
Rocky Enterprise Linux 9.2 Manual Pages on command 'symlink.7'

$ man symlink.7

SYMLINK(7) Linux Programmer's Manual SYMLINK(7)

NAME

 symlink - symbolic link handling

DESCRIPTION

 Symbolic links are files that act as pointers to other files. To understand their behav?

 ior, you must first understand how hard links work.

 A hard link to a file is indistinguishable from the original file because it is a refer?

 ence to the object underlying the original filename. (To be precise: each of the hard

 links to a file is a reference to the same inode number, where an inode number is an index

 into the inode table, which contains metadata about all files on a filesystem. See

 stat(2).) Changes to a file are independent of the name used to reference the file. Hard

 links may not refer to directories (to prevent the possibility of loops within the

 filesystem tree, which would confuse many programs) and may not refer to files on differ?

 ent filesystems (because inode numbers are not unique across filesystems).

 A symbolic link is a special type of file whose contents are a string that is the pathname

 of another file, the file to which the link refers. (The contents of a symbolic link can

 be read using readlink(2).) In other words, a symbolic link is a pointer to another name,

 and not to an underlying object. For this reason, symbolic links may refer to directories

 and may cross filesystem boundaries.

 There is no requirement that the pathname referred to by a symbolic link should exist. A

 symbolic link that refers to a pathname that does not exist is said to be a dangling link.

 Because a symbolic link and its referenced object coexist in the filesystem name space,

 confusion can arise in distinguishing between the link itself and the referenced object. Page 1/7

 On historical systems, commands and system calls adopted their own link-following conven?

 tions in a somewhat ad-hoc fashion. Rules for a more uniform approach, as they are imple?

 mented on Linux and other systems, are outlined here. It is important that site-local ap?

 plications also conform to these rules, so that the user interface can be as consistent as

 possible.

 Magic links

 There is a special class of symbolic-link-like objects known as "magic links", which can

 be found in certain pseudofilesystems such as proc(5) (examples include /proc/[pid]/exe

 and /proc/[pid]/fd/*). Unlike normal symbolic links, magic links are not resolved through

 pathname-expansion, but instead act as direct references to the kernel's own representa?

 tion of a file handle. As such, these magic links allow users to access files which can?

 not be referenced with normal paths (such as unlinked files still referenced by a running

 program).

 Because they can bypass ordinary mount_namespaces(7)-based restrictions, magic links have

 been used as attack vectors in various exploits.

 Symbolic link ownership, permissions, and timestamps

 The owner and group of an existing symbolic link can be changed using lchown(2). The only

 time that the ownership of a symbolic link matters is when the link is being removed or

 renamed in a directory that has the sticky bit set (see stat(2)).

 The last access and last modification timestamps of a symbolic link can be changed using

 utimensat(2) or lutimes(3).

 On Linux, the permissions of an ordinary symbolic link are not used in any operations; the

 permissions are always 0777 (read, write, and execute for all user categories), and can't

 be changed.

 However, magic links do not follow this rule. They can have a non-0777 mode, though this

 mode is not currently used in any permission checks.

 Obtaining a file descriptor that refers to a symbolic link

 Using the combination of the O_PATH and O_NOFOLLOW flags to open(2) yields a file descrip?

 tor that can be passed as the dirfd argument in system calls such as fstatat(2), fchow?

 nat(2), fchmodat(2), linkat(2), and readlinkat(2), in order to operate on the symbolic

 link itself (rather than the file to which it refers).

 By default (i.e., if the AT_SYMLINK_FOLLOW flag is not specified), if name_to_handle_at(2)

 is applied to a symbolic link, it yields a handle for the symbolic link (rather than the Page 2/7

 file to which it refers). One can then obtain a file descriptor for the symbolic link

 (rather than the file to which it refers) by specifying the O_PATH flag in a subsequent

 call to open_by_handle_at(2). Again, that file descriptor can be used in the aforemen?

 tioned system calls to operate on the symbolic link itself.

 Handling of symbolic links by system calls and commands

 Symbolic links are handled either by operating on the link itself, or by operating on the

 object referred to by the link. In the latter case, an application or system call is said

 to follow the link. Symbolic links may refer to other symbolic links, in which case the

 links are dereferenced until an object that is not a symbolic link is found, a symbolic

 link that refers to a file which does not exist is found, or a loop is detected. (Loop

 detection is done by placing an upper limit on the number of links that may be followed,

 and an error results if this limit is exceeded.)

