PDF generator,

Full credit is given to the above companies including the
Operating System (OS) that this PDF file was generated!

Rocky Enterprise Linux 9.2 Manual Pages on command 'sudo_logsrv.proto.5'

$ man sudo_logsrv.proto.5
SUDO_LOGSRV.PROTO(5) BSD File Formats Manual SUDO_LOGSRV.PROTO(5)

NAME
sudo_logsrv.proto ? Sudo log server protocol
DESCRIPTION
Starting with version 1.9.0, sudo supports sending event and 1/O logs to a log server. The
protocol used is written in Google's Protocol Buffers domain specific language. The
EXAMPLES section includes a complete description of the protocol in Protocol Buffers format.
Because there is no way to determine message boundaries when using Protocol Buffers, the
wire size of each message is sent immediately preceding the message itself as a 32-hit un?
signed integer in network byte order. This is referred to as ?length-prefix framing? and is
how Google suggests handling the lack of message delimiters.
The protocol is made up of two basic messages, ClientMessage and ServerMessage, described
below. The server must accept messages up to two megabytes in size. The server may return
an error if the client tries to send a message larger than two megabytes.
Client Messages
A ClientMessage is a container used to encapsulate all the possible message types a client
may send to the server.
message ClientMessage {
oneof type {
AcceptMessage accept_msg = 1;
RejectMessage reject_msg = 2;
ExitMessage exit_msg = 3;

RestartMessage restart_msg = 4,

FPDF Library

Page 1/15

AlertMessage alert_msg = 5;

loBuffer ttyin_buf = 6;

loBuffer ttyout_buf = 7;

loBuffer stdin_buf = 8;

loBuffer stdout_buf = 9;

loBuffer stderr_buf = 10;
ChangeWindowsSize winsize_event = 11,
CommandSuspend suspend_event = 12;

ClientHello hello_msg = 13;

}

The different ClientMessage sub-messages the client may sent to the server are described be?
low.
TimeSpec
message TimeSpec {
inté4 tv_sec = 1;
int32 tv_nsec = 2;
}
A TimeSpec is the equivalent of a POSIX struct timespec, containing seconds and nanoseconds
members. The tv_sec member is a 64-bit integer to support dates after the year 2038.
InfoMessage
message InfoMessage {
message StringList {
repeated string strings = 1;
}
message NumberList {
repeated int64 numbers = 1;
}
string key = 1,
oneof value {
int64 numval = 2;
string strval = 3;

StringList strlistval = 4; Page 2/15

NumberList numlistval = 5;

}
An InfoMessage is used to represent information about the invoking user as well as the exe?
cution environment the command runs in the form of key-value pairs. The key is always a
string but the value may be a 64-bit integer, a string, an array of strings, or an array of
64-bit integers. The event log data is composed of InfoMessage entries. See the EVENT LOG
VARIABLES section for more information.
ClientHello hello_msg
message ClientHello {
string client_id = 1;
}
A ClientHello message consists of client information that may be sent to the server when the
client first connects.
client_id
A free-form client description. This usually includes the name and version of the
client implementation.
AcceptMessage accept_msg
message AcceptMessage {
TimeSpec submit_time = 1;
repeated InfoMessage info_msgs = 2;
bool expect_iobufs = 3;
}
An AcceptMessage is sent by the client when a command is allowed by the security policy. It
contains the following members:
submit_time
The wall clock time when the command was submitted to the security policy.
info_msgs
An array of InfoMessage describing the user who submitted the command as well as the
execution environment of the command. This information is used to generate an event
log entry and may also be used by server to determine where and how the 1/O log is
stored.

expect_iobufs Page 3/15

Set to true if the server should expect loBuffer messages to follow (for 1/0 log?
ging) or false if the server should only store the event log.
If an AcceptMessage is sent, the client must not send a RejectMessage or RestartMessage.
RejectMessage reject_msg
message RejectMessage {
TimeSpec submit_time = 1;
string reason = 2;
repeated InfoMessage info_msgs = 3;
}
A RejectMessage is sent by the client when a command is denied by the security policy. It
contains the following members:
submit_time
The wall clock time when the command was submitted to the security policy.
reason The reason the security policy gave for denying the command.
info_msgs
An array of InfoMessage describing the user who submitted the command as well as the
execution environment of the command. This information is used to generate an event
log entry.
If a RejectMessage is sent, the client must not send an AcceptMessage or RestartMessage.
ExitMessage exit_msg
message ExitMessage {
TimeSpec run_time = 1;
int32 exit_value = 2;
bool dumped_core = 3;
string signal = 4;
string error = 5;
}
An ExitMessage is sent by the client after the command has exited or has been terminated by
a signal. It contains the following members:
run_time
The total amount of elapsed time since the command started, calculated using a mono?
tonic clock where possible. This is not the wall clock time.

