
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd-analyze.1'

$ man systemd-analyze.1

SYSTEMD-ANALYZE(1) systemd-analyze SYSTEMD-ANALYZE(1)

NAME

 systemd-analyze - Analyze and debug system manager

SYNOPSIS

 systemd-analyze [OPTIONS...] [time]

 systemd-analyze [OPTIONS...] blame

 systemd-analyze [OPTIONS...] critical-chain [UNIT...]

 systemd-analyze [OPTIONS...] dump

 systemd-analyze [OPTIONS...] plot [>file.svg]

 systemd-analyze [OPTIONS...] dot [PATTERN...] [>file.dot]

 systemd-analyze [OPTIONS...] unit-paths

 systemd-analyze [OPTIONS...] exit-status [STATUS...]

 systemd-analyze [OPTIONS...] capability [CAPABILITY...]

 systemd-analyze [OPTIONS...] condition CONDITION...

 systemd-analyze [OPTIONS...] syscall-filter [SET...]

 systemd-analyze [OPTIONS...] calendar SPEC...

 systemd-analyze [OPTIONS...] timestamp TIMESTAMP...

 systemd-analyze [OPTIONS...] timespan SPAN...

 systemd-analyze [OPTIONS...] cat-config NAME|PATH...

 systemd-analyze [OPTIONS...] verify [FILE...]

 systemd-analyze [OPTIONS...] security UNIT...

DESCRIPTION

 systemd-analyze may be used to determine system boot-up performance statistics and Page 1/16

 retrieve other state and tracing information from the system and service manager, and to

 verify the correctness of unit files. It is also used to access special functions useful

 for advanced system manager debugging.

 If no command is passed, systemd-analyze time is implied.

 systemd-analyze time

 This command prints the time spent in the kernel before userspace has been reached, the

 time spent in the initial RAM disk (initrd) before normal system userspace has been

 reached, and the time normal system userspace took to initialize. Note that these

 measurements simply measure the time passed up to the point where all system services have

 been spawned, but not necessarily until they fully finished initialization or the disk is

 idle.

 Example 1. Show how long the boot took

 # in a container

 $ systemd-analyze time

 Startup finished in 296ms (userspace)

 multi-user.target reached after 275ms in userspace

 # on a real machine

 $ systemd-analyze time

 Startup finished in 2.584s (kernel) + 19.176s (initrd) + 47.847s (userspace) = 1min 9.608s

 multi-user.target reached after 47.820s in userspace

 systemd-analyze blame

 This command prints a list of all running units, ordered by the time they took to

 initialize. This information may be used to optimize boot-up times. Note that the output

 might be misleading as the initialization of one service might be slow simply because it

 waits for the initialization of another service to complete. Also note: systemd-analyze

 blame doesn't display results for services with Type=simple, because systemd considers

 such services to be started immediately, hence no measurement of the initialization delays

 can be done. Also note that this command only shows the time units took for starting up,

 it does not show how long unit jobs spent in the execution queue. In particular it shows

 the time units spent in "activating" state, which is not defined for units such as device

 units that transition directly from "inactive" to "active". This command hence gives an

 impression of the performance of program code, but cannot accurately reflect latency

 introduced by waiting for hardware and similar events. Page 2/16

 Example 2. Show which units took the most time during boot

 $ systemd-analyze blame

 32.875s pmlogger.service

 20.905s systemd-networkd-wait-online.service

 13.299s dev-vda1.device

 ...

 23ms sysroot.mount

 11ms initrd-udevadm-cleanup-db.service

 3ms sys-kernel-config.mount

 systemd-analyze critical-chain [UNIT...]

 This command prints a tree of the time-critical chain of units (for each of the specified

 UNITs or for the default target otherwise). The time after the unit is active or started

 is printed after the "@" character. The time the unit takes to start is printed after the

 "+" character. Note that the output might be misleading as the initialization of services

 might depend on socket activation and because of the parallel execution of units. Also,

 similar to the blame command, this only takes into account the time units spent in

 "activating" state, and hence does not cover units that never went through an "activating"

 state (such as device units that transition directly from "inactive" to "active").

 Moreover it does not show information on jobs (and in particular not jobs that timed out).

