
Rocky Enterprise Linux 9.2 Manual Pages on command 'sudo_logsrv.proto.5'

$ man sudo_logsrv.proto.5

SUDO_LOGSRV.PROTO(5) BSD File Formats Manual SUDO_LOGSRV.PROTO(5)

NAME

 sudo_logsrv.proto ? Sudo log server protocol

DESCRIPTION

 Starting with version 1.9.0, sudo supports sending event and I/O logs to a log server. The

 protocol used is written in Google's Protocol Buffers domain specific language. The

 EXAMPLES section includes a complete description of the protocol in Protocol Buffers format.

 Because there is no way to determine message boundaries when using Protocol Buffers, the

 wire size of each message is sent immediately preceding the message itself as a 32-bit un?

 signed integer in network byte order. This is referred to as ?length-prefix framing? and is

 how Google suggests handling the lack of message delimiters.

 The protocol is made up of two basic messages, ClientMessage and ServerMessage, described

 below. The server must accept messages up to two megabytes in size. The server may return

 an error if the client tries to send a message larger than two megabytes.

Client Messages

 A ClientMessage is a container used to encapsulate all the possible message types a client

 may send to the server.

 message ClientMessage {

 oneof type {

 AcceptMessage accept_msg = 1;

 RejectMessage reject_msg = 2;

 ExitMessage exit_msg = 3;

 RestartMessage restart_msg = 4; Page 1/15

 AlertMessage alert_msg = 5;

 IoBuffer ttyin_buf = 6;

 IoBuffer ttyout_buf = 7;

 IoBuffer stdin_buf = 8;

 IoBuffer stdout_buf = 9;

 IoBuffer stderr_buf = 10;

 ChangeWindowSize winsize_event = 11;

 CommandSuspend suspend_event = 12;

 ClientHello hello_msg = 13;

 }

 }

 The different ClientMessage sub-messages the client may sent to the server are described be?

 low.

 TimeSpec

 message TimeSpec {

 int64 tv_sec = 1;

 int32 tv_nsec = 2;

 }

 A TimeSpec is the equivalent of a POSIX struct timespec, containing seconds and nanoseconds

 members. The tv_sec member is a 64-bit integer to support dates after the year 2038.

 InfoMessage

 message InfoMessage {

 message StringList {

 repeated string strings = 1;

 }

 message NumberList {

 repeated int64 numbers = 1;

 }

 string key = 1;

 oneof value {

 int64 numval = 2;

 string strval = 3;

 StringList strlistval = 4; Page 2/15

 NumberList numlistval = 5;

 }

 }

 An InfoMessage is used to represent information about the invoking user as well as the exe?

 cution environment the command runs in the form of key-value pairs. The key is always a

 string but the value may be a 64-bit integer, a string, an array of strings, or an array of

 64-bit integers. The event log data is composed of InfoMessage entries. See the EVENT LOG

 VARIABLES section for more information.

 ClientHello hello_msg

 message ClientHello {

 string client_id = 1;

 }

 A ClientHello message consists of client information that may be sent to the server when the

 client first connects.

 client_id

 A free-form client description. This usually includes the name and version of the

 client implementation.

 AcceptMessage accept_msg

 message AcceptMessage {

 TimeSpec submit_time = 1;

 repeated InfoMessage info_msgs = 2;

 bool expect_iobufs = 3;

 }

 An AcceptMessage is sent by the client when a command is allowed by the security policy. It

 contains the following members:

 submit_time

 The wall clock time when the command was submitted to the security policy.

 info_msgs

 An array of InfoMessage describing the user who submitted the command as well as the

 execution environment of the command. This information is used to generate an event

 log entry and may also be used by server to determine where and how the I/O log is

 stored.

 expect_iobufs Page 3/15

 Set to true if the server should expect IoBuffer messages to follow (for I/O log?

 ging) or false if the server should only store the event log.

 If an AcceptMessage is sent, the client must not send a RejectMessage or RestartMessage.

 RejectMessage reject_msg

 message RejectMessage {

 TimeSpec submit_time = 1;

 string reason = 2;

 repeated InfoMessage info_msgs = 3;

 }

 A RejectMessage is sent by the client when a command is denied by the security policy. It

 contains the following members:

 submit_time

 The wall clock time when the command was submitted to the security policy.

 reason The reason the security policy gave for denying the command.

 info_msgs

 An array of InfoMessage describing the user who submitted the command as well as the

 execution environment of the command. This information is used to generate an event

 log entry.

 If a RejectMessage is sent, the client must not send an AcceptMessage or RestartMessage.

