Branko's work was based on Paul's strace 1.5 release from 1991. In 1993, Rick Page 23/24

 Sladkey merged strace 2.5 for SunOS and the second release of strace for Linux, added many

 of the features of truss(1) from SVR4, and produced an strace that worked on both plat?

 forms. In 1994 Rick ported strace to SVR4 and Solaris and wrote the automatic configura?

 tion support. In 1995 he ported strace to Irix and tired of writing about himself in the

 third person.

 Beginning with 1996, strace was maintained by Wichert Akkerman. During his tenure, strace

 development migrated to CVS; ports to FreeBSD and many architectures on Linux (including

 ARM, IA-64, MIPS, PA-RISC, PowerPC, s390, SPARC) were introduced. In 2002, the burden of

 strace maintainership was transferred to Roland McGrath. Since then, strace gained sup?

 port for several new Linux architectures (AMD64, s390x, SuperH), bi-architecture support

 for some of them, and received numerous additions and improvements in syscalls decoders on

 Linux; strace development migrated to git during that period. Since 2009, strace is ac?

 tively maintained by Dmitry Levin. strace gained support for AArch64, ARC, AVR32, Black?

 fin, Meta, Nios II, OpenRISC 1000, RISC-V, Tile/TileGx, Xtensa architectures since that

 time. In 2012, unmaintained and apparently broken support for non-Linux operating systems

 was removed. Also, in 2012 strace gained support for path tracing and file descriptor

 path decoding. In 2014, support for stack traces printing was added. In 2016, syscall

 fault injection was implemented.

 For the additional information, please refer to the NEWS file and strace repository commit

 log.

REPORTING BUGS

 Problems with strace should be reported to the strace mailing list

 ?mailto:strace-devel@lists.strace.io?.

SEE ALSO

 strace-log-merge(1), ltrace(1), perf-trace(1), trace-cmd(1), time(1), ptrace(2), proc(5)

 strace Home Page ?https://strace.io/?

AUTHORS

 The complete list of strace contributors can be found in the CREDITS file.

strace 5.16 2022-01-04 STRACE(1)

Page 24/24