 Example 3. systemd-analyze critical-chain

 $ systemd-analyze critical-chain

 multi-user.target @47.820s

 ??pmie.service @35.968s +548ms

 ??pmcd.service @33.715s +2.247s

 ??network-online.target @33.712s

 ??systemd-networkd-wait-online.service @12.804s +20.905s

 ??systemd-networkd.service @11.109s +1.690s

 ??systemd-udevd.service @9.201s +1.904s

 ??systemd-tmpfiles-setup-dev.service @7.306s +1.776s

 ??kmod-static-nodes.service @6.976s +177ms

 ??systemd-journald.socket

 ??system.slice

 ??-.slice Page 3/16

 systemd-analyze dump

 This command outputs a (usually very long) human-readable serialization of the complete

 server state. Its format is subject to change without notice and should not be parsed by

 applications.

 Example 4. Show the internal state of user manager

 $ systemd-analyze --user dump

 Timestamp userspace: Thu 2019-03-14 23:28:07 CET

 Timestamp finish: Thu 2019-03-14 23:28:07 CET

 Timestamp generators-start: Thu 2019-03-14 23:28:07 CET

 Timestamp generators-finish: Thu 2019-03-14 23:28:07 CET

 Timestamp units-load-start: Thu 2019-03-14 23:28:07 CET

 Timestamp units-load-finish: Thu 2019-03-14 23:28:07 CET

 -> Unit proc-timer_list.mount:

 Description: /proc/timer_list

 ...

 -> Unit default.target:

 Description: Main user target

 ...

 systemd-analyze plot

 This command prints an SVG graphic detailing which system services have been started at

 what time, highlighting the time they spent on initialization.

 Example 5. Plot a bootchart

 $ systemd-analyze plot >bootup.svg

 $ eog bootup.svg&

 systemd-analyze dot [pattern...]

 This command generates textual dependency graph description in dot format for further

 processing with the GraphViz dot(1) tool. Use a command line like systemd-analyze dot |

 dot -Tsvg >systemd.svg to generate a graphical dependency tree. Unless --order or

 --require is passed, the generated graph will show both ordering and requirement

 dependencies. Optional pattern globbing style specifications (e.g. *.target) may be given

 at the end. A unit dependency is included in the graph if any of these patterns match

 either the origin or destination node.

 Example 6. Plot all dependencies of any unit whose name starts with "avahi-daemon" Page 4/16

 $ systemd-analyze dot 'avahi-daemon.*' | dot -Tsvg >avahi.svg

 $ eog avahi.svg

 Example 7. Plot the dependencies between all known target units

 $ systemd-analyze dot --to-pattern='*.target' --from-pattern='*.target' \

 | dot -Tsvg >targets.svg

 $ eog targets.svg

 systemd-analyze unit-paths

 This command outputs a list of all directories from which unit files, .d overrides, and

 .wants, .requires symlinks may be loaded. Combine with --user to retrieve the list for the

 user manager instance, and --global for the global configuration of user manager

 instances.

 Example 8. Show all paths for generated units

 $ systemd-analyze unit-paths | grep '^/run'

 /run/systemd/system.control

 /run/systemd/transient

 /run/systemd/generator.early

 /run/systemd/system

 /run/systemd/system.attached

 /run/systemd/generator

 /run/systemd/generator.late

 Note that this verb prints the list that is compiled into systemd-analyze itself, and does

 not communicate with the running manager. Use

 systemctl [--user] [--global] show -p UnitPath --value

 to retrieve the actual list that the manager uses, with any empty directories omitted.

 systemd-analyze exit-status [STATUS...]

 This command prints a list of exit statuses along with their "class", i.e. the source of

 the definition (one of "glibc", "systemd", "LSB", or "BSD"), see the Process Exit Codes

 section in systemd.exec(5). If no additional arguments are specified, all known statuses

 are shown. Otherwise, only the definitions for the specified codes are shown.

 Example 9. Show some example exit status names

 $ systemd-analyze exit-status 0 1 {63..65}

 NAME STATUS CLASS

 SUCCESS 0 glibc Page 5/16

 FAILURE 1 glibc

 - 63 -

 USAGE 64 BSD

 DATAERR 65 BSD

 systemd-analyze capability [CAPABILITY...]

 This command prints a list of Linux capabilities along with their numeric IDs. See

 capabilities(7) for details. If no argument is specified the full list of capabilities

 known to the service manager and the kernel is shown. Capabilities defined by the kernel

 but not known to the service manager are shown as "cap_???". Optionally, if arguments are

 specified they may refer to specific cabilities by name or numeric ID, in which case only

 the indicated capabilities are shown in the table.

