
Rocky Enterprise Linux 9.2 Manual Pages on command 'systemd-resolved.service.8'

$ man systemd-resolved.service.8

SYSTEMD-RESOLVED.SERVICE(8) systemd-resolved.service SYSTEMD-RESOLVED.SERVICE(8)

NAME

 systemd-resolved.service, systemd-resolved - Network Name Resolution manager

SYNOPSIS

 systemd-resolved.service

 /lib/systemd/systemd-resolved

DESCRIPTION

 systemd-resolved is a system service that provides network name resolution to local

 applications. It implements a caching and validating DNS/DNSSEC stub resolver, as well as

 an LLMNR and MulticastDNS resolver and responder. Local applications may submit network

 name resolution requests via three interfaces:

 ? The native, fully-featured API systemd-resolved exposes on the bus, see

 org.freedesktop.resolve1(5) and org.freedesktop.LogControl1(5) for details. Usage of

 this API is generally recommended to clients as it is asynchronous and fully featured

 (for example, properly returns DNSSEC validation status and interface scope for

 addresses as necessary for supporting link-local networking).

 ? The glibc getaddrinfo(3) API as defined by RFC3493[1] and its related resolver

 functions, including gethostbyname(3). This API is widely supported, including beyond

 the Linux platform. In its current form it does not expose DNSSEC validation status

 information however, and is synchronous only. This API is backed by the glibc Name

 Service Switch (nss(5)). Usage of the glibc NSS module nss-resolve(8) is required in

 order to allow glibc's NSS resolver functions to resolve hostnames via

 systemd-resolved. Page 1/8

 ? Additionally, systemd-resolved provides a local DNS stub listener on IP address

 127.0.0.53 on the local loopback interface. Programs issuing DNS requests directly,

 bypassing any local API may be directed to this stub, in order to connect them to

 systemd-resolved. Note however that it is strongly recommended that local programs use

 the glibc NSS or bus APIs instead (as described above), as various network resolution

 concepts (such as link-local addressing, or LLMNR Unicode domains) cannot be mapped to

 the unicast DNS protocol.

 The DNS servers contacted are determined from the global settings in

 /etc/systemd/resolved.conf, the per-link static settings in /etc/systemd/network/*.network

 files (in case systemd-networkd.service(8) is used), the per-link dynamic settings

 received over DHCP, information provided via resolvectl(1), and any DNS server information

 made available by other system services. See resolved.conf(5) and systemd.network(5) for

 details about systemd's own configuration files for DNS servers. To improve compatibility,

 /etc/resolv.conf is read in order to discover configured system DNS servers, but only if

 it is not a symlink to /run/systemd/resolve/stub-resolv.conf, /usr/lib/systemd/resolv.conf

 or /run/systemd/resolve/resolv.conf (see below).

SYNTHETIC RECORDS

 systemd-resolved synthesizes DNS resource records (RRs) for the following cases:

 ? The local, configured hostname is resolved to all locally configured IP addresses

 ordered by their scope, or ? if none are configured ? the IPv4 address 127.0.0.2

 (which is on the local loopback interface) and the IPv6 address ::1 (which is the

 local host).

 ? The hostnames "localhost" and "localhost.localdomain" as well as any hostname ending

 in ".localhost" or ".localhost.localdomain" are resolved to the IP addresses 127.0.0.1

 and ::1.

 ? The hostname "_gateway" is resolved to all current default routing gateway addresses,

 ordered by their metric. This assigns a stable hostname to the current gateway, useful

 for referencing it independently of the current network configuration state.

 ? The hostname "_outbound" is resolved to the local IPv4 and IPv6 addresses that are

 most likely used for communication with other hosts. This is determined by requesting

 a routing decision to the configured default gateways from the kernel and then using

 the local IP addresses selected by this decision. This hostname is only available if

 there is at least one local default gateway configured. This assigns a stable hostname Page 2/8

 to the local outbound IP addresses, useful for referencing them independently of the

 current network configuration state.

 ? The mappings defined in /etc/hosts are resolved to their configured addresses and

 back, but they will not affect lookups for non-address types (like MX). Support for

 /etc/hosts may be disabled with ReadEtcHosts=no, see resolved.conf(5).