 ExitMessage exit_msg

 message ExitMessage {

 TimeSpec run_time = 1;

 int32 exit_value = 2;

 bool dumped_core = 3;

 string signal = 4;

 string error = 5;

 }

 An ExitMessage is sent by the client after the command has exited or has been terminated by

 a signal. It contains the following members:

 run_time

 The total amount of elapsed time since the command started, calculated using a mono?

 tonic clock where possible. This is not the wall clock time.

 exit_value Page 4/15

 The command's exit value in the range 0-255.

 dumped_core

 True if the command was terminated by a signal and dumped core.

 signal If the command was terminated by a signal, this is set to the name of the signal

 without the leading ?SIG?. For example, INT, TERM, KILL, SEGV.

 error A message from the client indicating that the command was terminated unexpectedly

 due to an error.

 When performing I/O logging, the client should wait for a commit_point corresponding to the

 final IoBuffer before closing the connection unless the final commit_point has already been

 received.

 RestartMessage restart_msg

 message RestartMessage {

 string log_id = 1;

 TimeSpec resume_point = 2;

 }

 A RestartMessage is sent by the client to resume sending an existing I/O log that was previ?

 ously interrupted. It contains the following members:

 log_id The the server-side name for an I/O log that was previously sent to the client by

 the server. This may be a path name on the server or some other kind of server-side

 identifier.

 resume_point

 The point in time after which to resume the I/O log. This is in the form of a

 TimeSpec representing the amount of time since the command started, not the wall

 clock time. The resume_point should correspond to a commit_point previously sent to

 the client by the server. If the server receives a RestartMessage containing a

 resume_point it has not previously seen, an error will be returned to the client and

 the connection will be dropped.

 If a RestartMessage is sent, the client must not send an AcceptMessage or RejectMessage.

 AlertMessage alert_msg

 message AlertMessage {

 TimeSpec alert_time = 1;

 string reason = 2;

 repeated InfoMessage info_msgs = 3; Page 5/15

 }

 An AlertMessage is sent by the client to indicate a problem detected by the security policy

 while the command is running that should be stored in the event log. It contains the fol?

 lowing members:

 alert_time

 The wall clock time when the alert occurred.

 reason The reason for the alert.

 info_msgs

 An optional array of InfoMessage describing the user who submitted the command as

 well as the execution environment of the command. This information is used to gen?

 erate an event log entry.

 IoBuffer ttyin_buf | ttyout_buf | stdin_buf | stdout_buf | stderr_buf

 message IoBuffer {

 TimeSpec delay = 1;

 bytes data = 2;

 }

 An IoBuffer is used to represent data from terminal input, terminal output, standard input,

 standard output, or standard error. It contains the following members:

 delay The elapsed time since the last record in the form of a TimeSpec. The delay should

 be calculated using a monotonic clock where possible.

 data The binary I/O log data from terminal input, terminal output, standard input, stan?

 dard output, or standard error.

 ChangeWindowSize winsize_event

 message ChangeWindowSize {

 TimeSpec delay = 1;

 int32 rows = 2;

 int32 cols = 3;

 }

 A ChangeWindowSize message is sent by the client when the terminal running the command

 changes size. It contains the following members:

 delay The elapsed time since the last record in the form of a TimeSpec. The delay should

 be calculated using a monotonic clock where possible.

 rows The new number of terminal rows. Page 6/15

 cols The new number of terminal columns.

 CommandSuspend suspend_event

 message CommandSuspend {

 TimeSpec delay = 1;

 string signal = 2;

 }

 A CommandSuspend message is sent by the client when the command is either suspended or re?

 sumed. It contains the following members:

 delay The elapsed time since the last record in the form of a TimeSpec. The delay should

 be calculated using a monotonic clock where possible.

 signal The signal name without the leading ?SIG?. For example, STOP, TSTP, CONT.

Server Messages

 A ServerMessage is a container used to encapsulate all the possible message types the server

 may send to a client.

 message ServerMessage {

 oneof type {

 ServerHello hello = 1;

 TimeSpec commit_point = 2;

 string log_id = 3;

 string error = 4;

 string abort = 5;

 }

 }

 The different ServerMessage sub-messages the server may sent to the client are described be?

 low.

 ServerHello hello

 message ServerHello {

 string server_id = 1;

 string redirect = 2;

 repeated string servers = 3;

 bool subcommands = 4;

 }

 The ServerHello message consists of server information sent when the client first connects. Page 7/15

 It contains the following members:

 server_id

 A free-form server description. Usually this includes the name and version of the

 implementation running on the log server. This member is always present.

 redirect

 A host and port separated by a colon (??): that the client should connect to in?

 stead. The host may be a host name, an IPv4 address, or an IPv6 address in square

 brackets. This may be used for server load balancing. The server will disconnect

 after sending the ServerHello when it includes a redirect.

 servers

 A list of other known log servers. This can be used to implement log server redun?

 dancy and allows the client to discover all other log servers simply by connecting

 to one known server. This member may be omitted when there is only a single log

 server.

 subcommands

 If set, the server supports logging additional commands during a session. The

 client may send an AcceptMessage or RejectMessage when sudo is running in intercept

 mode. In this mode, commands spawned from the initial command authorized by sudo

 are subject to policy restrictions and/or are logged. If subcommands is false, the

 client must not attempt to log additional commands.