 Example 10. Show some example capability names

 $ systemd-analyze capability 0 1 {30..32}

 NAME NUMBER

 cap_chown 0

 cap_dac_override 1

 cap_audit_control 30

 cap_setfcap 31

 cap_mac_override 32

 systemd-analyze condition CONDITION...

 This command will evaluate Condition*=... and Assert*=... assignments, and print their

 values, and the resulting value of the combined condition set. See systemd.unit(5) for a

 list of available conditions and asserts.

 Example 11. Evaluate conditions that check kernel versions

 $ systemd-analyze condition 'ConditionKernelVersion = ! <4.0' \

 'ConditionKernelVersion = >=5.1' \

 'ConditionACPower=|false' \

 'ConditionArchitecture=|!arm' \

 'AssertPathExists=/etc/os-release'

 test.service: AssertPathExists=/etc/os-release succeeded.

 Asserts succeeded.

 test.service: ConditionArchitecture=|!arm succeeded.

 test.service: ConditionACPower=|false failed. Page 6/16

 test.service: ConditionKernelVersion=>=5.1 succeeded.

 test.service: ConditionKernelVersion=!<4.0 succeeded.

 Conditions succeeded.

 systemd-analyze syscall-filter [SET...]

 This command will list system calls contained in the specified system call set SET, or all

 known sets if no sets are specified. Argument SET must include the "@" prefix.

 systemd-analyze calendar EXPRESSION...

 This command will parse and normalize repetitive calendar time events, and will calculate

 when they elapse next. This takes the same input as the OnCalendar= setting in

 systemd.timer(5), following the syntax described in systemd.time(7). By default, only the

 next time the calendar expression will elapse is shown; use --iterations= to show the

 specified number of next times the expression elapses. Each time the expression elapses

 forms a timestamp, see the timestamp verb below.

 Example 12. Show leap days in the near future

 $ systemd-analyze calendar --iterations=5 '*-2-29 0:0:0'

 Original form: *-2-29 0:0:0

 Normalized form: *-02-29 00:00:00

 Next elapse: Sat 2020-02-29 00:00:00 UTC

 From now: 11 months 15 days left

 Iter. #2: Thu 2024-02-29 00:00:00 UTC

 From now: 4 years 11 months left

 Iter. #3: Tue 2028-02-29 00:00:00 UTC

 From now: 8 years 11 months left

 Iter. #4: Sun 2032-02-29 00:00:00 UTC

 From now: 12 years 11 months left

 Iter. #5: Fri 2036-02-29 00:00:00 UTC

 From now: 16 years 11 months left

 systemd-analyze timestamp TIMESTAMP...

 This command parses a timestamp (i.e. a single point in time) and outputs the normalized

 form and the difference between this timestamp and now. The timestamp should adhere to the

 syntax documented in systemd.time(7), section "PARSING TIMESTAMPS".

 Example 13. Show parsing of timestamps

 $ systemd-analyze timestamp yesterday now tomorrow Page 7/16

 Original form: yesterday

 Normalized form: Mon 2019-05-20 00:00:00 CEST

 (in UTC): Sun 2019-05-19 22:00:00 UTC

 UNIX seconds: @15583032000

 From now: 1 day 9h ago

 Original form: now

 Normalized form: Tue 2019-05-21 09:48:39 CEST

 (in UTC): Tue 2019-05-21 07:48:39 UTC

 UNIX seconds: @1558424919.659757

 From now: 43us ago

 Original form: tomorrow

 Normalized form: Wed 2019-05-22 00:00:00 CEST

 (in UTC): Tue 2019-05-21 22:00:00 UTC

 UNIX seconds: @15584760000

 From now: 14h left

 systemd-analyze timespan EXPRESSION...

 This command parses a time span (i.e. a difference between two timestamps) and outputs the

 normalized form and the equivalent value in microseconds. The time span should adhere to

 the syntax documented in systemd.time(7), section "PARSING TIME SPANS". Values without

 units are parsed as seconds.

 Example 14. Show parsing of timespans

 $ systemd-analyze timespan 1s 300s '1year 0.000001s'

 Original: 1s

 ?s: 1000000

 Human: 1s

 Original: 300s

 ?s: 300000000

 Human: 5min

 Original: 1year 0.000001s

 ?s: 31557600000001

 Human: 1y 1us

 systemd-analyze cat-config NAME|PATH...