 There are three separate areas that need to be discussed. They are as follows:

 1. Symbolic links used as filename arguments for system calls.

 2. Symbolic links specified as command-line arguments to utilities that are not traversing

 a file tree.

 3. Symbolic links encountered by utilities that are traversing a file tree (either speci?

 fied on the command line or encountered as part of the file hierarchy walk).

 Before describing the treatment of symbolic links by system calls and commands, we require

 some terminology. Given a pathname of the form a/b/c, the part preceding the final slash

 (i.e., a/b) is called the dirname component, and the part following the final slash (i.e.,

 c) is called the basename component.

 Treatment of symbolic links in system calls

 The first area is symbolic links used as filename arguments for system calls.

 The treatment of symbolic links within a pathname passed to a system call is as follows:

 1. Within the dirname component of a pathname, symbolic links are always followed in

 nearly every system call. (This is also true for commands.) The one exception is ope?

 nat2(2), which provides flags that can be used to explicitly prevent following of sym?

 bolic links in the dirname component.

 2. Except as noted below, all system calls follow symbolic links in the basename component

 of a pathname. For example, if there were a symbolic link slink which pointed to a

 file named afile, the system call open("slink" ...) would return a file descriptor re?

 ferring to the file afile. Page 3/7

 Various system calls do not follow links in the basename component of a pathname, and op?

 erate on the symbolic link itself. They are: lchown(2), lgetxattr(2), llistxattr(2), lre?

 movexattr(2), lsetxattr(2), lstat(2), readlink(2), rename(2), rmdir(2), and unlink(2).

 Certain other system calls optionally follow symbolic links in the basename component of a

 pathname. They are: faccessat(2), fchownat(2), fstatat(2), linkat(2), name_to_han?

 dle_at(2), open(2), openat(2), open_by_handle_at(2), and utimensat(2); see their manual

 pages for details. Because remove(3) is an alias for unlink(2), that library function

 also does not follow symbolic links. When rmdir(2) is applied to a symbolic link, it

 fails with the error ENOTDIR.

 link(2) warrants special discussion. POSIX.1-2001 specifies that link(2) should derefer?

 ence oldpath if it is a symbolic link. However, Linux does not do this. (By default, So?

 laris is the same, but the POSIX.1-2001 specified behavior can be obtained with suitable

 compiler options.) POSIX.1-2008 changed the specification to allow either behavior in an

 implementation.

 Commands not traversing a file tree

 The second area is symbolic links, specified as command-line filename arguments, to com?

 mands which are not traversing a file tree.

 Except as noted below, commands follow symbolic links named as command-line arguments.

 For example, if there were a symbolic link slink which pointed to a file named afile, the

 command cat slink would display the contents of the file afile.

 It is important to realize that this rule includes commands which may optionally traverse

 file trees; for example, the command chown file is included in this rule, while the com?

 mand chown -R file, which performs a tree traversal, is not. (The latter is described in

 the third area, below.)

 If it is explicitly intended that the command operate on the symbolic link instead of fol?

 lowing the symbolic link?for example, it is desired that chown slink change the ownership

 of the file that slink is, whether it is a symbolic link or not?then the -h option should

 be used. In the above example, chown root slink would change the ownership of the file

 referred to by slink, while chown -h root slink would change the ownership of slink it?

 self.

 There are some exceptions to this rule:

 * The mv(1) and rm(1) commands do not follow symbolic links named as arguments, but re?

 spectively attempt to rename and delete them. (Note, if the symbolic link references a Page 4/7

 file via a relative path, moving it to another directory may very well cause it to stop

 working, since the path may no longer be correct.)

 * The ls(1) command is also an exception to this rule. For compatibility with historic

 systems (when ls(1) is not doing a tree walk?that is, -R option is not specified), the

 ls(1) command follows symbolic links named as arguments if the -H or -L option is speci?

 fied, or if the -F, -d, or -l options are not specified. (The ls(1) command is the only

 command where the -H and -L options affect its behavior even though it is not doing a

 walk of a file tree.)