 TimeSpec commit_point

 A periodic time stamp sent by the server to indicate when I/O log buffers have been commit?

 ted to storage. This message is not sent after every IoBuffer but rather at a server-con?

 figurable interval. When the server receives an ExitMessage, it will respond with a

 commit_point corresponding to the last received IoBuffer before closing the connection.

 string log_id

 The server-side ID of the I/O log being stored, sent in response to an AcceptMessage where

 expect_iobufs is true.

 string error

 A fatal server-side error. The server will close the connection after sending the error

 message.

 string abort

 An abort message from the server indicates that the client should kill the command and ter? Page 8/15

 minate the session. It may be used to implement simple server-side policy. The server will

 close the connection after sending the abort message.

Protocol flow of control

 The expected protocol flow is as follows:

 1. Client connects to the first available server. If the client is configured to use TLS,

 a TLS handshake will be attempted.

 2. Client sends ClientHello. This is currently optional but allows the server to detect a

 non-TLS connection on the TLS port.

 3. Server sends ServerHello.

 4. Client responds with either AcceptMessage, RejectMessage, or RestartMessage.

 5. If client sent a AcceptMessage with expect_iobufs set, server creates a new I/O log and

 responds with a log_id.

 6. Client sends zero or more IoBuffer messages.

 7. Server periodically responds to IoBuffer messages with a commit_point.

 8. Client sends an ExitMessage when the command exits or is killed.

 9. Server sends the final commit_point if one is pending.

 10. Server closes the connection. After receiving the final commit_point, the client shuts

 down its side of the TLS connection if TLS is in use, and closes the connection.

 11. Server shuts down its side of the TLS connection if TLS is in use, and closes the con?

 nection.

 At any point, the server may send an error or abort message to the client at which point the

 server will close the connection. If an abort message is received, the client should termi?

 nate the running command.

EVENT LOG VARIABLES

 AcceptMessage, AlertMessage and RejectMessage classes contain an array of InfoMessage that

 should contain information about the user who submitted the command as well as information

 about the execution environment of the command if it was accepted.

 Some variables have a client, run, or submit prefix. These prefixes are used to eliminate

 ambiguity for variables that could apply to the client program, the user submitting the com?

 mand, or the command being run. Variables with a client prefix pertain to the program per?

 forming the connection to the log server, for example sudo. Variables with a run prefix

 pertain to the command that the user requested be run. Variables with a submit prefix per?

 tain to the user submitting the request (the user running sudo). Page 9/15

 The following InfoMessage entries are required:

 Key Type Description

 command string command that was submitted

 runuser string name of user the command was run as

 submithost string name of host the command was submitted on

 submituser string name of user submitting the command

 The following InfoMessage entries are recognized, but not required:

 Key Type Description

 clientargv StringList client's original argument vector

 clientpid int64 client's process ID

 clientppid int64 client's parent process ID

 clientsid int64 client's terminal session ID

 columns int64 number of columns in the terminal

 lines int64 number of lines in the terminal

 runargv StringList argument vector of command to run

 runchroot string root directory of command to run

 runcwd string running command's working directory

 runenv StringList the running command's environment

 rungid int64 primary group-ID of the command

 rungids NumberList supplementary group-IDs for the command

 rungroup string primary group name of the command

 rungroups StringList supplementary group names for the command

 runuid int64 run user's user-ID

 submitcwd string submit user's current working directory

 submitenv StringList the submit user's environment

 submitgid int64 submit user's primary group-ID

 submitgids NumberList submit user's supplementary group-IDs

 submitgroup string submitting user's primary group name

 submitgroups StringList submit user's supplementary group names

 submituid int64 submit user's user-ID

 ttyname string the terminal the command was submitted from

 The server must accept other variables not listed above but may ignore them.

EXAMPLES Page 10/15

 The Protocol Buffers description of the log server protocol is included in full below. Note

 that this uses the newer ?proto3? syntax.

 syntax = "proto3";

 /*

 * Client message to the server. Messages on the wire are

 * prefixed with a 32-bit size in network byte order.