 This command is similar to systemctl cat, but operates on config files. It will copy the Page 8/16

 contents of a config file and any drop-ins to standard output, using the usual systemd set

 of directories and rules for precedence. Each argument must be either an absolute path

 including the prefix (such as /etc/systemd/logind.conf or /usr/lib/systemd/logind.conf),

 or a name relative to the prefix (such as systemd/logind.conf).

 Example 15. Showing logind configuration

 $ systemd-analyze cat-config systemd/logind.conf

 # /etc/systemd/logind.conf

 ...

 [Login]

 NAutoVTs=8

 ...

 # /usr/lib/systemd/logind.conf.d/20-test.conf

 ... some override from another package

 # /etc/systemd/logind.conf.d/50-override.conf

 ... some administrator override

 systemd-analyze verify FILE...

 This command will load unit files and print warnings if any errors are detected. Files

 specified on the command line will be loaded, but also any other units referenced by them.

 The full unit search path is formed by combining the directories for all command line

 arguments, and the usual unit load paths. The variable $SYSTEMD_UNIT_PATH is supported,

 and may be used to replace or augment the compiled in set of unit load paths; see

 systemd.unit(5). All units files present in the directories containing the command line

 arguments will be used in preference to the other paths.

 The following errors are currently detected:

 ? unknown sections and directives,

 ? missing dependencies which are required to start the given unit,

 ? man pages listed in Documentation= which are not found in the system,

 ? commands listed in ExecStart= and similar which are not found in the system or not

 executable.

 Example 16. Misspelt directives

 $ cat ./user.slice

 [Unit]

 WhatIsThis=11 Page 9/16

 Documentation=man:nosuchfile(1)

 Requires=different.service

 [Service]

 Description=x

 $ systemd-analyze verify ./user.slice

 [./user.slice:9] Unknown lvalue 'WhatIsThis' in section 'Unit'

 [./user.slice:13] Unknown section 'Service'. Ignoring.

 Error: org.freedesktop.systemd1.LoadFailed:

 Unit different.service failed to load:

 No such file or directory.

 Failed to create user.slice/start: Invalid argument

 user.slice: man nosuchfile(1) command failed with code 16

 Example 17. Missing service units

 $ tail ./a.socket ./b.socket

 ==> ./a.socket <==

 [Socket]

 ListenStream=100

 ==> ./b.socket <==

 [Socket]

 ListenStream=100

 Accept=yes

 $ systemd-analyze verify ./a.socket ./b.socket

 Service a.service not loaded, a.socket cannot be started.

 Service b@0.service not loaded, b.socket cannot be started.

 systemd-analyze security [UNIT...]

 This command analyzes the security and sandboxing settings of one or more specified

 service units. If at least one unit name is specified the security settings of the

 specified service units are inspected and a detailed analysis is shown. If no unit name is

 specified, all currently loaded, long-running service units are inspected and a terse

 table with results shown. The command checks for various security-related service

 settings, assigning each a numeric "exposure level" value, depending on how important a

 setting is. It then calculates an overall exposure level for the whole unit, which is an

 estimation in the range 0.0...10.0 indicating how exposed a service is security-wise. High Page 10/16

 exposure levels indicate very little applied sandboxing. Low exposure levels indicate

 tight sandboxing and strongest security restrictions. Note that this only analyzes the

 per-service security features systemd itself implements. This means that any additional

 security mechanisms applied by the service code itself are not accounted for. The exposure

 level determined this way should not be misunderstood: a high exposure level neither means

 that there is no effective sandboxing applied by the service code itself, nor that the

 service is actually vulnerable to remote or local attacks. High exposure levels do

 indicate however that most likely the service might benefit from additional settings

 applied to them.

 Please note that many of the security and sandboxing settings individually can be

 circumvented ? unless combined with others. For example, if a service retains the

 privilege to establish or undo mount points many of the sandboxing options can be undone

 by the service code itself. Due to that is essential that each service uses the most

 comprehensive and strict sandboxing and security settings possible. The tool will take

 into account some of these combinations and relationships between the settings, but not

 all. Also note that the security and sandboxing settings analyzed here only apply to the

 operations executed by the service code itself. If a service has access to an IPC system

 (such as D-Bus) it might request operations from other services that are not subject to

 the same restrictions. Any comprehensive security and sandboxing analysis is hence

 incomplete if the IPC access policy is not validated too.