PROTOCOLS AND ROUTING

 The lookup requests that systemd-resolved.service receives are routed to the available DNS

 servers, LLMNR, and MulticastDNS interfaces according to the following rules:

 ? Names for which synthetic records are generated (the local hostname, "localhost" and

 "localdomain", local gateway, as listed in the previous section) and addresses

 configured in /etc/hosts are never routed to the network and a reply is sent

 immediately.

 ? Single-label names are resolved using LLMNR on all local interfaces where LLMNR is

 enabled. Lookups for IPv4 addresses are only sent via LLMNR on IPv4, and lookups for

 IPv6 addresses are only sent via LLMNR on IPv6. Note that lookups for single-label

 synthesized names are not routed to LLMNR, MulticastDNS or unicast DNS.

 ? Queries for the address records (A and AAAA) of single-label non-synthesized names are

 resolved via unicast DNS using search domains. For any interface which defines search

 domains, such look-ups are routed to the servers defined for that interface, suffixed

 with each of those search domains. When global search domains are defined, such

 look-ups are routed to the global servers. For each search domain, queries are

 performed by suffixing the name with each of the search domains in turn. Additionally,

 lookup of single-label names via unicast DNS may be enabled with the

 ResolveUnicastSingleLabel=yes setting. The details of which servers are queried and

 how the final reply is chosen are described below. Note that this means that address

 queries for single-label names are never sent out to remote DNS servers by default,

 and resolution is only possible if search domains are defined.

 ? Multi-label names with the domain suffix ".local" are resolved using MulticastDNS on

 all local interfaces where MulticastDNS is enabled. As with LLMNR, IPv4 address

 lookups are sent via IPv4 and IPv6 address lookups are sent via IPv6.

 ? Queries for multi-label names are routed via unicast DNS on local interfaces that have

 a DNS server configured, plus the globally configured DNS servers if there are any.

 Which interfaces are used is determined by the routing logic based on search and Page 3/8

 route-only domains, described below. Note that by default, lookups for domains with

 the ".local" suffix are not routed to DNS servers, unless the domain is specified

 explicitly as routing or search domain for the DNS server and interface. This means

 that on networks where the ".local" domain is defined in a site-specific DNS server,

 explicit search or routing domains need to be configured to make lookups work within

 this DNS domain. Note that these days, it's generally recommended to avoid defining

 ".local" in a DNS server, as RFC6762[2] reserves this domain for exclusive

 MulticastDNS use.

 ? Address lookups (reverse lookups) are routed similarly to multi-label names, with the

 exception that addresses from the link-local address range are never routed to unicast

 DNS and are only resolved using LLMNR and MulticastDNS (when enabled).

 If lookups are routed to multiple interfaces, the first successful response is returned

 (thus effectively merging the lookup zones on all matching interfaces). If the lookup

 failed on all interfaces, the last failing response is returned.

 Routing of lookups is determined by the per-interface routing domains (search and

 route-only) and global search domains. See systemd.network(5) and resolvectl(1) for a

 description how those settings are set dynamically and the discussion of Domains= in

 resolved.conf(5) for a description of globally configured DNS settings.

 The following query routing logic applies for unicast DNS lookups initiated by

 systemd-resolved.service:

 ? If a name to look up matches (that is: is equal to or has as suffix) any of the

 configured routing domains (search or route-only) of any link, or the globally

 configured DNS settings, "best matching" routing domain is determined: the matching

 one with the most labels. The query is then sent to all DNS servers of any links or

 the globally configured DNS servers associated with this "best matching" routing

 domain. (Note that more than one link might have this same "best matching" routing

 domain configured, in which case the query is sent to all of them in parallel).

 In case of single-label names, when search domains are defined, the same logic

 applies, except that the name is first suffixed by each of the search domains in turn.

 Note that this search logic doesn't apply to any names with at least one dot. Also see

 the discussion about compatibility with the traditional glibc resolver below.

 ? If a query does not match any configured routing domain (either per-link or global),

 it is sent to all DNS servers that are configured on links with the DefaultRoute= Page 4/8

 option set, as well as the globally configured DNS server.