 */

 message ClientMessage {

 oneof type {

 AcceptMessage accept_msg = 1;

 RejectMessage reject_msg = 2;

 ExitMessage exit_msg = 3;

 RestartMessage restart_msg = 4;

 AlertMessage alert_msg = 5;

 IoBuffer ttyin_buf = 6;

 IoBuffer ttyout_buf = 7;

 IoBuffer stdin_buf = 8;

 IoBuffer stdout_buf = 9;

 IoBuffer stderr_buf = 10;

 ChangeWindowSize winsize_event = 11;

 CommandSuspend suspend_event = 12;

 }

 }

 /* Equivalent of POSIX struct timespec */

 message TimeSpec {

 int64 tv_sec = 1; /* seconds */

 int32 tv_nsec = 2; /* nanoseconds */

 }

 /* I/O buffer with keystroke data */

 message IoBuffer {

 TimeSpec delay = 1; /* elapsed time since last record */

 bytes data = 2; /* keystroke data */

 } Page 11/15

 /*

 * Key/value pairs, like Privilege Manager struct info.

 * The value may be a number, a string, or a list of strings.

 */

 message InfoMessage {

 message StringList {

 repeated string strings = 1;

 }

 message NumberList {

 repeated int64 numbers = 1;

 }

 string key = 1;

 oneof value {

 int64 numval = 2;

 string strval = 3;

 StringList strlistval = 4;

 NumberList numlistval = 5;

 }

 }

 /*

 * Event log data for command accepted by the policy.

 */

 message AcceptMessage {

 TimeSpec submit_time = 1; /* when command was submitted */

 repeated InfoMessage info_msgs = 2; /* key,value event log data */

 bool expect_iobufs = 3; /* true if I/O logging enabled */

 }

 /*

 * Event log data for command rejected by the policy.

 */

 message RejectMessage {

 TimeSpec submit_time = 1; /* when command was submitted */

 string reason = 2; /* reason command was rejected */ Page 12/15

 repeated InfoMessage info_msgs = 3; /* key,value event log data */

 }

 /* Message sent by client when command exits. */

 /* Might revisit runtime and use end_time instead */

 message ExitMessage {

 TimeSpec run_time = 1; /* total elapsed run time */

 int32 exit_value = 2; /* 0-255 */

 bool dumped_core = 3; /* true if command dumped core */

 string signal = 4; /* signal name if killed by signal */

 string error = 5; /* if killed due to other error */

 }

 /* Alert message, policy module-specific. */

 message AlertMessage {

 TimeSpec alert_time = 1; /* time alert message occurred */

 string reason = 2; /* policy alert error string */

 repeated InfoMessage info_msgs = 3; /* key,value event log data */

 }

 /* Used to restart an existing I/O log on the server. */

 message RestartMessage {

 string log_id = 1; /* ID of log being restarted */

 TimeSpec resume_point = 2; /* resume point (elapsed time) */

 }

 /* Window size change event. */

 message ChangeWindowSize {

 TimeSpec delay = 1; /* elapsed time since last record */

 int32 rows = 2; /* new number of rows */

 int32 cols = 3; /* new number of columns */

 }

 /* Command suspend/resume event. */

 message CommandSuspend {

 TimeSpec delay = 1; /* elapsed time since last record */

 string signal = 2; /* signal that caused suspend/resume */

 } Page 13/15

 /*

 * Server messages to the client. Messages on the wire are

 * prefixed with a 32-bit size in network byte order.

 */

 message ServerMessage {

 oneof type {

 ServerHello hello = 1; /* server hello message */

 TimeSpec commit_point = 2; /* cumulative time of records stored */

 string log_id = 3; /* ID of server-side I/O log */

 string error = 4; /* error message from server */

 string abort = 5; /* abort message, kill command */

 }

 }

 /* Hello message from server when client connects. */

 message ServerHello {

 string server_id = 1; /* free-form server description */

 string redirect = 2; /* optional redirect if busy */

 repeated string servers = 3; /* optional list of known servers */

 }

SEE ALSO

 sudo_logsrvd.conf(5), sudoers(5), sudo(8), sudo_logsrvd(8)

 Protocol Buffers, https://developers.google.com/protocol-buffers/.

HISTORY

 See the HISTORY file in the sudo distribution (https://www.sudo.ws/history.html) for a brief

 history of sudo.

AUTHORS

 Many people have worked on sudo over the years; this version consists of code written pri?

 marily by:

 Todd C. Miller

 See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html)

 for an exhaustive list of people who have contributed to sudo.

BUGS

 If you feel you have found a bug in sudo, please submit a bug report at Page 14/15

 https://bugzilla.sudo.ws/

SUPPORT

 Limited free support is available via the sudo-users mailing list, see

 https://www.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.

DISCLAIMER

 sudo is provided ?AS IS? and any express or implied warranties, including, but not limited

 to, the implied warranties of merchantability and fitness for a particular purpose are dis?

 claimed. See the LICENSE file distributed with sudo or https://www.sudo.ws/license.html for

 complete details.

Sudo 1.9.9 January 19, 2022 Sudo 1.9.9

Page 15/15