 Example 18. Analyze systemd-logind.service

 $ systemd-analyze security --no-pager systemd-logind.service

 NAME DESCRIPTION EXPOSURE

 ? PrivateNetwork= Service has access to the host's network 0.5

 ? User=/DynamicUser= Service runs as root user 0.4

 ? DeviceAllow= Service has no device ACL 0.2

 ? IPAddressDeny= Service blocks all IP address ranges

 ...

 ? Overall exposure level for systemd-logind.service: 4.1 OK ?

OPTIONS

 The following options are understood:

 --system

 Operates on the system systemd instance. This is the implied default. Page 11/16

 --user

 Operates on the user systemd instance.

 --global

 Operates on the system-wide configuration for user systemd instance.

 --order, --require

 When used in conjunction with the dot command (see above), selects which dependencies

 are shown in the dependency graph. If --order is passed, only dependencies of type

 After= or Before= are shown. If --require is passed, only dependencies of type

 Requires=, Requisite=, Wants= and Conflicts= are shown. If neither is passed, this

 shows dependencies of all these types.

 --from-pattern=, --to-pattern=

 When used in conjunction with the dot command (see above), this selects which

 relationships are shown in the dependency graph. Both options require a glob(7)

 pattern as an argument, which will be matched against the left-hand and the

 right-hand, respectively, nodes of a relationship.

 Each of these can be used more than once, in which case the unit name must match one

 of the values. When tests for both sides of the relation are present, a relation must

 pass both tests to be shown. When patterns are also specified as positional arguments,

 they must match at least one side of the relation. In other words, patterns specified

 with those two options will trim the list of edges matched by the positional

 arguments, if any are given, and fully determine the list of edges shown otherwise.

 --fuzz=timespan

 When used in conjunction with the critical-chain command (see above), also show units,

 which finished timespan earlier, than the latest unit in the same level. The unit of

 timespan is seconds unless specified with a different unit, e.g. "50ms".

 --man=no

 Do not invoke man(1) to verify the existence of man pages listed in Documentation=.

 --generators

 Invoke unit generators, see systemd.generator(7). Some generators require root

 privileges. Under a normal user, running with generators enabled will generally result

 in some warnings.

 --root=PATH

 With cat-files, show config files underneath the specified root path PATH. Page 12/16

 --iterations=NUMBER

 When used with the calendar command, show the specified number of iterations the

 specified calendar expression will elapse next. Defaults to 1.

 --base-time=TIMESTAMP

 When used with the calendar command, show next iterations relative to the specified

 point in time. If not specified defaults to the current time.

 -H, --host=

 Execute the operation remotely. Specify a hostname, or a username and hostname

 separated by "@", to connect to. The hostname may optionally be suffixed by a port ssh

 is listening on, separated by ":", and then a container name, separated by "/", which

 connects directly to a specific container on the specified host. This will use SSH to

 talk to the remote machine manager instance. Container names may be enumerated with

 machinectl -H HOST. Put IPv6 addresses in brackets.

 -M, --machine=

 Execute operation on a local container. Specify a container name to connect to,

 optionally prefixed by a user name to connect as and a separating "@" character. If

 the special string ".host" is used in place of the container name, a connection to the

 local system is made (which is useful to connect to a specific user's user bus:

 "--user --machine=lennart@.host"). If the "@" syntax is not used, the connection is

 made as root user. If the "@" syntax is used either the left hand side or the right

 hand side may be omitted (but not both) in which case the local user name and ".host"

 are implied.

 -h, --help

 Print a short help text and exit.

 --version

 Print a short version string and exit.

 --no-pager

 Do not pipe output into a pager.

EXIT STATUS

 On success, 0 is returned, a non-zero failure code otherwise.

ENVIRONMENT

 $SYSTEMD_LOG_LEVEL

 The maximum log level of emitted messages (messages with a higher log level, i.e. less Page 13/16

 important ones, will be suppressed). Either one of (in order of decreasing importance)

 emerg, alert, crit, err, warning, notice, info, debug, or an integer in the range

 0...7. See syslog(3) for more information.

 $SYSTEMD_LOG_COLOR

 A boolean. If true, messages written to the tty will be colored according to priority.

 This setting is only useful when messages are written directly to the terminal,

 because journalctl(1) and other tools that display logs will color messages based on

 the log level on their own.

 $SYSTEMD_LOG_TIME

 A boolean. If true, console log messages will be prefixed with a timestamp.