 ? If there is no link configured as DefaultRoute= and no global DNS server configured,

 one of the compiled-in fallback DNS servers is used.

 ? Otherwise the unicast DNS query fails, as no suitable DNS servers can be determined.

 The DefaultRoute= option is a boolean setting configurable with resolvectl or in .network

 files. If not set, it is implicitly determined based on the configured DNS domains for a

 link: if there's a route-only domain other than "~.", it defaults to false, otherwise to

 true.

 Effectively this means: in order to support single-label non-synthesized names, define

 appropriate search domains. In order to preferably route all DNS queries not explicitly

 matched by routing domain configuration to a specific link, configure a "~." route-only

 domain on it. This will ensure that other links will not be considered for these queries

 (unless they too carry such a routing domain). In order to route all such DNS queries to a

 specific link only if no other link is preferred, set the DefaultRoute= option for the

 link to true and do not configure a "~." route-only domain on it. Finally, in order to

 ensure that a specific link never receives any DNS traffic not matching any of its

 configured routing domains, set the DefaultRoute= option for it to false.

 See org.freedesktop.resolve1(5) for information about the D-Bus APIs systemd-resolved

 provides.

COMPATIBILITY WITH THE TRADITIONAL GLIBC STUB RESOLVER

 This section provides a short summary of differences in the stub resolver implemented by

 nss-resolve(8) together with systemd-resolved and the traditional stub resolver

 implemented in nss-dns.

 ? Some names are always resolved internally (see Synthetic Records above). Traditionally

 they would be resolved by nss-files if provided in /etc/hosts. But note that the

 details of how a query is constructed are under the control of the client library.

 nss-dns will first try to resolve names using search domains and even if those queries

 are routed to systemd-resolved, it will send them out over the network using the usual

 rules for multi-label name routing [3].

 ? Single-label names are not resolved for A and AAAA records using unicast DNS (unless

 overridden with ResolveUnicastSingleLabel=, see resolved.conf(5)). This is similar to

 the no-tld-query option being set in resolv.conf(5).

 ? Search domains are not used for suffixing of multi-label names. (Search domains are Page 5/8

 nevertheless used for lookup routing, for names that were originally specified as

 single-label or multi-label.) Any name with at least one dot is always interpreted as

 a FQDN. nss-dns would resolve names both as relative (using search domains) and

 absolute FQDN names. Some names would be resolved as relative first, and after that

 query has failed, as absolute, while other names would be resolved in opposite order.

 The ndots option in /etc/resolv.conf was used to control how many dots the name needs

 to have to be resolved as relative first. This stub resolver does not implement this

 at all: multi-label names are only resolved as FQDNs.[4]

 ? This resolver has a notion of the special ".local" domain used for MulticastDNS, and

 will not route queries with that suffix to unicast DNS servers unless explicitly

 configured, see above. Also, reverse lookups for link-local addresses are not sent to

 unicast DNS servers.

 ? This resolver reads and caches /etc/hosts internally. (In other words, nss-resolve

 replaces nss-files in addition to nss-dns). Entries in /etc/hosts have highest

 priority.

 ? This resolver also implements LLMNR and MulticastDNS in addition to the classic

 unicast DNS protocol, and will resolve single-label names using LLMNR (when enabled)

 and names ending in ".local" using MulticastDNS (when enabled).

 ? Environment variables $LOCALDOMAIN and $RES_OPTIONS described in resolv.conf(5) are

 not supported currently.

/ETC/RESOLV.CONF

 Four modes of handling /etc/resolv.conf (see resolv.conf(5)) are supported:

 ? systemd-resolved maintains the /run/systemd/resolve/stub-resolv.conf file for

 compatibility with traditional Linux programs. This file may be symlinked from

 /etc/resolv.conf. This file lists the 127.0.0.53 DNS stub (see above) as the only DNS

 server. It also contains a list of search domains that are in use by systemd-resolved.

 The list of search domains is always kept up-to-date. Note that

 /run/systemd/resolve/stub-resolv.conf should not be used directly by applications, but

 only through a symlink from /etc/resolv.conf. This file may be symlinked from

 /etc/resolv.conf in order to connect all local clients that bypass local DNS APIs to

 systemd-resolved with correct search domains settings. This mode of operation is

 recommended.