exit_value Page 4/15

The command's exit value in the range 0-255.
dumped_core
True if the command was terminated by a signal and dumped core.
signal If the command was terminated by a signal, this is set to the name of the signal
without the leading ?SIG?. For example, INT, TERM, KILL, SEGV.
error A message from the client indicating that the command was terminated unexpectedly
due to an error.
When performing I/O logging, the client should wait for a commit_point corresponding to the
final loBuffer before closing the connection unless the final commit_point has already been
received.
RestartMessage restart_msg
message RestartMessage {
string log_id = 1;
TimeSpec resume_point = 2;
}
A RestartMessage is sent by the client to resume sending an existing 1/0 log that was previ?
ously interrupted. It contains the following members:
log_id The the server-side name for an I/O log that was previously sent to the client by
the server. This may be a path name on the server or some other kind of server-side
identifier.
resume_point
The point in time after which to resume the 1/0 log. This is in the form of a
TimeSpec representing the amount of time since the command started, not the wall
clock time. The resume_point should correspond to a commit_point previously sent to
the client by the server. If the server receives a RestartMessage containing a
resume_point it has not previously seen, an error will be returned to the client and
the connection will be dropped.
If a RestartMessage is sent, the client must not send an AcceptMessage or RejectMessage.
AlertMessage alert_msg
message AlertMessage {
TimeSpec alert_time = 1;
string reason = 2;

repeated InfoMessage info_msgs = 3;

Page 5/15

}

An AlertMessage is sent by the client to indicate a problem detected by the security policy

while the command is running that should be stored in the event log. It contains the fol?

lowing members:

alert_time
The wall clock time when the alert occurred.

reason The reason for the alert.

info_msgs
An optional array of InfoMessage describing the user who submitted the command as
well as the execution environment of the command. This information is used to gen?
erate an event log entry.

loBuffer ttyin_buf | ttyout_buf | stdin_buf | stdout_buf | stderr_buf
message loBuffer {
TimeSpec delay = 1;
bytes data = 2;

}

An loBuffer is used to represent data from terminal input, terminal output, standard input,

standard output, or standard error. It contains the following members:

delay The elapsed time since the last record in the form of a TimeSpec. The delay should
be calculated using a monotonic clock where possible.

data The binary I/O log data from terminal input, terminal output, standard input, stan?
dard output, or standard error.

ChangeWindowSize winsize_event
message ChangeWindowsSize {
TimeSpec delay = 1;
int32 rows = 2;
int32 cols = 3;

}

A ChangeWindowSize message is sent by the client when the terminal running the command

changes size. It contains the following members:

delay The elapsed time since the last record in the form of a TimeSpec. The delay should
be calculated using a monotonic clock where possible.

rows The new number of terminal rows. Page 6/15

cols The new number of terminal columns.
CommandSuspend suspend_event
message CommandSuspend {
TimeSpec delay = 1;
string signal = 2;
}
A CommandSuspend message is sent by the client when the command is either suspended or re?
sumed. It contains the following members:
delay The elapsed time since the last record in the form of a TimeSpec. The delay should
be calculated using a monotonic clock where possible.
signal The signal name without the leading ?SIG?. For example, STOP, TSTP, CONT.
Server Messages
A ServerMessage is a container used to encapsulate all the possible message types the server
may send to a client.
message ServerMessage {
oneof type {
ServerHello hello = 1,
TimeSpec commit_point = 2;
string log_id = 3;
string error = 4;

string abort = 5;

}
The different ServerMessage sub-messages the server may sent to the client are described be?
low.
ServerHello hello
message ServerHello {
string server_id = 1;
string redirect = 2;
repeated string servers = 3;
bool subcommands = 4;

}

The ServerHello message consists of server information sent when the client first connects. Page 7/15