 This setting is only useful when messages are written directly to the terminal or a

 file, because journalctl(1) and other tools that display logs will attach timestamps

 based on the entry metadata on their own.

 $SYSTEMD_LOG_LOCATION

 A boolean. If true, messages will be prefixed with a filename and line number in the

 source code where the message originates.

 Note that the log location is often attached as metadata to journal entries anyway.

 Including it directly in the message text can nevertheless be convenient when

 debugging programs.

 $SYSTEMD_LOG_TID

 A boolean. If true, messages will be prefixed with the current numerical thread ID

 (TID).

 Note that the this information is attached as metadata to journal entries anyway.

 Including it directly in the message text can nevertheless be convenient when

 debugging programs.

 $SYSTEMD_LOG_TARGET

 The destination for log messages. One of console (log to the attached tty),

 console-prefixed (log to the attached tty but with prefixes encoding the log level and

 "facility", see syslog(3), kmsg (log to the kernel circular log buffer), journal (log

 to the journal), journal-or-kmsg (log to the journal if available, and to kmsg

 otherwise), auto (determine the appropriate log target automatically, the default),

 null (disable log output).

 $SYSTEMD_PAGER Page 14/16

 Pager to use when --no-pager is not given; overrides $PAGER. If neither $SYSTEMD_PAGER

 nor $PAGER are set, a set of well-known pager implementations are tried in turn,

 including less(1) and more(1), until one is found. If no pager implementation is

 discovered no pager is invoked. Setting this environment variable to an empty string

 or the value "cat" is equivalent to passing --no-pager.

 $SYSTEMD_LESS

 Override the options passed to less (by default "FRSXMK").

 Users might want to change two options in particular:

 K

 This option instructs the pager to exit immediately when Ctrl+C is pressed. To

 allow less to handle Ctrl+C itself to switch back to the pager command prompt,

 unset this option.

 If the value of $SYSTEMD_LESS does not include "K", and the pager that is invoked

 is less, Ctrl+C will be ignored by the executable, and needs to be handled by the

 pager.

 X

 This option instructs the pager to not send termcap initialization and

 deinitialization strings to the terminal. It is set by default to allow command

 output to remain visible in the terminal even after the pager exits. Nevertheless,

 this prevents some pager functionality from working, in particular paged output

 cannot be scrolled with the mouse.

 See less(1) for more discussion.

 $SYSTEMD_LESSCHARSET

 Override the charset passed to less (by default "utf-8", if the invoking terminal is

 determined to be UTF-8 compatible).

 $SYSTEMD_PAGERSECURE

 Takes a boolean argument. When true, the "secure" mode of the pager is enabled; if

 false, disabled. If $SYSTEMD_PAGERSECURE is not set at all, secure mode is enabled if

 the effective UID is not the same as the owner of the login session, see geteuid(2)

 and sd_pid_get_owner_uid(3). In secure mode, LESSSECURE=1 will be set when invoking

 the pager, and the pager shall disable commands that open or create new files or start

 new subprocesses. When $SYSTEMD_PAGERSECURE is not set at all, pagers which are not

 known to implement secure mode will not be used. (Currently only less(1) implements Page 15/16

 secure mode.)

 Note: when commands are invoked with elevated privileges, for example under sudo(8) or

 pkexec(1), care must be taken to ensure that unintended interactive features are not

 enabled. "Secure" mode for the pager may be enabled automatically as describe above.

 Setting SYSTEMD_PAGERSECURE=0 or not removing it from the inherited environment allows

 the user to invoke arbitrary commands. Note that if the $SYSTEMD_PAGER or $PAGER

 variables are to be honoured, $SYSTEMD_PAGERSECURE must be set too. It might be

 reasonable to completely disable the pager using --no-pager instead.

 $SYSTEMD_COLORS

 Takes a boolean argument. When true, systemd and related utilities will use colors in

 their output, otherwise the output will be monochrome. Additionally, the variable can

 take one of the following special values: "16", "256" to restrict the use of colors to

 the base 16 or 256 ANSI colors, respectively. This can be specified to override the

 automatic decision based on $TERM and what the console is connected to.

 $SYSTEMD_URLIFY

 The value must be a boolean. Controls whether clickable links should be generated in

 the output for terminal emulators supporting this. This can be specified to override

 the decision that systemd makes based on $TERM and other conditions.

SEE ALSO

 systemd(1), systemctl(1)

systemd 249 SYSTEMD-ANALYZE(1)

Page 16/16