 ? A static file /usr/lib/systemd/resolv.conf is provided that lists the 127.0.0.53 DNS Page 6/8

 stub (see above) as only DNS server. This file may be symlinked from /etc/resolv.conf

 in order to connect all local clients that bypass local DNS APIs to systemd-resolved.

 This file does not contain any search domains.

 ? systemd-resolved maintains the /run/systemd/resolve/resolv.conf file for compatibility

 with traditional Linux programs. This file may be symlinked from /etc/resolv.conf and

 is always kept up-to-date, containing information about all known DNS servers. Note

 the file format's limitations: it does not know a concept of per-interface DNS servers

 and hence only contains system-wide DNS server definitions. Note that

 /run/systemd/resolve/resolv.conf should not be used directly by applications, but only

 through a symlink from /etc/resolv.conf. If this mode of operation is used local

 clients that bypass any local DNS API will also bypass systemd-resolved and will talk

 directly to the known DNS servers.

 ? Alternatively, /etc/resolv.conf may be managed by other packages, in which case

 systemd-resolved will read it for DNS configuration data. In this mode of operation

 systemd-resolved is consumer rather than provider of this configuration file.

 Note that the selected mode of operation for this file is detected fully automatically,

 depending on whether /etc/resolv.conf is a symlink to /run/systemd/resolve/resolv.conf or

 lists 127.0.0.53 as DNS server.

SIGNALS

 SIGUSR1

 Upon reception of the SIGUSR1 process signal systemd-resolved will dump the contents

 of all DNS resource record caches it maintains, as well as all feature level

 information it learnt about configured DNS servers into the system logs.

 SIGUSR2

 Upon reception of the SIGUSR2 process signal systemd-resolved will flush all caches it

 maintains. Note that it should normally not be necessary to request this explicitly ?

 except for debugging purposes ? as systemd-resolved flushes the caches automatically

 anyway any time the host's network configuration changes. Sending this signal to

 systemd-resolved is equivalent to the resolvectl flush-caches command, however the

 latter is recommended since it operates in a synchronous way.

 SIGRTMIN+1

 Upon reception of the SIGRTMIN+1 process signal systemd-resolved will forget

 everything it learnt about the configured DNS servers. Specifically any information Page 7/8

 about server feature support is flushed out, and the server feature probing logic is

 restarted on the next request, starting with the most fully featured level. Note that

 it should normally not be necessary to request this explicitly ? except for debugging

 purposes ? as systemd-resolved automatically forgets learnt information any time the

 DNS server configuration changes. Sending this signal to systemd-resolved is

 equivalent to the resolvectl reset-server-features command, however the latter is

 recommended since it operates in a synchronous way.

SEE ALSO

 systemd(1), resolved.conf(5), dnssec-trust-anchors.d(5), nss-resolve(8), resolvectl(1),

 resolv.conf(5), hosts(5), systemd.network(5), systemd-networkd.service(8)

NOTES

 1. RFC3493

 https://tools.ietf.org/html/rfc3493

 2. RFC6762

 https://tools.ietf.org/html/rfc6762

 3. For example, if /etc/resolv.conf has

 nameserver 127.0.0.53

 search foobar.com barbar.com

 and we look up "localhost", nss-dns will send the following queries to systemd-

 resolved listening on 127.0.0.53:53: first "localhost.foobar.com", then

 "localhost.barbar.com", and finally "localhost". If (hopefully) the first two queries

 fail, systemd-resolved will synthesize an answer for the third query.

 When using nss-dns with any search domains, it is thus crucial to always configure

 nss-files with higher priority and provide mappings for names that should not be

 resolved using search domains.

 4. There are currently more than 1500 top-level domain names defined, and new ones are

 added regularly, often using "attractive" names that are also likely to be used

 locally. Not looking up multi-label names in this fashion avoids fragility in both

 directions: a valid global name could be obscured by a local name, and resolution of a

 relative local name could suddenly break when a new top-level domain is created, or

 when a new subdomain of a top-level domain in registered. Resolving any given name as

 either relative or absolute avoids this ambiguity.

systemd 249 SYSTEMD-RESOLVED.SERVICE(8) Page 8/8