It contains the following members:
server_id
A free-form server description. Usually this includes the name and version of the
implementation running on the log server. This member is always present.
redirect
A host and port separated by a colon (??): that the client should connect to in?
stead. The host may be a host name, an IPv4 address, or an IPv6 address in square
brackets. This may be used for server load balancing. The server will disconnect
after sending the ServerHello when it includes a redirect.
servers
A list of other known log servers. This can be used to implement log server redun?
dancy and allows the client to discover all other log servers simply by connecting
to one known server. This member may be omitted when there is only a single log
server.
subcommands
If set, the server supports logging additional commands during a session. The
client may send an AcceptMessage or RejectMessage when sudo is running in intercept
mode. In this mode, commands spawned from the initial command authorized by sudo
are subject to policy restrictions and/or are logged. If subcommands is false, the
client must not attempt to log additional commands.
TimeSpec commit_point
A periodic time stamp sent by the server to indicate when 1/O log buffers have been commit?
ted to storage. This message is not sent after every loBuffer but rather at a server-con?
figurable interval. When the server receives an ExitMessage, it will respond with a
commit_point corresponding to the last received loBuffer before closing the connection.
string log_id
The server-side ID of the I/O log being stored, sent in response to an AcceptMessage where
expect_iobufs is true.
string error
A fatal server-side error. The server will close the connection after sending the error
message.
string abort

An abort message from the server indicates that the client should kill the command and ter?

Page 8/15

minate the session. It may be used to implement simple server-side policy. The server will
close the connection after sending the abort message.
Protocol flow of control

The expected protocol flow is as follows:

1. Client connects to the first available server. If the client is configured to use TLS,
a TLS handshake will be attempted.

2. Client sends ClientHello. This is currently optional but allows the server to detect a
non-TLS connection on the TLS port.

3. Server sends ServerHello.

4. Client responds with either AcceptMessage, RejectMessage, or RestartMessage.

5. If client sent a AcceptMessage with expect_iobufs set, server creates a new I/O log and
responds with a log_id.
6. Client sends zero or more loBuffer messages.

7. Server periodically responds to loBuffer messages with a commit_point.

8. Client sends an ExitMessage when the command exits or is killed.

9. Server sends the final commit_point if one is pending.

10. Server closes the connection. After receiving the final commit_point, the client shuts
down its side of the TLS connection if TLS is in use, and closes the connection.

11. Server shuts down its side of the TLS connection if TLS is in use, and closes the con?
nection.

At any point, the server may send an error or abort message to the client at which point the

server will close the connection. If an abort message is received, the client should termi?

nate the running command.

EVENT LOG VARIABLES

AcceptMessage, AlertMessage and RejectMessage classes contain an array of InfoMessage that

should contain information about the user who submitted the command as well as information

about the execution environment of the command if it was accepted.

Some variables have a client, run, or submit prefix. These prefixes are used to eliminate

ambiguity for variables that could apply to the client program, the user submitting the com?

mand, or the command being run. Variables with a client prefix pertain to the program per?

forming the connection to the log server, for example sudo. Variables with a run prefix

pertain to the command that the user requested be run. Variables with a submit prefix per?

tain to the user submitting the request (the user running sudo). Page 9/15

The following InfoMessage entries are required:

Key Type Description

command string command that was submitted

runuser string name of user the command was run as
submithost string name of host the command was submitted on
submituser string name of user submitting the command

The following InfoMessage entries are recognized, but not required:
Key Type Description

clientargv StringList client's original argument vector

clientpid int64 client's process ID

clientppid int64 client's parent process ID

clientsid int64 client's terminal session ID
columns int64 number of columns in the terminal
lines int64 number of lines in the terminal

runargv StringList argument vector of command to run

runchroot string root directory of command to run

runcwd string running command's working directory

runenv StringList the running command's environment

rungid int64 primary group-1D of the command

rungids NumberList supplementary group-IDs for the command
rungroup string primary group name of the command

rungroups StringList supplementary group names for the command
runuid int64 run user's user-1D

submitcwd string submit user's current working directory
submitenv StringList the submit user's environment

submitgid int64 submit user's primary group-ID

submitgids NumberList submit user's supplementary group-IDs
submitgroup string submitting user's primary group name
submitgroups StringList submit user's supplementary group names
submituid int64 submit user's user-I1D

ttyname string the terminal the command was submitted from
The server must accept other variables not listed above but may ignore them.