 * The file(1) command is also an exception to this rule. The file(1) command does not

 follow symbolic links named as argument by default. The file(1) command does follow

 symbolic links named as argument if the -L option is specified.

 Commands traversing a file tree

 The following commands either optionally or always traverse file trees: chgrp(1),

 chmod(1), chown(1), cp(1), du(1), find(1), ls(1), pax(1), rm(1), and tar(1).

 It is important to realize that the following rules apply equally to symbolic links en?

 countered during the file tree traversal and symbolic links listed as command-line argu?

 ments.

 The first rule applies to symbolic links that reference files other than directories. Op?

 erations that apply to symbolic links are performed on the links themselves, but otherwise

 the links are ignored.

 The command rm -r slink directory will remove slink, as well as any symbolic links encoun?

 tered in the tree traversal of directory, because symbolic links may be removed. In no

 case will rm(1) affect the file referred to by slink.

 The second rule applies to symbolic links that refer to directories. Symbolic links that

 refer to directories are never followed by default. This is often referred to as a "phys?

 ical" walk, as opposed to a "logical" walk (where symbolic links that refer to directories

 are followed).

 Certain conventions are (should be) followed as consistently as possible by commands that

 perform file tree walks:

 * A command can be made to follow any symbolic links named on the command line, regardless

 of the type of file they reference, by specifying the -H (for "half-logical") flag.

 This flag is intended to make the command-line name space look like the logical name

 space. (Note, for commands that do not always do file tree traversals, the -H flag will Page 5/7

 be ignored if the -R flag is not also specified.)

 For example, the command chown -HR user slink will traverse the file hierarchy rooted in

 the file pointed to by slink. Note, the -H is not the same as the previously discussed

 -h flag. The -H flag causes symbolic links specified on the command line to be derefer?

 enced for the purposes of both the action to be performed and the tree walk, and it is

 as if the user had specified the name of the file to which the symbolic link pointed.

 * A command can be made to follow any symbolic links named on the command line, as well as

 any symbolic links encountered during the traversal, regardless of the type of file they

 reference, by specifying the -L (for "logical") flag. This flag is intended to make the

 entire name space look like the logical name space. (Note, for commands that do not al?

 ways do file tree traversals, the -L flag will be ignored if the -R flag is not also

 specified.)

 For example, the command chown -LR user slink will change the owner of the file referred

 to by slink. If slink refers to a directory, chown will traverse the file hierarchy

 rooted in the directory that it references. In addition, if any symbolic links are en?

 countered in any file tree that chown traverses, they will be treated in the same fash?

 ion as slink.

 * A command can be made to provide the default behavior by specifying the -P (for "physi?

 cal") flag. This flag is intended to make the entire name space look like the physical

 name space.

 For commands that do not by default do file tree traversals, the -H, -L, and -P flags are

 ignored if the -R flag is not also specified. In addition, you may specify the -H, -L,

 and -P options more than once; the last one specified determines the command's behavior.

 This is intended to permit you to alias commands to behave one way or the other, and then

 override that behavior on the command line.

 The ls(1) and rm(1) commands have exceptions to these rules:

 * The rm(1) command operates on the symbolic link, and not the file it references, and

 therefore never follows a symbolic link. The rm(1) command does not support the -H, -L,

 or -P options.

 * To maintain compatibility with historic systems, the ls(1) command acts a little differ?

 ently. If you do not specify the -F, -d or -l options, ls(1) will follow symbolic links

 specified on the command line. If the -L flag is specified, ls(1) follows all symbolic

 links, regardless of their type, whether specified on the command line or encountered in Page 6/7

 the tree walk.

SEE ALSO

 chgrp(1), chmod(1), find(1), ln(1), ls(1), mv(1), namei(1), rm(1), lchown(2), link(2),

 lstat(2), readlink(2), rename(2), symlink(2), unlink(2), utimensat(2), lutimes(3),

 path_resolution(7)

COLOPHON

 This page is part of release 5.10 of the Linux man-pages project. A description of the

 project, information about reporting bugs, and the latest version of this page, can be

 found at https://www.kernel.org/doc/man-pages/.

Linux 2020-06-09 SYMLINK(7)

Page 7/7