EXAMPLES Page 10/15

The Protocol Buffers description of the log server protocol is included in full below. Note

that this uses the newer ?proto3? syntax.
syntax = "proto3";
J*
* Client message to the server. Messages on the wire are
* prefixed with a 32-bit size in network byte order.
*/
message ClientMessage {
oneof type {
AcceptMessage accept_msg = 1,
RejectMessage reject_msg = 2;
ExitMessage exit_msg = 3;
RestartMessage restart_msg = 4,
AlertMessage alert_msg = 5;
loBuffer ttyin_buf = 6;
loBuffer ttyout_buf = 7;
loBuffer stdin_buf = 8;
loBuffer stdout_buf = 9;
loBuffer stderr_buf = 10;
ChangeWindowSize winsize_event = 11;

CommandSuspend suspend_event = 12;

}

[* Equivalent of POSIX struct timespec */
message TimeSpec {
inté4 tv_sec = 1; /* seconds */
int32 tv_nsec = 2; [* nanoseconds */
}
[* 1/0O buffer with keystroke data */
message loBuffer {
TimeSpec delay = 1; [* elapsed time since last record */

bytes data = 2; /* keystroke data */

Page 11/15

J*
* Keyl/value pairs, like Privilege Manager struct info.
* The value may be a number, a string, or a list of strings.
*
message InfoMessage {
message StringList {
repeated string strings = 1,
}
message NumberList {
repeated int64 numbers = 1;
}
string key = 1;
oneof value {
int64 numval = 2;
string strval = 3;
StringList strlistval = 4;

NumberList numlistval = 5;

}

J*

* Event log data for command accepted by the policy.

*/

message AcceptMessage {
TimeSpec submit_time = 1; /* when command was submitted */
repeated InfoMessage info_msgs = 2; /* key,value event log data */
bool expect_iobufs = 3; /* true if 1/0 logging enabled */

}

J*

* Event log data for command rejected by the policy.

*/

message RejectMessage {
TimeSpec submit_time = 1; [* when command was submitted */

string reason = 2; [* reason command was rejected */

Page 12/15

repeated InfoMessage info_msgs = 3; /* key,value event log data */
}
[* Message sent by client when command exits. */
[* Might revisit runtime and use end_time instead */

message ExitMessage {

TimeSpec run_time = 1; /* total elapsed run time */
int32 exit_value = 2; /* 0-255 */
bool dumped_core = 3; [* true if command dumped core */
string signal = 4; [* signal name if killed by signal */
string error = 5; /* if killed due to other error */

}

[* Alert message, policy module-specific. */
message AlertMessage {
TimeSpec alert_time = 1; [* time alert message occurred */
string reason = 2; [* policy alert error string */
repeated InfoMessage info_msgs = 3; /* key,value event log data */
}
[* Used to restart an existing 1/0 log on the server. */
message RestartMessage {
string log_id = 1; /* 1D of log being restarted */
TimeSpec resume_point = 2; /* resume point (elapsed time) */
}
/* Window size change event. */

message ChangeWindowsSize {

TimeSpec delay = 1; /* elapsed time since last record */
int32 rows = 2; /* new number of rows */
int32 cols = 3; /* new number of columns */

}

/* Command suspend/resume event. */
message CommandSuspend {
TimeSpec delay = 1; [* elapsed time since last record */

string signal = 2; [* signal that caused suspend/resume */

Page 13/15

J*
* Server messages to the client. Messages on the wire are
* prefixed with a 32-bit size in network byte order.
*
message ServerMessage {
oneof type {
ServerHello hello=1; /* server hello message */

TimeSpec commit_point = 2; /* cumulative time of records stored */

string log_id = 3; /* ID of server-side 1/0O log */

string error = 4; [* error message from server */

string abort = 5; /* abort message, kill command */
}

}

/* Hello message from server when client connects. */
message ServerHello {
string server_id = 1; [* free-form server description */
string redirect = 2; [* optional redirect if busy */
repeated string servers = 3; /* optional list of known servers */
}
SEE ALSO
sudo_logsrvd.conf(5), sudoers(5), sudo(8), sudo_logsrvd(8)
Protocol Buffers, https://developers.google.com/protocol-buffers/.
HISTORY
See the HISTORY file in the sudo distribution (https://www.sudo.ws/history.html) for a brief
history of sudo.
AUTHORS
Many people have worked on sudo over the years; this version consists of code written pri?
marily by:
Todd C. Miller
See the CONTRIBUTORS file in the sudo distribution (https://www.sudo.ws/contributors.html)
for an exhaustive list of people who have contributed to sudo.
BUGS

If you feel you have found a bug in sudo, please submit a bug report at Page 14/15

https://bugzilla.sudo.ws/
SUPPORT
Limited free support is available via the sudo-users mailing list, see
https://lwww.sudo.ws/mailman/listinfo/sudo-users to subscribe or search the archives.
DISCLAIMER
sudo is provided ?AS I1S? and any express or implied warranties, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose are dis?
claimed. See the LICENSE file distributed with sudo or https://www.sudo.ws/license.html for
complete details.

Sudo 1.9.9 January 19, 2022 Sudo 1.9.9

Page 15/15

